Globally Convergent Autocalibration Using Interval Analysis

M. Farenzena, A. Fusiello, A. Benedetti, and A. Busti. Department of Computer Science
University of Verona, Verona - Italy

Overview

Existing autocalibration techniques use numerical optimization algorithms that are prone to the problem of local minima.  To address this problem, we have developed a method where an interval branch-and-bound method is employed for numerical minimization. Thanks to the properties of Interval Analysis this method is guaranteed to converge to the global solution with mathematical certainty and arbitrary accuracy, and the only input information it requires from the user is a set of point correspondences and a search box.  The cost function is based on the Huang-Faugeras constraint of the fundamental matrix.  A recently proposed interval extension base on Bernstein polynomial forms has been investigated to speed up the search for the solution.

Method


Uncalibrated sequences

Sequence Interval autocalibration Other autocalibration Structure
au = [618.28, 619.18]
av = [698.99, 700.43]
u0 = [233.69, 235.28]
v0 = [372.05, 373.24]
au = 681.345
av = 679.285
u0 = 258.802
vu = 383.188

[Zeller-Faugeras 1996]

au = [799.30, 799.84]
av = [830.34, 831.19]
u0 = [405.12, 405.72]
v0 = [351.21, 352.00]
au = 837
av = 837
u0 = -
vu = -

[Ueshiba-Tomita 1998]

au = [600.98, 601.53]
av = [719.45, 720.00]
u0 = [409.42, 409.97]
v0 = [190.49, 191.14]
au = 604.93
av = 712.94
u0 = 377.86
vu = 313.88

[Lourakis-Deriche 1999]

Calibrated sequences

Sequence Interval autocalibration Calibration Structure
au = [1485.62, 1486.67]
av = [1445.62, 1446.96]
u0 = [698.00, 699.00]
v0 = [432.00, 432.75]
au = 1462.996
av = 1458.304
u0 = 635.662
vu = 497.794
au = [1436.40, 1436.95]
av = [1406.61, 1407.28]
u0 = [612.00, 613.00]
v0 = [561.00, 561.75]
au = 1462.996
av = 1458.304
u0 = 635.662
vu = 497.794
au = [1439.14, 1439.68]
av = [1482.61, 1482.94]
u0 = [604.50, 605.00]
v0 = [477.37, 477.75]
au = 1462.996
av = 1458.304
u0 = 635.662
vu = 497.794

Reference Paper