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Abstract

We address the problem of autocalibration of a moving camera with unknown constant intrinsic pa-

rameters. Existing autocalibration techniques use numerical optimization algorithms whose convergence

to the correct result cannot be guaranteed, in general. To address this problem, we have developed a

method where an interval branch-and-bound method is employed for numerical minimization. Thanks

to the properties of Interval Analysis this method converges to the global solution with mathematical

certainty and arbitrary accuracy, and the only input information it requires from the user are a set of point

correspondences and a search interval. The cost function is based on the Huang-Faugeras constraint of

the essential matrix. A recently proposed interval extension based on Bernstein polynomial forms has

been investigated to speed up the search for the solution. Finally, experimental results are presented.

Index Terms

Image Processing and Computer Vision, Camera calibration, Modeling from video, Interval arith-

metic, 3D/stereo scene analysis, Self-calibration.

I. I NTRODUCTION

One of the goals of Computer Vision is to compute properties (mainly geometric) of the three-

dimensional world from images. A challenging problem is toreconstructa three-dimensional

model of the scene from a moving camera. Most of the earlier studies in the field assume that

the intrinsic parameters of the camera (focal length, image center and aspect ratio) are known.

Computing camera motion in this case is a well known problem for which several methods

are available (see [1] for a review). Given all the parameters of the camera, reconstruction is

straightforward.

However, there are situations where the intrinsic parameters are unknown and the camera

is not accessible (e.g. when using stock footage). In these cases the only information one can

exploit are contained in the video sequence itself.

The classical approach toautocalibration(or self-calibration), in the case of a single moving

camera with constant but unknown intrinsic parameters, is based on the Kruppa equations [2],

which have been found to be very sensitive to noise [3], possibly due to the instability in the

computation of the epipole [4]. Indeed, formulations which avoid the epipole seems to be more

stable [5], [4].
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Other methods [6], [7], [8], based on thestratificationapproach, upgrade a projective recon-

struction to an Euclidean one without solving explicitly for the intrinsic parameters (see [9]

for a review). The constant intrinsic parameters hypothesis has been relaxed in [10], [11], by

assuming that some other parameters are known.

Recently, Mendonça and Cipolla [12] presented an algorithm which directly recovers the

intrinsic parameters from fundamental matrices, like the Kruppa equations, but it is simpler and

copes with varying parameters.

Under the assumption that only the (varying) focal length is unknown, closed form and linear

solutions can be obtained [13], [14], [5], [15]. In all the other cases the parameters come from the

solution of a system of polynomial equations or from the minimization of a non-linear function.

In principle, continuation (homotopy) techniques could be applied to the former case, though—

in practice—iterative minimization techniques must be used [3], as homotopy algorithms are

applicable only in the case of few displacements, and can give rise to bifurcation phenomena.

When minimizing a non-linear function by gradient descent methods, convergence to the global

minimum is not guaranteed: it depends on the initialization—for deterministic algorithms,—or it

is guaranteed only in probability—for stochastic algorithms [16]. Quasi-linear approaches reduce

the sensitivity to the initial guess [17], [8], [18], but they do not solve the problem. The solutions

of a simpler problem (only focal lenght is unknown) have been used to initialize the minimization

in [11], [19]. In [20], a stratified approach has been proposed, based on the direct evaluation of

a dense sampling of the search space. Albeit some of these techniques are effective, none of the

existing methods is provably convergent.

In this paper we introduce a method for autocalibration that isguaranteedto converge to

the global minimum, regardless of the starting point. In the same spirit of [12], [4], [16],

we compute directly the intrinsic parameters from fundamental matrices. We assume constant

intrinsic parameters, but the technique is flexible and can be adapted to varying parameters as

well.

The minimization algorithm is based on Interval Analysis (IA) [21], a branch of numerical

analysis that has received increasing attention during the last decade and has been strangely

overlooked by the computer vision community.

Classical numerical optimization methods for the multidimensional case start from some

approximate trial points and sample the objective function at only a finite number of points.
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There is no way to guarantee that the function does not have some unexpectedly small values

between these trial points, without making specific assumptions. On the contrary, IA optimization

algorithms [22] can be seen as if they could evaluate the objective function over a continuum of

points, including those points that are not finitely representable on the computer. They solve the

optimization problem withautomatic result verification, i.e. with the guarantee that the global

minimizers have been found.

The rest of the paper is structured as follows. The next section introduces notation and

some background notions of Computer Vision. The autocalibration problem that we address

is formulated in Sec. III. In Sec. IV the reader is first introduced to Interval Analysis, and the

specific optimization algorithm is described. Results are reported in Sec. V, and conclusions are

drawn in Sec. VI.

II. BACKGROUND

Throughout this paper we will use the general projective camera model [23]. Letw =

[x, y, z, 1]T be the homogeneous coordinates of a 3D point in the world reference frame. The

homogeneous coordinates of the projected point are given by1

m ' P w, (1)

where P , A [R|t] is the camera matrix, whose position and orientation are represented,

respectively, by the translation vectort and the3× 3 rotation matrixR. The matrixA contains

the intrinsic parameters, and has the following form:

A =




αu γ u0

0 αv v0

0 0 1


 , (2)

whereαu, αv are thefocal lengthsin horizontal and vertical pixels, respectively,(u0, v0) are the

coordinates of theprincipal point, given by the intersection of the optical axis with the retinal

plane, andγ is theskewfactor, that models non-rectangular pixels.

Two conjugate pointsm andm′ are related by thefundamental matrixF [24]:

m′TFm = 0 (3)

1' denotes equality up to a scale factor.
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The rank ofF is two and, being defined up to a scale factor, it depends upon seven parameters.

Its computation requires a minimum of eight conjugate points to obtain a unique solution [24].

F depends on the intrinsic and extrinsic parameters according2 to

F ' A′−T([t]×R)A−1. (4)

When conjugate points are in normalized coordinates (A−1m), i.e., intrinsic parameters are

known, one obtains theessential matrix:

E ' [t]×R. (5)

The essential matrix encodes the rigid transformation between the two cameras, and it depends

upon five independent parameters: three for the rotation and two for the translation up to a scale

factor.

III. PROBLEM FORMULATION

In many practical cases, the intrinsic parameters are unknown and point correspondences are

the only information that can be extracted from a sequence of images.Autocalibrationconsists in

computing the intrinsic parameters, or—in general—recovering the Euclideanstratum, starting

from point correspondences. In this section we will see which constraints are available for

autocalibration.

As we saw in Sec. II, the epipolar geometry of two views is described by the fundamental

matrix, which depends on seven parameters. Since the five parameters of the essential matrix

are needed to describe the rigid displacement, two independent constraints are available for the

computation of the intrinsic parameters from the fundamental matrix. Indeed, the essential matrix

is characterized by the following Theorem [25], [13]:

Theorem 1:A real3×3 matrixE can be factored as the product of a non-zero skew-symmetric

matrix and a rotation matrix if and only ifE has two identical singular values and one zero

singular value.

2[t]× =

2664 0 −t3 t2

t3 0 −t1

−t2 t1 0

3775 .
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By exploiting this constraint, Hartley [13] derived two quadratic equations in the two values

of the focal length. He also pointed out that no more information could be extracted from the

fundamental matrix without making additional assumptions (e.g. constant intrinsic parameters).

It can be shown (see Sec. III-A) that the conditions on the singular values are equivalent to:

det(E) = 0 ∧ 2 tr((EET)2)− (tr(EET))2 = 0, (6)

which in turn is equivalent to the Kruppa equations [3]. The second clause of (6) can be

decomposed [3] in two independent polynomial constraints.

All these constraints are algebraic interpretations of the so-calledrigidity constraint, namely

the fact that for any fundamental matrixF there exist two intrinsic parameters matrixA andA′

and a rigid motion represented byt andR such that (4) is satisfied.

The autocalibration method by Mendonça and Cipolla is based on Theorem 1. They designed

a cost function which takes the intrinsic parameters as arguments, and the fundamental matrices

as parameters, and returns a positive value proportional to the difference between the two non-

zero singular value of the essential matrix. LetFij be the fundamental matrix relating viewsi

and j (computed from point correspondences), and letAi andAj be the respective (unknown)

intrinsic parameter matrices. The cost function is

χ(Ai, i = 1 . . . n) ,
n∑

i=1

n∑
j>i

wij

1σij − 2σij

1σij + 2σij

, (7)

where1σij ≥ 2σij are the non zero singular values of

Eij = AT
i FijAj, (8)

andwij are normalized weight factors. In the general case ofn views, then(n−1)/2 fundamental

matrices are not independent, neither are then(n − 1)/2 constraints that can be derived from

them [26]. It can be shown [11] that, ifnk parameters are known andnc parameters are constant,

the unknown intrinsic parameters can be computed provided that

n(nk + nc) ≥ 8 + nc. (9)

For example, if the intrinsic parameters are constant, three views are sufficient to recover them.

If the skew is zero and the other parameters are varying, at least eight views are needed.
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A. The Huang-Faugeras cost function

The use of (7) as an optimization criterion has been considered, however bounding the ranges

of the singular values of an interval matrix is not trivial, since it requires the solution of a min-

max optimization problem. Therefore, in the same spirit of the Mendonça-Cipolla algorithm, we

minimize the following cost function, based on the Huang-Faugeras constraint, given by (6):

χ(Ai, i = 1, . . . , n),
n∑

i=1

n∑
j=i+1

wij
2 tr(EijEij

T)2− tr2(EijEij
T)

tr2(EijEij
T)

. (10)

It is easy to see that

tr(EET)2 =
3∑

k=1

σ4
k(E). (11)

Hence, the second clause of (6) can be rewritten as

2 tr(EET)2 − tr2(EET) =

2(σ4
1 + σ4

2 + σ4
3)− (σ2

1 + σ2
2 + σ2

3)
2 =

(σ2
1 − σ2

2)
2 + σ2

3(σ
2
3 − 2(σ2

1 + σ2
2)). (12)

Therefore, provided thatσ3 = 0, each term of the cost function expressed by (10) vanishes for

σ2
1 = σ2

2, as does the corresponding term of the Mendonça-Cipolla function (7). Moreover, as

the terms are always positive, we do not need to take their square, as it would be required in a

generic least squares problem, thereby reducing the order of the numerator and the denominator

of the cost function from sixteen to eight.

If the essential matrixE is derived fromF via (8), thendet(F ) = 0 implies σ3 = 0.

IV. I NTERVAL ANALYSIS

Interval Arithmetic [27] is an arithmetic defined on intervals, rather than on real numbers. In

the beginning, Interval Arithmetic was mainly employed for bounding the measurement errors of

physical quantities for which no statistical distribution was known. Later on it was leveraged to

a broad new field of applied mathematics, aptly named Interval Analysis, where rigorous proofs

are the consequence of numerical computations.
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A. Notation and useful results

In the sequel of this section we shall follow the notation used in [28], where intervals are

denoted by boldface, scalar quantities are denoted by lower case letters and vectors and matrices

are denoted by upper case. Brackets “[·]” will delimit intervals, while parentheses “(·)” will

delimit vectors and matrices. Underscores and overscores will represent respectively lower and

upper bounds of intervals. An intervalx is calleddegeneratewhen x = x = x. IR and IRn

stand respectively for the set of real intervals and the set of real interval vectors of dimensionn.

The midpoint of an intervalx is denoted bym(x), and the vector whose entries are midpoints

of the entries ofX ∈ IRn is denoted bym(X). The width of x is defined asw(x) = x − x.

If X ∈ IRn then w(X) = max {w(xi), i = 1, . . . , n}. If f(x) is a function defined over an

interval x then fu(x) denotes the range off(x) over x. Similarly, the range ofF : Rn → R

over X is denoted byF u(X).

Interval arithmetic is an arithmetic defined on sets of intervals. Ifx = [x, x] andy =
[
y, y

]
,

a binary operation in theideal interval arithmeticbetweenx andy is defined as:

x op y , {x op y | x ∈ x and y ∈ y} ,

for op ∈ {+,−,×,÷} .

Thus, the ranges of the four elementary interval operations are exactly the ranges of the corre-

sponding real operations. The operational definitions for the four elementary interval arithmetic

operations are

x + y ,
[
x + y, x + y

]
,

x− y ,
[
x− y,x− y

]
,

x× y ,
[
min

{
x y,x y,x y,x y

}
,

max
{
x y,x y,x y,x y

}]
,

1

x
,





[1/x, 1/x] if x > 0

[1/x, 1/x] if x < 0
(0 6∈ [x,x]),

x÷ y , x× 1/y.

The above definitions imply the ability to perform the four elementary operations with arbitrary

precision. When implemented on a digital computer, however, truncation errors occur that may
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cause the resulting interval not to contain the result that would be obtained with ideal interval

arithmetic. In order to avoid this effect, the lower endpoint of the interval must be rounded down

to the nearest machine number less than the mathematically correct result, and the upper endpoint

must be rounded up to the nearest machine number greater than the mathematically correct result.

This mode of operation, calleddirect rounding, is available on any machine supporting the IEEE

floating point standard.

Our use of IA is motivated by the need to obtain bounds on the range of mathematical

functions.

Definition 1 (Interval extension):A functionF : IRn → IR is said to be aninterval extension

of F : Rn → R provided

F u(X) ⊆ F (X)

for all intervalsX ⊂ IRn within the domain ofF [28].

The natural interval extension of a function is obtained by replacing variables with intervals

and executing all operations according to the rule above. For instance,f(x) = x(x − 1) is an

interval extensions off(x) = x2 − x = x(x− 1). By settingx = [0, 1] we have

f(x) = [0, 1] ([0, 1]− 1) = [0, 1] [−1, 0] = [−1, 0] ,

which necessarily includes the exact rangefu([0, 1]) = [−1/4, 0].

However, the bounds provided by natural interval extensions are usually too wide or pessimistic

to be of value. The following definition characterizes how sharply interval extensions enclose

the range of a function.

Definition 2 (Orderα inclusion function):Let F (X) be an interval extension ofF : Rn → R

evaluated over an intervalX. We say thatF is anorder α inclusion functionfor F if there is

a constantK, independent of the intervalX, such that

w(F (X))− w(F u(X)) ≤ Kw(X)α (13)

for all intervalsX with w(X) sufficiently small.

It can be shown [28] that natural interval extensions are first order. Higher-order inclusion

functions are key to the design of efficient global optimization algorithms, as we shall see in

the next section.
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A powerful method in Interval Analysis isInterval Newton method, that combines the classical

Newton method and interval analysis. The result is an iterative method that can be used both

to refine enclosures to solutions of nonlinear systems of equation, and to prove existence and

uniqueness of such solutions, including tight and rigorous bounds on critical points of constrained

optimization problems. Suppose now thatF : Rn → Rn, X ∈ IRn, andX̌ ∈ X. Then a general

form for the (multivariate) interval Newton operator is

N (F ; X, X̌) , X̌ + V , (14)

whereV is the solution to the interval system3 J(X)V = −F (X̌) and J(X) is an interval

extension of the Jacobian matrix ofF over X. Under certain natural smoothness conditions,

interesting results can be shown [28]:

• N(F ; X, X̌) must contain all pointsX∗ ∈ X such thatF (X∗) = 0. Consequently, if

N(F ; X, X̌) ∩X = ∅, then there are no solutions ofF (X) = 0 in X.

• If X contains a solution ofF (X) = 0 and w(X) is sufficiently small, the width of

N(F ; X, X̌) is roughly proportional tow(X)2.

The Newton method consists of the the following iteration

X(k+1) = N(F ; X(k), X̌) ∩X(k). (15)

The intervalV in (14) can be computed using the interval Gauss-Seidel method [28], which

is the interval adaptation of the classical numerical method. If0 ∈ J(X) the quotients must be

computed using the rule ofextended interval divisiondefined in [22]. The outcome will be, in

general, a union of disjoint intervals. For details and further references, see [28].

B. IA based Global Optimization

The ability of Interval Analysis to compute bounds to the range of functions has been most

successful in global optimization. The overall structure of the Moore-Skelboe or Hansen [22]

branch-and-bound algorithm is:

1) store in a listL the initial intervalX0 ∈ IRn containing the sought minima;

2) pick an intervalX from L;

3The solution setof the interval linear systemAX = B, is defined as the set{X : ∃A∈A and ∃B∈B t.c. AX =B}.
Numerical methods provides an hyperrectangle containing the solution set.
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3) if X is guaranteed not to contain a global minimizer, then discard it, otherwise subdivide

X and store the sub-intervals inL;

4) repeat from step 2) until the width of the intervals inL are below the desired accuracy.

The criteria used to delete intervals are based on rigorous bounds, therefore the interval containing

the global minimizer is never deleted even in the presence of rounding errors.

We employed an algorithm inspired by a recently proposed global optimization method [29],

based on the Moore-Skelboe-Hansen branch-and-bound algorithm and Bernstein polynomials for

bounding the range of the objective function.

A combination of several test have been used in our implementation.

The cut-off test uses an upper bound̂F of the global minimum of the objective functionF to

discards an intervalX from L if F (X) > F̂ . Any value taken byF is an upper bound for its

global minimum, but the tighter is the bound, the more effective is the cut-off test. In Section

IV-B.1 we describe the method that we used to determine and updateF̂ .

The monotonicitytest determines whether the functionF has no stationary points in an entire

sub-intervalX. Denote the interval extension of the gradient ofF over X by ∇F (X). If

0 6∈ ∇F (X) thenX can be deleted.

The concavitytest examines the concavity ofF , using its Hessian matrixH. Let H i,i(X)

denote the interval extension of thei−th diagonal entry of Hessian overX. An interval can be

deleted ifH i,i(X) < 0 for somei.

The Interval Newton stepapplies one step of the interval Newton method (14) to the non-linear

system∇F (X) = 0, X ∈ X. As a consequence we may validate thatX contains no stationary

points, in which case we discardX, otherwise we may contract or subdivideX.

The complete optimization scheme can be summarized as the following pseudocode:
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GLOBAL -OPTIMIZATION ALGORITHM

U ← ∅
L ← {X0} list of intervals sorted in order of increasingF (X)

while L 6= ∅ do

remove the first intervalX from L
if stop criterionthen U ← U ∪ {X}
else if (cut-off test:F (X) > F̂ or

monotonicity test:0 6∈ ∇F (X) or

concavity test:H i,i(X) < 0 for somei) then Y ← ∅
else interval Newton step:Y ← X ∩N(∇F ; X, m(X))

bisectY and insert the resulting intervals inL
updateF̂

end

return U
A problem of global optimization algorithms based on IA is the so calledcluster effect: as

observed in [30], sub-intervals containing no solutions cannot be easily eliminated if there is

a local minimum nearby. As a consequence of over-estimation in range bounding, many small

intervals are created by repeated splitting, whose processing may dominate the total work spent

on global search. This phenomenon occurs when the order of the inclusion function is less than

three [30], hence we shall look for sharper inclusion functions.

1) Taylor-Bernstein forms:An interesting extension of IA that reduces the over-estimation is

based on Taylor polynomials.

Definition 3 (Taylor Model):Let F : X ⊂ Rn → R be a function that is(m + 1) times

continuously partially differentiable. LetX0 be a point inX and Pm,F the m-th order Taylor

polynomial ofF aroundX0. Let Im,F be an interval such that

F (X) ∈ Pm,F (X −X0) + Im,F ∀X ∈ X. (16)

We call the pair(Pm,F , Im,F ) an m-th orderTaylor modelof F [31] .

HencePm,F + Im,F enclosesF between two hypersurfaces onX (Fig. 1).

Taylor models of any computable function can be obtained recursively using theTaylor Model

Arithmetic described in [31]. In order to bound the range of a functionF over a domainX,
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Fig. 1. Example of bounding a 7th order polynomial with a 3rd order Taylor model

it is sufficient to compute an interval extensionP m,F (X) for the polynomialPm,F , since from

Definition 3 (with X0 = 0) it follows that

F u(X) ⊆ P m,F (X) + Im,F .

The sharpness of the bounds depends on the method used to obtain the inclusion function for

Pm,F . More precisely, ifP u
m,F (X) denotes the exact range ofPm,F , thenP u

m,F (X)+Im,F is an

m + 1 order inclusion function forF over X, wherem is the degree of the Taylor polynomial

[29].

A Taylor-Bernstein formis a Taylor model where the polynomial is expressed in the Bernstein

basis rather than in the canonical power basis. The advantage is that the Taylor-Bernstein form

allows to compute the exact range of the polynomial part. Hence, withm ≥ 2, the cluster effect

is avoided. A Bernstein polynomial has the form (in one dimension):

p(x) =
m∑

i=0

ai


 m

i


 xi(1− x)m−i. (17)

An important property of these polynomials is thatp(x) on x is a convex combination ofai’s,

so that the coefficients of the Bernstein form provide lower and upper bounds to the range:

pu(x) ⊆ [min{ai}, max{ai}].

If the polynomial is monotone over a domainx then the Bernstein form gives the exact range

since the minimum and maximum occurs respectively ata1 andam, a1 = p(x) andam = p(x).

This suggests that the exact range of a polynomialp on x can be obtained by transforming the

polynomial into Bernstein form and then repeatedly subdividing it until the bounds of all sub-

intervals are exact. The subdivision can be easily done with De Casteljau algorithm, well known
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in Computer Graphics [32]. Bernstein polynomials can be easily extended to the multivariate

case, where analogous properties hold (see [29]).

The knowledge of the exact range ofPm,F helps to make the cut-off test more effective.

Indeed, ifP u
m,F (X) is the exact range, thenP u

m,F (X) = min{Pm,F} and the minimum ofF

over X is contained inP u
m,F (X) + Im,F . Then P u

m,F (X) + Im,F is an upper bound of the

minimum of F over X. The cut-off valueF̂ is the smallest upper bound for all the intervals in

the list.

The advantages and limits of Taylor models are widely discussed in [33], where the author

also points out that the Taylor-Bernstein form is well suited to low dimension problems.

The Jacobian and Hessian matrices of the cost function are derived in closed form in [34].

V. EXPERIMENTAL RESULTS

A. Autocalibration

In our experiment we assume that the intrinsic parameters of the camera are constant. Fun-

damental matrices were computed using the linear 8-point algorithm with data normalization as

described by Hartley in [35]. The weightwij has been defined as the residual of the estimation

of Fij [12]. We used Taylor models of degree four. As a stop criterion in the global optimization

algorithm we requiredw(Im,F ) ≤ 10−10; using this value we typically get solution interval 2.5

pixels wide. Time figures refers to our implementation in MATLAB and C++, on a Pentium III

900 MHz processor.

In order to test our technique, we run a synthetic experiment in which data consisted of 50

points randomly scattered in a sphere of unit radius, centered at the origin. Views were generated

by placing cameras at random positions, at a mean distance from the center of 2.5 units with

a standard deviation of 0.25. The orientations of the cameras were chosen randomly with the

constraint that the optical axis should point toward the center. The intrinsic parameters were

given a known value:αu = αv = 800, u0 = v0 = 256 pixels. As customary it was assumed

γ = 0.

The accuracy (see [34] for detailed results) is in agreement with the figures reported in [12],

[16], as we basically use the same cost function.

In order to justify the use of our global optimization algorithm, we run a standard gradient
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method4, initialized by randomly choosing a point in the domain[300, 1700] × [300, 1700] ×
[156, 356]× [156, 356]. After performing 100 trials we recorded how many times the algorithm

converged to the correct solution, which was assumed to be the one to which it converged when

initialized with the true intrinsic parameters (within a 10% tolerance). The quasi-Newton method

converged in the 86% of cases, with 5 views and 1.0 pixel noise. Average running time was 0.9

sec. Our algorithm spent 23.2 min. on the same problem, but convergence is 100% guaranteed.

We tested our autocalibration on the same real sequences used in other papers [16], [36], [4],

[37]; all the sequences consists of five frames. The starting interval was chosen as follows: the

midpoint for (u0, v0) is the image center and the width is 20% of the image size; the interval

for the focal lengths is always[300× 1700]. Point correspondences were obtained manually. In

all the real experiments the final interval width was around one pixel.

Table I compares our results with those previously published, when available. Please note that

the values reported by other articles are the result of different autocalibration algorithms, and

must not be taken as ground truth. Values in brackets were guessed, not computed.

TABLE I

M IDPOINTS OF INTRINSIC PARAMETERS COMPUTED WITH OUR ALGORITHM VERSUS PREVIOUS RESULTS.

Our algorithm Previous results

Sequence αu αv u0 v0 αu αv u0 v0

Valbonne [36] 619 699 234 372 681 679 259 383

ETL [37] 800 831 405 352 837 837 (378) (252)

Nekt [4] 720 600 410 191 713 605 378 314

In order to make a more meaningful assessment we compared the results of our algorithm

with those obtained by a standard calibration technique [38]. Table II reports the result for four

sequences taken in Verona, each consisting of five frames5. Computation times are shown in

Table III. It is interesting to note that in “ETL” and “Piazza Dante” the motion of the camera

was close to a degenerate configuration, and indeed the computation time is significantly larger

than the average.

4We used the quasi-Newton method implemented by thefminunc function in theMATLAB Optimization Toolbox.

5Test sequences can be found on the World Wide Web at

http://www.sci.univr.it/˜fusiello/demo/autocal .
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TABLE II

M IDPOINT OF INTRINSIC PARAMETERS COMPUTED WITH OUR ALGORITHM VERSUS CALIBRATION.

Sequence αu αv u0 v0

Calibration 1341 1343 521 382

Castel Vecchio 1328 1319 582 328

S.Zeno 1359 1405 436 345

Piazza Erbe 1368 1289 450 402

Piazza Dante 1405 1358 460 410

TABLE III

COMPUTATION TIMES FOR REAL SEQUENCES.

Sequences Time [min]

Valbonne 77

ETL 97

Nekt 65

S.Zeno 47

Castel Vecchio 20

Piazza Dante 90

Piazza Erbe 32

B. 3-D Reconstruction

Using the midpoint of intrinsic parameters computed by autocalibration, and the fundamental

matrices, structure was recovered by first factorizing out the motion from the essential matri-

ces [13], then recovering the projection matrices [36] and finally computing 3-D structure by

triangulation [39]. As customary, results are refined by bundle adjustment, in order to obtain

a maximum likelihood solution with respect to the underlying measures. More details can be

found in [34].

As shown in Fig. 2, the projection of the reconstructed points coincides with the original

image points.

In order to assess quantitatively the metric accuracy of the reconstruction, as the absolute

dimensions of the objects are unknown, we computed the angles between 3D segments that are

known to be parallel or orthogonal in the real scene (Table IV).
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TABLE IV

ANGLES BETWEEN SEGMENTS OF THE RECONSTRUCTION SHOWN INFIG. 2.

Valbonne Castel Vecchio Piazza Erbe

Segm 20-22 20-18 17-19 21-18 1-6 2-3 1-4 4-5 3-4 1-2 6-7 5-8

Computed 1.52◦ 0.82◦ 88.6◦ 88.4◦ 89.7◦ 88.9◦ 2.7◦ 89.8◦ 0.8◦ 89.3◦ 88.8◦ 0.8◦

True 0◦ 0◦ 90◦ 90◦ 90◦ 90◦ 0◦ 90◦ 0◦ 90◦ 90◦ 0◦
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1
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19
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24

20

21

3
2

1

5

7

6

4

7

2

34

5
8

1

6

Fig. 2. Valbonne (top row), Castel Vecchio (middle row) and Piazza Erbe (bottom row). Left: the projection of reconstructed

points (◦ mark) are shown superimposed onto the original feature points (+ mark). Right: a view of the 3D reconstruction.
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VI. CONCLUSIONS AND FUTURE WORK

Global optimization based on Interval Analysis is a general method that in this paper has been

applied to the autocalibration problem, obtaining a technique that is guaranteed to converge to

the global solution with mathematical certainty and arbitrary accuracy. The choice of the initial

interval is not critical for the successful termination of the algorithm – provided that it contains

the global minimizer – because it only influences the computation time.

The experiments show that our method achieves results comparable to standard methods. The

computation time confines this technique to off-line applications, but future work will aim at

reducing it by introducing several variations to the present model.

We also plan to explore the use of IA tools to automatically detect degenerate configurations

[40], [17].
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