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1 Introduction

This notes introduces the basic geometric concepts of computer vision. The focus
is on geometric models of perspective cameras, and the constraints and properties
such models generate when multiple cameras observe the same 3-D scene.

Geometric vision is an important and well-studied part of computer vision. A wealth
of useful results has been achieved in the last 20 years and has been reported in
comprehensive monographies [3, 10, 5] to which the reader is referred for a deepr
study.
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Fig. 1. Example of reconstruction from images. Original images (top row) and reconstructed model

(bottom row).
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2 Projective Geometry

The physical space is the Euclidean 3-D space E3, a real 3-dimensional affine space
endowed with the inner product.

Our ambient space is the projective 3-D space P3, obtained by completing E3

with a projective plane, known as plane at infinity Π∞. In this ideal plane lie the
intersections of the planes parallel in E3.

The projective (or homogeneous) coordinates of a point in P3 are 4-tuples defined
up to a scale factor. We write

M ' (x, y, z, t) (1)

where ' indicates equality to within a multiplicative factor.

The affine points are those of P3 which do not belong to Π∞. Their projective
coordinates are of the form (x, y, z, 1), where (x, y, z) are the usual Cartesian
coordinates.

Π∞ is defined by its equation t = 0.
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The linear transformations of a projective space into itself are called collineations
or homographies. Any collineation of P3 is represented by a generic 4× 4 invertible
matrix.

Affine transformations are the subgroup of collineations of P3 that preserves the
plane at infinity (i.e., parallelism).

Similarity transformations are the subgroup of affine transformations that leave
invariant a very special curve, the absolute conic, which is in the plane at infinity
and whose equation is:

x2 + y2 + z2 = 0 = t (2)

Similarity transformations preserves the angles.
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The space is therefore stratified into more and more specialized structures:

• projective

• affine (knowing the plane at infinity)

• Euclidean (knowing the absolute conic)

The stratification reflects the amount of knowledge that we possess about the scene
and the sensor.
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3 Pin-hole Camera Geometry

The pin-hole camera is described by its optical centre C (also known as camera
projection centre) and the image plane.

The distance of the image plane from C is the focal length f .

The line from the camera centre perpendicular to the image plane is called the
principal axis or optical axis of the camera.

The plane parallel to the image plane containing the optical centre is called the
principal plane or focal plane of the camera.

The relationship between the 3-D coordinates of a scene point and the coordinates
of its projection onto the image plane is described by the central or perspective
projection.
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Fig. 2. Pin-hole camera geometry. The left figure illustrates the projection of the point M on the

image plane by drawing the line through the camera centre C and the point to be projected. The

right figure illustrates the same situation in the YZ plane, showing the similar triangles used to

compute the position of the projected point m in the image plane.
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A 3-D point is projected onto the image plane with the line containing the point
and the optical centre (see Figure 2).

Let the centre of projection be the origin of a Cartesian coordinate system wherein
the z-axis is the principal axis.

By similar triangles it is readily seen that the 3-D point (x, y, z)T is mapped to the
point (fx/z, fy/z)T on the image plane.
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3.1 The camera projection matrix

If the world and image points are represented by homogeneous vectors, then per-
spective projection can be expressed in terms of matrix multiplication as




fx
fy
z


 =




f 0 0 0
0 f 0 0
0 0 1 0







x
y
z
1


 (3)

The matrix describing the mapping is called the camera projection matrix P .

Equation (3) can be written simply as:

zm = PM (4)

where M = (x, y, z, 1)T are the homogeneous coordinates of the 3-D point and
m = (fx/z, fy/z, 1)T are the homogeneous coordinates of the image point.

The projection matrix P in Eq. (3) represents the simplest possible case, as it only
contains information about the focal distance f .
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General camera: bottom up approach

The above formulation assumes a special choice of world coordinate system and
image coordinate system. It can be generalized by introducing suitable changes of
the coordinates systems.

Changing coordinates in space is equivalent to multiplying the matrix P to the right
by a 4× 4 matrix:

G =

[
R t
0 1

]
(5)

G is composed by a rotation matrix R and a translation vector t. It describes the
position and orientation of the camera with respect to an external (world) coordinate
system. It depends on six parameters, called extrinsic parameters.

The rows of R are unit vectors that, together with the optical centre, define the
camera reference frame, expressed in world coordinates.
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Changing coordinates in the image plane is equivalent to multiplying the matrix P
to the left by a 3× 3 matrix:

K =




f/sx f/sx cot θ ox

0 f/sy oy

0 0 1


 (6)

K is the camera calibration matrix; it encodes the transformation in the image
plane from the so-called normalized camera coordinates to pixel coordinates.

It depends on the so-called intrinsic parameters:

• focal distance f (in mm),

• principal point (or image centre) coordinates ox, oy (in pixel),

• width (sx) and height (sy) of the pixel footprint on the camera photosensor (in
mm),

• angle θ between the axes (usually π/2).

The ratio sy/sx is the aspect ratio (usually close to 1).
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Thus the camera matrix, in general, is the product of three matrices:

P = K[I|0]G = K[R|t] (7)

In general, the projection equation writes:

ζm = PM (8)

where ζ is the distance of M from the focal plane of the camera (this will be shown
after), and m = (u, v, 1)T .

Note that, except for a very special choice of the world reference frame, this “depth”
does not coincide with the third coordinate of M.
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General camera: top down approach

If P describes a camera, also λP for any 0 6= λ ∈ R describes the same camera,
since these give the same image point for each scene point.

In this case we can also write:
m ' PM (9)

where ' means “equal up to a scale factor.”

In general, the camera projection matrix is a 3 × 4 full-rank matrix and, being
homogeneous, it has 11 degrees of freedom.

Using QR factorization, it can be shown that any 3× 4 full rank matrix P can be
factorised as:

P = λK[R|t], (10)

(λ is recovered from K(3, 3) = 1).
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3.2 Camera anatomy

Projection centre

The camera projection centre C is the only point for which the projection is not
defined, i.e.:

PC = P

(
C̃
1

)
= 0 (11)

where C̃ is a 3-D vector containing the Cartesian (non-homogeneous) coordinates
of the optical centre.

After solving for C̃ we obtain:

C̃ = −P−1
1:3 P4 (12)

where the matrix P is represented by the block form: P = [P1:3|P4] (the subscript
denotes a range of columns).

18



Depth of a point

We observe that:

ζm = PM = PM− PC = P (M−C) = P1:3(M̃− C̃). (13)

In particular, plugging Eq. (10), the third component of this equation is

ζ = λrT
3 (M̃− C̃)

where rT
3 is the third row of the rotation matrix R, which correspond to the versor

of the principal axis.

If λ = 1, ζ is the projection of the vector (M̃− C̃) onto the principal axis, i.e., the
depth of M.
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Optical ray

The projection can be geometrically modelled by a ray through the optical centre
and the point in space that is being projected onto the image plane (see Fig. 2).

The optical ray of an image point m is the locus of points in space that projects
onto m.

It can be described as a parametric line passing through the camera projection
centre C and a special point (at infinity) that projects onto m:

M =

( −P−1
1:3 P4

1

)
+ ζ

(
P−1

1:3 m
0

)
, ζ ∈ R. (14)

If λ = 1 the parameter ζ in Eq. (14) represent the the depth of the point M. ©01

Knowing the intrinsic parameters is equivalent to being able to trace the optical ray
of any image point (with P = [K|0]).
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3.3 Camera calibration (or resection)

A number of point correspondences mi ↔Mi is given, and we are required to find
a camera matrix P such that

mi ' PMi for all i. (15)

The equation can be rewritten in terms of the cross product as

mi × PMi = 0. (16)

This form will enable a simple a simple linear solution for P to be derived. Using
the properties of the Kronecker product (⊗) and the vec operator [18], we derive:

mi × PMi = 0 ⇐⇒ [mi]×PMi = 0 ⇐⇒ vec([mi]×PMi) = 0 ⇐⇒
⇐⇒ (MT

i ⊗ [mi]×) vec P = 0

These are three equations in 12 unknown.
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Although there are three equations, only two of them are linearly independent:
Indeed, the rank of (MT

i ⊗ [mi]×) is two because it is the Kronecker product of a
rank-1 matrix by a a rank-2 matrix.

From a set of n point correspondences, we obtain a 2n × 12 coefficient matrix A
by stacking up two equations for each correspondence.

In general A will have rank 11 (provided that the points are not all coplanar) and
the solution is the 1-dimensional right null-space of A.

The projection matrix P is computed by solving the resulting linear system of
equations, for n ≥ 6.

If the data are not exact (noise is generally present) the rank of A will be 12 and
a least-squares solution is sought.

The least-squares solution for vec(P ) is the singular vector corresponding to the
smallest singular value of A.

This is called the Direct Linear Transform (DLT) algorithm [10].
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4 Two-View Geometry

The two-view geometry is the intrinsic geometry of two different perspective views
of the same 3-D scene (see Figure 3). It is usually referred to as epipolar geometry.

The two perspective views may be acquired simultaneously, for example in a stereo
rig, or sequentially, for example by a moving camera. From the geometric view-
point, the two situations are equivalent, provided that that the scene do not change
between successive snapshots.

Most 3-D scene points must be visible in both views simultaneously. This is not
true in case of occlusions, i.e., points visible only in one camera. Any unoccluded
3-D scene point M = (x, y, z, 1)T is projected to the left and right view as m` =
(u`, v`, 1)T and mr = (ur, vr, 1)T , respectively (see Figure 3).

Image points m` and mr are called corresponding points (or conjugate points) as
they represent projections of the same 3-D scene point M.

The knowledge of image correspondences enables scene reconstruction from images.

23



The concept of correspondence is a cornerstone of multiple-view vision. In this notes
we assume known correspondences, and explore their use in geometric algorithms.
Techniques for computing dense correspondences are surveyed in [23, 2].

Fig. 3. Two perspective views of the same 3-D scene with conjugate points highlighted
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We will refer to the camera projection matrix of the left view as P` and of the right
view as Pr. The 3-D point M is then imaged as (17) in the left view, and (18) in
the right view:

ζ`m` = P`M (17)

ζrmr = PrM. (18)

Geometrically, the position of the image point m` in the left image plane I` can be
found by drawing the optical ray through the left camera projection centre C` and
the scene point M. The ray intersects the left image plane I` at m`.

Similarly, the optical ray connecting Cr and M intersects the right image plane Ir

at mr.

The relationship between image points m` and mr is given by the epipolar geometry,
described in Section 4.1.
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4.1 Epipolar Geometry

The epipolar geometry describes the geometric relationship between two perspective
views of the same 3-D scene.

The key finding, discussed below, is that corresponding image points must lie on
particular image lines, which can be computed without information on the calibra-
tion of the cameras.

This implies that, given a point in one image, one can search the corresponding
point in the other along a line and not in a 2-D region, a significant reduction in
complexity.
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Fig. 4. The epipolar geometry and epipolar constraint.
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Any 3-D point M and the camera projection centres C` and Cr define a plane that
is called epipolar plane.

The projections of the point M, image points m` and mr, also lie in the epipolar
plane since they lie on the rays connecting the corresponding camera projection
centre and point M.

The conjugate epipolar lines, l` and lr, are the intersections of the epipolar plane
with the image planes. The line connecting the camera projection centres (C`,Cr)
is called the baseline.

The baseline intersects each image plane in a point called epipole.

By construction, the left epipole e` is the image of the right camera projection
centre Cr in the left image plane. Similarly, the right epipole er is the image of the
left camera projection centre C` in the right image plane.

All epipolar lines in the left image go through e` and all epipolar lines in the right
image go through er.
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The epipolar constraint.

An epipolar plane is completely defined by the camera projection centres and one
image point.

Therefore, given a point m`, one can determine the epipolar line in the right image
on which the corresponding point, mr, must lie.

The equation of the epipolar line can be derived from the equation describing the
optical ray. As we mentioned before, the right epipolar line corresponding to m`

geometrically represents the projection (Eq. (8)) of the optical ray through m`

(Eq. (14)) onto the right image plane:

ζrmr = PrM = Pr

( −P−1
`1:3

P`4
1

)

︸ ︷︷ ︸
er

+ ζ`Pr

(
P−1

`1:3
m`

0

)
(19)

29



If we now simplify the above equation we obtain the description of the right epipolar
line:

ζrmr = er + ζ`Pr1:3
P−1

`1:3
m`︸ ︷︷ ︸

m′`

(20)

This is the equation of a line through the right epipole er and the image point m′`
which represents the projection onto the right image plane of the point at infinity
of the optical ray of m`.

The equation for the left epipolar line is obtained in a similar way.
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Fig. 5. Left and right images with epipolar lines.
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4.2 Triangulation

Given the camera matrices P` and Pr, let m` and mr be two corresponding points
satisfying the epipolar constraint. It follows that mr lies on the epipolar line Fm`

and so the two rays back-projected from image points m` and mr lie in a common
epipolar plane. Since they lie in the same plane, they will intersect at some point.
This point is the reconstructed 3-D scene point M.

Analytically, the reconstructed 3-D point M can be found by solving for parameter
ζ` or ζr in Eq. (20). Let us rewrite it as:

er = ζrmr − ζ`m
′
` (21)

The depth ζr and ζ` are unknown. Both encode the position of M in space, as ζr is
the depth of M wrt the right camera and ζ` is the depth of M wrt the left camera.
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However, triangulation can also be cast as a null-space problem.

Let us consider m = [u, v, 1]T , the projection of the 3D point M according to the
perspective projection matrix P . From (8) one obtains:

{
(p1 − up3)

TM = 0
(p2 − vp3)

TM = 0
(22)

and then, in matrix form: [
(p1 − up3)

T

(p2 − vp3)
T

]
M = 02×1 (23)

Hence, one point gives two homogeneous equations.

Let us consider now m′ = [u′, v′, 1]T , the corresponding point of m in the second
image, and let P ′ be the second perspective projection matrix.
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Being both projection of the same 3D point M, the equations provided by m and
m′ can be stacked:




(p1 − up3)
T

(p2 − vp3)
T

(p′1 − u′p′3)
T

(p′2 − v′p′3)
T


M = 04×1 (24)

The solution is the null-space of the 4× 4 coefficient matrix, which must then have
rank three, otherwise only the trivial solution M = 0 would be possible. In the
presence of noise this rank condition cannot be fulfilled exactly, so a lest squares
solution is sought, typically via SVD, as in calibration with DLT. In [12] this method
is called “linear-eigen”.

This method generalizes to the case of N > 2 cameras: each one gives two equa-
tions and one ends up with 2N equations in four unknowns.

Triangulation is addressed in more details in [1, 12, 10].
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Levels of description...

The epipolar geometry can be described analytically in several ways, depending on
the amount of the a priori knowledge about the stereo system. We can identify
three general cases.

(i) If both intrinsic and extrinsic camera parameters are known, we can describe
the epipolar geometry in terms of the projection matrices (Equation (20)).

(ii) If only the intrinsic parameters are known, we work in normalized camera coor-
dinates and the epipolar geometry is described by the essential matrix.

(iii) If neither intrinsic nor extrinsic parameters are known the epipolar geometry is
described by the fundamental matrix.
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...and ambiguity in reconstruction.

Likewise, what can be reconstructed (by triangulation) depends on what is known
about the scene and the stereo system. We can identify three cases.

(i) If both the intrinsic and extrinsic camera parameters are known, we can solve
the reconstruction problem unambiguously.

(ii) If only the intrinsic parameters are known, we can estimate the extrinsic param-
eters and solve the reconstruction problem up to an unknown scale factor (+
a rigid transformation that correspond to the arbitrariness in fixing the world
reference frame). In other words, R can be estimated completely, and t up to
a scale factor.

(iii) If neither intrinsic nor extrinsic parameters are known, i.e., the only information
available are pixel correspondences, we can still solve the reconstruction problem
but only up to an unknown, global projective transformation of the world. This
ambiguity w may be reduced if additional information is supplied on the cameras
or the scene (see Sec .5).
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4.3 The calibrated case

Suppose that a set of image correspondences mi
` ↔ mi

r are given. It is assumed
that these correspondences come from a set of 3-D points Mi, which are unknown.

The intrinsic parameters are known, i.e. the cameras are calibrated, but the position
and attitude of the cameras are unknown.

The situation – discussed previously – when the intrinsic and extrinsic parameters
are known will be referred to as full calibrated for the sake of clarity.

We will see that the epipolar geometry is described by the essential matrix and
that, starting from the essential matrix, only a reconstruction up to a similarity
transformation (rigid+uniform scale) can be achieved. Such a reconstruction is
referred to as “Euclidean”.
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4.3.1 The Essential Matrix E

As the intrinsic parameters are known, we can switch to normalized camera coordi-
nates: m← K−1m (please note that this change of notation will hold throughout
this section).

Consider a pair of cameras P` and Pr. Without loss of generality, we can fix the
world reference frame onto the first camera, hence:

P` = [I|0] and Pr = [R|t]. (25)

With this choice, the unknown extrinsic parameters have been made explicit.

If we substitute these two particular instances of the camera projection matrices in
Equation (20), we get

ζrmr = t + ζ`Rm`; (26)

in other words, the point mr lies on the line through the points t and Rm`. In

homogeneous coordinates, this can be written as follows: ©14

mT
r (t×Rm`) = 0, (27)
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as the homogeneous line through two points is expressed as their cross product, and
a dot product of a point and a line is zero if the point lies on the line.

The cross product of two vectors can be written as a product of a skew-symmetric
matrix and a vector. Equation (27) can therefore be equivalently written as

mT
r [t]×Rm` = 0, (28)

where [t]× is the skew-symmetric matrix of the vector t. Let us define the essential
matrix E:

E , [t]×R. (29)

In summary, the relationship between the corresponding image points m` and mr

in normalized camera coordinates is the bilinear form:

mT
r Em` = 0. (30)

E encodes only information on the rigid displacement between cameras. It has five
degrees of freedom: a 3-D rotation and a 3-D translation direction.

E is singular, since det[t]× = 0, and it is a homogeneous quantity.
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4.3.2 Reconstruction up to a Similarity

If a sufficient number of point correspondences mi
` ↔ mi

r is given, we can use
Equation (30) to compute the unknown matrix E (see Sec. 4.4.2).

The reconstruction is achieved starting from the essential matrix, which contains –
entangled – the unknown extrinsic parameters.

Unlike the fundamental matrix, the only property of which is to have rank two, the
essential matrix is characterised by the following theorem [15].

Theorem 4.1 A real 3 × 3 matrix E can be factorised as product of a nonzero
skew-symmetric matrix and a rotation matrix if and only if E has two identical
singular values and a zero singular value.
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Proof. Let E = SR where R is a rotation matrix and S is skew-symmetric. Let
S = [t]× where ||t|| = 1. Then

EET = SRRTST = SST = I − ttT

Let U the orthogonal matrix such that Ut = [0, 0, 1]T . Then

UEETUT = U(I−ttT )UT = I−U t tTUT = I− [0, 0, 1]T [0, 0, 1] =




1 0 0
0 1 0
0 0 0


 .

The elements of the diagonal matrix are the eigenvalues of EET i.e., the singular
values of E. This demonstrate one implication.

Let us now give a constructive proof of the converse. Let E = UDV T be the SVD
of E, with D = diag(1, 1, 0) (with no loss of generality, since E is defined up to a
scale factor) and U and V orthogonal. The key observation is that

D =




1 0 0
0 1 0
0 0 0


 =




0 −1 0
1 0 0
0 0 0







0 1 0
−1 0 0
0 0 1


 ∆

= S ′R′
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where S ′ is skew symmetric and R′ a rotation. Hence

E=UDV T=US ′R′V T=(US ′UT )(UR′V T ) = det(UV T )(US ′UT )︸ ︷︷ ︸
S

det(UV T )(UR′V T )︸ ︷︷ ︸
R

.

Q.E.D.

This factorization is not unique. Because of homogeneity of E, we can change its
sign, either by changing the sign of S ′ or by taking the transpose of R′ (because
S ′R

′T = −D). In total, we have four possible factorizations given by:

S = U(±S ′)UT (31)

R = det(UV T )UR′V T or R = det(UV T )UR′TV T , (32)

The choice between the four displacements is determined by the requirement that
the 3-D points must lie in front of both cameras, i.e., their depth must be positive.
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The rotation R and translation t are then used to instantiate a camera pair as
in Equation (25), and this camera pair is subsequently used to reconstruct the
structure of the scene by triangulation.

The rigid displacement ambiguity arises from the arbitrary choice of the world refer-
ence frame, whereas the scale ambiguity derives from the fact that t can be scaled
arbitrarily in Equation (29) and one would get the same essential matrix (E is
defined up to a scale factor).

Therefore translation can be recovered from E only up to an unknown scale factor

which is inherited by the reconstruction. ©15

This is also known as depth-speed ambiguity (in a context where points are moving
and camera is stationary): a large motion of a distant point and a small motion of
a nearby point produces the same motion in the image.
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4.4 The weakly calibrated case

Suppose that a set of image correspondences mi
` ↔ mi

r are given. It is assumed
that these correspondences come from a set of 3-D points Mi, which are unknown.

Similarly, the position, attitude and calibration of the cameras are not known.

This situation is usually referred to as weak calibration, and we will see that the
epipolar geometry is described by the fundamental matrix and the scene may be
reconstructed up to a projective ambiguity.
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4.4.1 The Fundamental Matrix F

The fundamental matrix can be derived in a similar way to the essential matrix.
All camera parameters are assumed unknown; we write therefore a more general
version of Equation (25):

P` = K`[I|0] and Pr = Kr[R|t]. (33)

Inserting these two projection matrices into Equation (20), we get

ζrmr = er + ζ`KrRK−1
` m` with er = Krt, (34)

which states that point mr lies on the line through er and KrRK−1
` m`. As in the

case of the essential matrix, this can be written in homogeneous coordinates as:

mT
r [er]×KrRK−1

` m` = 0. (35)

The matrix
F = [er]×KrRK−1

` (36)

is the fundamental matrix F , giving the relationship between the corresponding
image points in pixel coordinates.
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Therefore, the bilinear form that links corresponding points writes:

mT
r Fm` = 0. (37)

F is the algebraic representation of the epipolar geometry in the least information
case. It is a 3 × 3, rank-two homogeneous matrix. It has only seven degrees of
freedom since it is defined up to a scale and its determinant is zero. Notice that
F is completely defined by pixel correspondences only (the intrinsic parameters are
not needed).

For any point m` in the left image, the corresponding epipolar line lr in the right
image can be expressed as

lr = Fm`. (38)

Similarly, the epipolar line l` in the left image for the point mr in the right image
can be expressed as

l` = F Tmr. (39)
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The left epipole e` is the right null-vector of the fundamental matrix and the right
epipole is the left null-vector of the fundamental matrix:

Fe` = 0 (40)

eT
r F = 0 (41)

One can see from the derivation that the essential and fundamental matrices are
related through the camera calibration matrices K` and Kr:

F = K−T
r EK−1

` . (42)

Consider a camera pair. Using the fact that if F maps points in the left image to
epipolar lines in the right image, then F T maps points in the right image to epipolar

lines in the left image, Equation (34) gives: ©10

ζrF
Tmr = ζ`(e` ×m`). (43)

This is another way of writing the epipolar constraint: the epipolar line of mr

(F Tmr) is the line containing its corresponding point (m`) and the epipole in the
left image (e`).
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4.4.2 Estimating F: the eight-point algorithm

If a number of point correspondences mi
` ↔mi

r is given, we can use Equation (37)
to compute the unknown matrix F .

We need to convert Equation (37) from its bilinear form to a form that matches
the null-space problem. To this end we use again the vec operator, as in the DLT
algorithm:

mT
r Fm` = 0 ⇐⇒ vec(mT

r Fm`) = 0 ⇐⇒ (mT
r ⊗mT

` ) vec(F ) = 0.

Each point correspondence gives rise to one linear equation in the unknown entries
of F . From a set of n point correspondences, we obtain a n× 9 coefficient matrix
A by stacking up one equation for each correspondence.

In general A will have rank 8 and the solution is the 1-dimensional right null-space
of A.
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The fundamental matrix F is computed by solving the resulting linear system of
equations, for n ≥ 8.

If the data are not exact and more than 8 points are used, the rank of A will be 9
and a least-squares solution is sought.

The least-squares solution for vec(F ) is the singular vector corresponding to the
smallest singular value of A.

This method does not explicitly enforce F to be singular, so it must be done a
posteriori.

Replace F by F
′
such that det F

′
= 0, by forcing to zero the least singular value.

It can be shown that F
′
is the closest singular matrix to F in Frobenius norm.

Geometrically, the singularity constraint ensures that the epipolar lines meet in a
common epipole.
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4.4.3 Reconstruction up to a Projective Transformation

The reconstruction task is to find the camera matrices P` and Pr, as well as the
3-D points Mi such that

mi
` = P`M

i and mi
r = PrM

i, ∀i (44)

If T is any 4 × 4 invertible matrix, representing a collineation of P3, then replac-
ing points Mi by TMi and matrices P` and Pr by P`T

−1 and PrT
−1 does not

change the image points mi
`. This shows that, if nothing is known but the image

points, the structure Mi and the cameras can be determined only up to a projective
transformation.

The procedure for reconstruction follows the previous one. Given the weak cali-
bration assumption, the fundamental matrix can be computed (using the algorithm
described in Section 4.4.1), and from a (non-unique) factorization of F of the form

F = [er]×A (45)

two camera matrices P` and Pr:

P` = [I|0] and Pr = [A|er], (46)
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can be created in such a way that they yield the fundamental matrix F , as can
be easily verified. The position in space of the points Mi is then obtained by
triangulation.

The matrix A in the factorization of F can be set to A = −[er]×F (this is called

the epipolar projection matrix [17]). ©08

Unlike the essential matrix, F does not admit a unique factorization, whence the
projective ambiguity follows.

Indeed, for any A satisfying Equation (45), also A+erx
T for any vector x, satisfies

Equation (45).

More in general, any homography induced by a plane can be taken as the A matrix.
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4.5 More on calibration

Calibration problems can be cast as determining the transformation between two
reference frames. Depending on the nature of the available measures and where the
reference frames are attached we have four calibration or orientation problems1:

Relative orientation is the problem of determining the position and attitude of
one perspective camera with respect to another camera from correspondences
between points in 2-D images (See. Sec. 4.3.2).

Absolute orientation is the problem of aligning two sets of points, whose 3-D lo-
cations have been measured (or reconstructed) in two different reference frames.

Exterior orientation is the problem of determining the position and attitude of
a perspective camera from correspondences between 3-D points and their 2-D
images.

Interior orientation is the problem of determining the (affine) transformation
from normalized camera coordinates to pixel coordinates, i.e., the intrinsic pa-
rameters of the camera.

1this terminology comes from Photogrammetry.
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4.5.1 Absolute orientation (with scaling)

Given two sets of 3-D points Xi and Yi, related by2

Xi = s(RYi + t) for all i = 1 . . . N (47)

we are required to find the rotation matrix R, the vector t and the scalar s.

Summing these equations for all i and dividing by N shows that the translation is
found with:

t =
1

s

(
1

N

N∑
i=1

Xi

)
−R

(
1

N

N∑
i=1

Yi

)

Combining this with Eq. (47) gives

X̄i = sRȲi

where X̄i = Xi − 1
N

∑N
i=1 Xi and Ȳi = Yi − 1

N

∑N
i=1 Yi.

Because the rotation matrix does not change the length of the vectors, we can
immediately solve for the scale from ||X̄i|| = s||Ȳi||.

2Please note the change of notation: points are represented by Cartesian (non-homogeneous) coordinates.
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We are left with the problem of estimating the unknown rotation between two sets
of points.

Let X̄ be the 3×N matrix formed by stacking the points X̄i side by side and Ȳ be
the matrix formed likewise by stacking the scaled points sȲi.In presence of noise,
we would like to minimize the sum of the square of the errors, or

N∑
i=1

||X̄i − sRȲi||2 = ||X̄ −RȲ ||2F

where || · ||F is the Frobenius norm.

This problem is known as the Orthogonal Procrustes Problem and the solution is
given by [16]

R = V




1 0 0
0 1 0
0 0 det(V UT )


UT

where UDV T = Ȳ X̄T is the SVD of the 3× 3 matrix Ȳ X̄T .
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4.5.2 Exterior orientation

Exterior orientation (also called Perspective n-Points camera pose) is a problem
that appears repeatedly in computer vision, but in context different from 3-D re-
construction, such as visual servoing and augmented reality.

Given a number of point correspondences mi ↔ Mi and the intrinsic camera
parameters K, we are required to find a rotation matrix R and a translation vector
t (which specify attitude and position of the camera) such that:

ζ iK−1mi = [R|t]Mi = (RM̃i + t) for all i. (48)

One could immediately solve this problem by doing camera resection with DLT in
normalized camera coordinates. The algorithm is linear, but it does not enforces
the orthonormality constraints on the rotation matrix.

Instead, we present here the linear method proposed by Fiore [6]. He first recovers
the unknown depths ζ i, and then observes that what is left is an absolute orientation
problem, whose solution yields a rotation matrix which is inherently orthonormal.
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In order to recover the depths, let’s write Eq. (48) in matrix form:

K−1
[
ζ1m1, ζ2m2, . . . ζnmn

]
︸ ︷︷ ︸

W

= [R|t][M1, M2, . . . Mn
]

︸ ︷︷ ︸
M

. (49)

Let r = rank M . Take its SVD: M = UDV T and let V2 be a matrix composed
by the last n− r columns of V , which spans the null-space of M . Then, MV2 =
03×(n−r), and also

K−1WV2 = 03×(n−r) (50)

By taking vec on both sides we get:

(V T
2 ⊗K−1) vec(W ) = 0. (51)

Let us observe that:

vec(W ) =




ζ1m1

ζ1m2

...
ζnmn


 =



m1 0 . . . 0

. . .
0 0 . . . mn




︸ ︷︷ ︸
D




ζ1

...
ζn




︸ ︷︷ ︸
ζ

(52)
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Hence (
(V T

2 ⊗K−1)D
)
ζ = 0. (53)

From the last equation the depths ζ can be recovered (up to a scale factor) by
solving a null-space problem.

The size of the coefficients matrix is 3(n − r) × n, and in order to determine a
one-parameter family of solutions, it must have rank n−1, hence 3(n−r) ≥ n−1.

Therefore, at least n ≥ (3r − 1)/2 points are needed. If points are in general
position, 6 are sufficient, but if they are on a plane, only 4 suffices.

Now that the left side of Eq. (48) is known, up to a scale factor, we are left with
an absolute orientation (with scale) problem:

ζ iK−1mi = s(RM̃i + t) for all i. (54)

which we solve using the algorithm of Sec. 4.5.1. As a result, the rotation matrix
estimate is orthonormal by construction.
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5 Autocalibration

The aim of autocalibration is to compute the intrinsic parameters, starting from
weakly calibrated cameras.

More in general, the task is to recover metric properties of camera and/or scene,
i.e., to compute a Euclidean reconstruction.

There are two classes of methods:

1. Direct: solve directly for the intrinsic parameters.

2. Stratified: first obtain a projective reconstruction and then transform it to a
Euclidean reconstruction (in some cases an affine reconstruction is obtained in
between).

The reader is referred to [7] for a review of autocalibration, and to [19, 26, 14, 21,
20, 9] for classical and recent work on the subject.
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5.1 Counting argument

Consider m cameras. The difference between the d.o.f. of the multifocal geometry
(e.g. 7 for two views) and the d.o.f. of the rigid displacements (e.g. 5 for two
views) is the number of independent constraints available for the computation of
the intrinsic parameters (e.g. 2 for two views).

The multifocal geometry of m cameras (represented by the m-focal tensor) has
11m − 15 d.o.f. Proof: a set of m cameras have 11m d.o.f., but they determine
the m-focal geometry up to a collineation of P3, which has 15 d.o.f. The net sum
is 11m− 15 d.o.f.

On the other hand, the rigid displacements in m views are described by 6m − 7
parameters: 3(m− 1) for rotations, 2(m− 1) for translations, and m− 2 ratios of
translation norms.

Thus, m weakly calibrated views give 5m − 8 constraints available for computing
the intrinsic parameters.
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Let us suppose that mk parameters are known and mc parameters are constant.

The first view introduces 5 − mk unknowns. Every view but the first introduces
5−mk −mc unknowns.

Therefore, the unknown intrinsic parameters can be computed provided that

5m− 8 ≥ (m− 1)(5−mk −mc) + 5−mk. (55)

For example, if the intrinsic parameters are constant, three views are sufficient to
recover them.

If one parameter (usually the skew) is known and the other parameters are varying,
at least eight views are needed.
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5.2 A simple direct method

If we consider two views, two independent constraints are available for the compu-
tation of the intrinsic parameters from the fundamental matrix.

Indeed, F has 7 d.o.f, whereas E, which encode the rigid displacement, has only
5 d.o.f. There must be two additional constraint that E must satisfy, with respect
to F .

In particular, these constraints stem from the equality of two singular values of
the essential matrix (Theorem 4.1) which can be decomposed in two independent
polynomial equations.

Let Fij be the (known) fundamental matrix relating views i and j, and let Ki and
Kj be the respective (unknown) intrinsic parameter matrices.

The idea of [20] is that the matrix

Eij = KT
i FijKj, (56)

satisfies the constraints of Theorem 4.1 only if the intrinsic parameters are correct.
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Hence, the cost function to be minimized is

C(Ki, i = 1 . . . n) =

n∑
i=1

n∑
j>n

wij

1σij − 2σij

1σij + 2σij
, (57)

where 1σij > 2σij are the non zero singular values of Eij and wij are normalized
weight factors (linked to the reliability of the fundamental matrix estimate).

The previous counting argument shows that, in the general case of n views, the
n(n − 1)/2 two-view constraints that can be derived are not independent, never-
theless they can be used as they over-determine the solution.

A non-linear least squares solution is obtained with an iterative algorithm (e.g.
Gauss-Newton) that uses analytical derivatives of the cost function.

A starting guess is needed, but this cost function is less affected than others by
local minima problems. A globally convergent algorithm based on this cost function
is described in [8].
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5.3 Stratification

We have seen that a projective reconstruction can be computed starting from points
correspondences only (weak calibration), without any knowledge of the camera
matrices.

Projective reconstruction differs from Euclidean by an unknown projective trans-
formation in the 3-D projective space, which can be seen as a suitable change of
basis.

Starting from a projective reconstruction the problem is computing the transforma-
tion that “straighten” it, i.e., that upgrades it to an Euclidean reconstruction.

To this purpose the problem is stratified [17, 4] into different representations: de-
pending on the amount of information and the constraints available, it can be
analyzed at a projective, affine, or Euclidean level.
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Let us assume that a projective reconstruction is available, that is a sequence Pi of
m + 1 camera matrices and a set Mj of n + 1 3-D points such that:

mj
i ' PiM

j i = 0 . . . m, j = 0 . . . n. (58)

Without loss of generality, we can assume that camera matrices writes:

P0 = [I | 0]; Pi = [Ai | ei] for i = 1 . . .m (59)

We are looking for the a 4× 4 non-singular matrix T that upgrades the projective
reconstruction to Euclidean:

mj
i ' PiT︸︷︷︸

PE
i

T−1Mj︸ ︷︷ ︸
structure

, (60)

PE
i = PiT is the Euclidean camera,

We can choose the first Euclidean-calibrated camera to be PE
0 = K0[I | 0], thereby

fixing arbitrarily the world reference frame:

PE
0 = K0[I | 0] PE

i = Ki[Ri | ti] for i = 1 . . . m. (61)
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With this choice, it is easy to see that PE
0 = P0T implies

T =

[
K0 0
rT s

]
(62)

where rT is a 3-D vector and s is a scale factor, which we will arbitrarily set to 1
(the Euclidean reconstruction is up to a scale factor).

Under this parametrization T is clearly non singular, and it depends on eight pa-
rameters.

Substituting (62) in PE
i ' PiT gives

PE
i = [KiRi | Kiti] ' PiT = [AiK0 + eir

T | ei] for i > 0 (63)

and, considering only the leftmost 3× 3 submatrix, gives

KiRi ' AiK0 + eir
T = Pi

[
K0

rT

]
(64)
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Rotation can be eliminated using RRT = I , leaving:

KiK
T
i ' Pi

[
K0K

T
0 K0r

rTKT
0 rTr

]
P T

i (65)

This is the basic equation for autocalibration (called absolute quadric constraint),
relating the unknowns Ki (i = 0 . . . m) and r to the available data Pi (obtained
from weakly calibrated images).

Note that (65) contains five equations, because the matrices of both members are
symmetric, and the homogeneity reduces the number of equations with one.
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5.3.1 Geometric interpretation

Under camera matrix P the outline of the quadric Q is the conic C given by:

C∗ ' PQ∗P T (66)

where C∗ is the dual conic and Q∗ is the dual quadric. An expression with Q and
C may be derived, but it is quite complicated. C∗ (resp. Q∗) is the adjoint matrix
of C (resp. Q). If C is non singular, then C∗ = C−1.

In the beginning we introduced the absolute conic Ω, which is invariant under
similarity transformation, hence deeply linked with the Euclidean stratum.

In a Euclidean frame, its equation is x2
1 + x2

2 + x2
3 = 0 = x4.

The absolute conic may be regarded as a special quadric (a disk quadric), therefore
its dual is a quadric, the dual absolute quadric, denoted by Ω∗. Its representation
is:

Ω∗ = diag(1, 1, 1, 0). (67)

67



As we already know, the image of the absolute conic under camera matrix PE is
given by ω = (KKT )−1, that is :

ω∗ = (KKT ) ' PEΩ∗PET
(68)

This property is independent on the choice of the projective basis. What changes
is the representation of the dual absolute quadric, which is mapped to

Ω∗ = Tdiag(1, 1, 1, 0)T T . (69)

under the collineation T .

Substituting T from Eq. (62) into the latter gives:

Ω∗ =

[
K0K

T
0 K0r

rTKT
0 rTr

]
(70)

Recalling that ω∗i = KiK
T
i , then Eq. (65) is equivalent to

ω∗i ' PiΩ
∗P T

i (71)
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5.3.2 Solution strategies

Autocalibration requires to solve Eq. (71), with respect to Ω∗ (and ω∗i ).

If Ω∗ is known, the collineation T that upgrades cameras from projective to Eu-
clidean is obtained by decomposing Ω∗ as in Eq. (69).

Ω∗ might be parametrized as in Eq. (70) with 8 d.o.f. or parametrized as a generic
4× 4 symmetric matrix (10 d.o.f.). The latter is an over-parametrization, as Ω∗ is
also singular and defined up to a scale factor (which gives again 8 d.o.f.).

There are several strategies for dealing with the scale factor.

• Introduce the scale factor explicitly as an additional unknown [13]:

ω∗i − λiPiΩ
∗P T

i = 0 (72)

This gives 6 equations but introduces one additional unknown (the net sum is 5).
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• Eliminate it by using the same idea of the cross product for 3-D vectors [26].

vech(ω∗i ) ' vech(PiΩ
∗P T

i ) ⇐⇒ rank [vech(ω∗i )| vech(PiΩ
∗P T

i )]︸ ︷︷ ︸
B

= 1

where vech is the column-wise vectorization with the upper portion excluded,
as matrices in Eq. (71) are symmetric.

This is tantamount to say that every 2 × 2 minor of B is zero. There are 15
different order-2 minors of a 6×2 matrix, but only 5 equations are independent.
©13

• Use a matrix norm (namely, Frobenius norm) [21]:

ω∗i
||ω∗i ||F

− PiΩ
∗P T

i

||PiΩ
∗P T

i ||F
= 0 (73)

In any case, a non-linear least-squares problem has to be solved. Available numerical
techniques (based on the Gauss-Newton method) are iterative, and requires an
estimate of the solution to start.

This can be obtained by doing an educated guess about skew, principal point and
aspect ratio, and solve the linear problem that results [22].
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Linear solution

If some of the intrinsic parameters are known, one can perform a partial normaliza-
tion of the coordinates, such that the corresponding elements of ω∗i vanish. Linear
equations on Ω∗ are generated from zero-entries of ω∗i (because this eliminates the
scale factor):

ω∗i (k, `) = 0 ⇒ pT
i,kΩ

∗pi,` = 0

where pT
i,k is the k-th row of Pi.

Likewise, linear constraints on Ω∗ can be obtained from the equality of elements in
the the upper (or lower) triangular part of ω∗i (because ω∗i is symmetric).

In order to be able to solve linearly for Ω∗, at least 10 linear equations must be
stacked up, to form a homogeneous linear system, which can be solved as usual
(via SVD). Singularity of Ω∗ can be enforced a-posteriori by forcing the smallest
singular value to zero.

If the principal point is known, ω∗i (1, 3) = 0 = ω∗i (2, 3) and this gives two linear
constraints. If, in addition, skew is zero we have ω∗i (1, 2) = 0. Known aspect ratio
r provides a further constraint: rω∗i (1, 1) = ω∗i (2, 2).

71



Constant intrinsic parameters

If all the cameras has the same intrinsic parameters, so Ki = K, then Eq. (65)
becomes

KKT ' Pi

[
KKT Kr
rTKT rTr

]
P T

i (74)

The constraints expressed by Eq. (74) are called the Kruppa constraints in [13].

Since each camera matrix, apart from the first one, gives five equations in the eight
unknowns, a unique solution is obtained when at least three views are available.

The resulting system of equations is solved with a non-linear least-squares technique
(e.g. Gauss-Newton).

72



6 Dealing with errors

In this section we will approach estimation problems from a more “practical” point
of view.

First, we will discuss how the presence of errors in the data affects our estimates
and describe the countermeasures that must be taken to obtain a good estimate.

Errors can be small (the match is correct but the position of the point has a limited
accuracy), and these are usually modeled as Gaussian noise, or large (the match is
wrong) and these are called outliers.

Since they have a different nature, they will be treated differently.
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6.1 Pre-conditioning

In presence of noise (or errors) on input data, the accuracy of the solution of a
linear system depends crucially on the condition number of the system. The lower
the condition number, the less the input error gets amplified (the system is more
stable).

As [11] pointed out, it is crucial for linear algorithms (as the DLT algorithm) that
input data is properly pre-conditioned, by a suitable coordinate change (origin and
scale): points are translated so that their centroid is at the origin and are scaled so
that their average distance from the origin is

√
2.

This improves the condition number of the linear system that is being solved.

Apart from improved accuracy, this procedure also provides invariance under simi-
larity transformations in the image plane.
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6.2 Algebraic vs geometric error

Measured data (i.e., image or world point positions) is noisy.

Usually, to counteract the effect of noise, we use more equations than necessary
and solve with least-squares.

What is actually being minimized by least squares?

In a typical null-space problem formulation Ax = 0 (like the DLT algorithm) the
quantity that is being minimized is the square of the residual ||Ax||.
In general, if ||Ax|| can be regarded as a distance between the geometrical entities
involved (points, lines, planes, etc..), than what is being minimized is a geometric
error, otherwise (when the error lacks a good geometrical interpretation) it is called
an algebraic error.

All the linear algorithm (DLT and others) we have seen so far minimize an algebraic
error. Actually, there is no justification in minimizing an algebraic error apart from
the ease of implementation, as it results in a linear problem.
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Usually, the minimization of a geometric error is a non-linear problem, that admit
only iterative solutions and requires a starting point.

So, why should we prefer to minimize a geometric error? Because:

• The quantity being minimized has a meaning

• The solution is more stable

• The solution is invariant under Euclidean transforms

Often linear solution based on algebraic residuals are used as a starting point for a
non-linear minimization of a geometric cost function, which “gives the solution a
final polish” [10].

76



Geometric error for resection

The goal is to estimate the camera matrix, given a number of correspondences
(mj,Mj) j = 1 . . . n

The geometric error associated to a camera estimate P̂ is the distance between the
measured image point mj and the re-projected point P̂iM

j:

min
P̂

∑
j

d(P̂Mj,mj)2 (75)

where d() is the Euclidean distance between the homogeneous points.

The DLT solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton)
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Geometric error for triangulation

The goal is to estimate the 3-D coordinates of a point M, given its projection mi

and the camera matrix Pi for every view i = 1 . . .m.

The geometric error associated to a point estimate M̂ in the i-th view is the distance
between the measured image point mi and the re-projected point PiM̂:

min
M̂

∑
i

d(PiM̂,mi)
2 (76)

where d() is the Euclidean distance between the homogeneous points.

The linear solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).
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Geometric error for F

The goal is to estimate F given a a number of point correspondences mi
` ↔mi

r.

The geometric error associated to an estimate F̂ is given by the distance of conju-
gate points from conjugate lines (note the symmetry):

min
F̂

∑
j

d(F̂mj
`,m

j
r)

2 + d(F̂ Tmj
r,m

j
`)

2 (77)

where d() here is the Euclidean distance between a line and a point (in homogeneous
coordinates).

The eight-point solution is used as a starting point for the iterative minimization
(e.g. Gauss-Newton).

Note that F must be suitably parameterized, as it has only seven d.o.f. ©11
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Geometric error for H

The goal is to estimate H given a a number of point correspondences mi
` ↔mi

r.

The geometric error associated to an estimate Ĥ is given by the symmetric distance
between a point and its transformed conjugate:

min
Ĥ

∑
j

d(Ĥmj
`,m

j
r)

2 + d(Ĥ−1mj
r,m

j
`)

2 (78)

where d() is the Euclidean distance between the homogeneous points. This also
called the symmetric transfer error.

The linear solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).
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Bundle adjustment (reconstruction)

If measurements are noisy, the projection equation will not be satisfied exactly by
the reconstructed camera matrices and structure.

We wish to minimize the image distance between the re-projected point P̂iM̂
j and

measured image points mj
i for every view in which the 3-D point appears:

min
P̂i,M̂j

∑
i,j

d(P̂iM̂
j,mj

i )
2 (79)

where d() is the Euclidean distance between the homogeneous points.

As m and n increase, this becomes a very large minimization problem.
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However the Jacobian of the residual is very sparse (not all points are seen in all
views) and this can be exploited to gain efficiency.

If the reconstruction is projective P̂i is parameterized with its 11 d.o.f. whereas if
the reconstruction is Euclidean, one should use P̂i = K̂i[R̂i|t̂i] where the rotation
has to be suitably parameterized with 3 d.o.f.

See [27] for a review and a more detailed discussion on bundle adjustment.
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6.3 Robust estimation

Up to this point, we have assumed that the only source of error affecting corre-
spondences is in the measurements of point’s position. This is a small-scale noise
that gets averaged out with least-squares.

In practice, we can be presented with mismatched points, which are outliers to
the noise distribution (i.e., rogue measurements following a different, unmodelled,
distribution).

These outliers can severely disturb least-squares estimation (even a single outlier
can totally offset the least-squares estimation, as illustrated in Fig. 6.)
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Fig. 6. A single outlier can severely offset the least-squares estimate (red line), whereas the robust

estimate (green line) is unaffected.

The goal of robust estimation is to be insensitive to outliers (or at least to reduce
sensitivity).
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M-estimators

Least squares:

min
θ

∑
i

(ri/σi)
2 (80)

where θ are the regression coefficient (what is being estimated) and ri is the residual.
M-estimators are based on the idea of replacing the squared residuals by another
function of the residual, yielding

min
θ

∑
i

ρ(ri/σi) (81)

ρ is a symmetric function with a unique minimum at zero that grows sub-quadratically,
called loss function.

Differentiating with respect to θ yields:
∑

i

1

σi
ρ′(ri/σi)

dri

dθ
= 0 (82)

The M-estimate is obtained by solving this system of non-linear equations.
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RANSAC

Given a model that requires a minimum of p data points to instantiate its free
parameters θ, and a set of data points S containing outliers:

1. Randomly select a subset of p points of S and instantiate the model from this
subset

2. Determine the set Si of data points that are within an error tolerance t of the
model. Si is the consensus set of the sample.

3. If the size of Si is greater than a threshold T , re-estimate the model (possibly
using least-squares) using Si (the set of inliers) and terminate.

4. If the size of Si is less than T , repeat from step 1.

5. Terminate after N trials and choose the largest consensus set found so far.
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Three parameters need to be specified: t, T and N .

Both T and N are linked to the (unknown) fraction of outliers ε.

N should be large enough to have a high probability of selecting at least one sample
containing all inliers. The probability to randomly select p inliers in N trials is:

P = 1− (1− (1− ε)p)N (83)

By requiring that P must be near 1, N can be solved for given values of p and ε.

T should be equal to the expected number of inliers, which is given (in fraction) by
(1− ε).

At each iteration, the largest consensus set found so fare gives a lower bound on
the fraction of inliers, or, equivalently, an upper bound on the number of outliers.
This can be used to adaptively adjust the number of trials N .

t is determined empirically, but in some cases it can be related to the probability
that a point under the threshold is actually an inlier [10].
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As pointed out in [25], RANSAC can be viewed as a particular M-estimator.

The objective function that RANSAC maximizes is the number of data points having
absolute residuals smaller that a predefined value t. This may be seen a minimising
a binary loss function that is zero for small (absolute) residuals, and 1 for large
absolute residuals, with a discontinuity at t.

t ri

Fig. 7. RANSAC loss function

By virtue of the prespecified inlier band, RANSAC can fit a model to data corrupted
by substantially more than half outliers.
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LMedS

Another popular robust estimator is the Least Median of Squares. It is defined by:

min
θ

mediri (84)

It can tolerate up to 50% of outliers, as up to half of the data point can be arbitrarily
far from the “true” estimate without changing the objective function value.

Since the median is not differentiable, a random sampling strategy similar to RANSAC
is adopted. Instead of using the consensus, each sample of size p is scored by the
median of the residuals of all the data points. The model with the least median
(lowest score) is chosen.

A final weighted least-squares fitting is used.

With respect to RANSAC, LMedS can tolerate “only” 50% of outliers, but requires
no setting of thresholds.
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7 Sequential structure from motion

In this section, we discuss the problem of structure and motion recovery from
multiple views as it has been successfully approached in practical cases (namely,
Bundler [24]).

We present an approach to reconstruct the projective (or Euclidean) structure and
motion from a sequence of images3.

We assume that for each pair of consecutive views we are given a set of potentially
corresponding feature points.

These feature points are typically obtained by using a keypoint detector and corre-
spondences are identified by comparing the respective descriptors.

3We assume that even if images are unordered they can be suitably sequenced
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Overview of the approach

A sequential approach is used in practice, which offers the advantage that corre-
sponding features are not required to be visible in all views.

The first step consists of computing the geometric relation between two consecutive
views.

Once the epipolar geometry has been computed, the next step consists of recon-
structing the structure and motion for the whole sequence.

The structure and motion is initialized for two views and then gradually extended
toward the whole sequence.

Finally, the solution is refined through a global minimization over all the unknown
parameters.
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Computing epipolar geometry

This consist in recovering the fundamental matrix (projective) or the essential matrix
(Euclidean) from a set of corresponding points perturbed with noise and containing
a significant proportion of outliers.

Hence, a robust procedure must be used to cope with outliers, followed by a non-
linear refinement to obtain an optimal estimate in presence of noise.

The epipolar geometry is essentially used only to validate matches.
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Keyoints are then connected into multiple-view correspondences, called tracks.

Tracks consistency and track length can be used to reject spurious matches.
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Initializing the structure and motion

Two images of the sequence are used to determine a reference frame. The world
frame is aligned with the first camera P1

The second camera P2 is chosen so that the epipolar geometry corresponds to
the computed fundamental matrix F (projective) or essential matrix E (Eu-
clidean).

Once two projection matrices have been fully determined, the matches can be
reconstructed through triangulation.
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Updating the structure and motion

For every additional view Pi i > 2, its orientation toward the preexisting recon-
struction is determined.

This can be exterior orientation in the Euclidean case or resection (exterior +
interior) in the projective case.

The matches that correspond to already reconstructed points are used to infer
correspondences between 2D and 3D. Based on these, the projection matrix Pi is
computed using a robust procedure.

The structure is updated by refining the position of 3D points that have been
observed in the current view using triangulation.

When point matches becomes available that were not related to an existing point
in the structure, then a new point can be initialized.
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Once the structure and motion has been obtained, it is recommended to refine it
through bundle adjustment (projective or Euclidean).

This should be done once every N views have been added, not only at the end, in
order to contain error accumulation.
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Fig. 8. Final reconstruction from the 10 images of Porta Vescovo
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8 Further readings

General books on (Geometric) Computer Vision are: [3, 28, 5, 10].
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