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1 Introduction

This notes introduces the basic geometric concepts of multiple-view computer vi-
sion. The focus is on geometric models of perspective cameras, and the constraints
and properties such models generate when multiple cameras observe the same 3-D
scene.

Geometric vision is an important and well-studied part of computer vision. A wealth
of useful results has been achieved in the last 15 years and has been reported in
comprehensive monographies, e.g., [5, 15, 7], a sign of maturity for a research
subject.

It is worth reminding the reader that geometry is an important but not the only
important aspect of computer vision, and in particular of multi-view vision. The
information brought by each image pixel is twofold: its position and its colour (or
brightness, for a monochrome image). Ultimately, each computer vision system
must start with brightness values, and, to smaller or greater depth, link such values
to the 3-D world.
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Fig. 1. Example of reconstruction from images. Original images (top row) and reconstructed model

(bottom row).
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2 Projective Geometry

The physical space is the Euclidean 3-D space E3, a real 3-dimensional affine space
endowed with the inner product.

Our ambient space is the projective 3-D space P3, obtained by completing E3

with a projective plane, known as plane at infinity Π∞. In this ideal plane lie the
intersections of the planes parallel in E3.

The projective (or homogeneous) coordinates of a point in P3 are 4-tuples defined
up to a scale factor. We write

M ' (x, y, z, t) (1)

where ' indicates equality to within a multiplicative factor.

The affine points are those of P3 which do not belong to Π∞. Their projective
coordinates are of the form (x, y, z, 1), where (x, y, z) are the usual Cartesian
coordinates.

Π∞ is defined by its equation t = 0.
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The linear transformations of a projective space into itself are called collineations
or homographies. Any collineation of P3 is represented by a generic 4× 4 invertible
matrix.

Affine transformations are the subgroup of collineations of P3 that preserves the
plane at infinity (i.e., parallelism).

Similarity transformations are the subgroup of affine transformations that leave
invariant a very special curve, the absolute conic, which is in the plane at infinity
and whose equation is:

x2 + y2 + z2 = 0 = t (2)

Similarity transformations preserves the angles.
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The space is therefore stratified into more and more specialized structures:

• projective

• affine (knowing the plane at infinity)

• Euclidean (knowing the absolute conic)

The stratification reflects the amount of knowledge that we possess about the scene
and the sensor.
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3 Pin-hole Camera Geometry

The pin-hole camera is described by its optical centre C (also known as camera
projection centre) and the image plane.

The distance of the image plane from C is the focal length f .

The line from the camera centre perpendicular to the image plane is called the
principal axis or optical axis of the camera.

The plane parallel to the image plane containing the optical centre is called the
principal plane or focal plane of the camera.

The relationship between the 3-D coordinates of a scene point and the coordinates
of its projection onto the image plane is described by the central or perspective
projection.

12



Fig. 2. Pin-hole camera geometry. The left figure illustrates the projection of the point M on the

image plane by drawing the line through the camera centre C and the point to be projected. The

right figure illustrates the same situation in the YZ plane, showing the similar triangles used to

compute the position of the projected point m in the image plane.
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A 3-D point is projected onto the image plane with the line containing the point
and the optical centre (see Figure 2).

Let the centre of projection be the origin of a Cartesian coordinate system wherein
the z-axis is the principal axis.

By similar triangles it is readily seen that the 3-D point (x, y, z)T is mapped to the
point (fx/z, fy/z)T on the image plane.
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3.1 The camera projection matrix

If the world and image points are represented by homogeneous vectors, then per-
spective projection can be expressed in terms of matrix multiplication as




fx
fy
z


 =




f 0 0 0
0 f 0 0
0 0 1 0







x
y
z
1


 (3)

The matrix describing the mapping is called the camera projection matrix P .

Equation (3) can be written simply as:

zm = PM (4)

where M = (x, y, z, 1)T are the homogeneous coordinates of the 3-D point and
m = (fx/z, fy/z, 1)T are the homogeneous coordinates of the image point.

The projection matrix P in Eq. (3) represents the simplest possible case, as it only
contains information about the focal distance f .
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General camera: bottom up approach

The above formulation assumes a special choice of world coordinate system and
image coordinate system. It can be generalized by introducing suitable changes of
the coordinates systems.

Changing coordinates in space is equivalent to multiplying the matrix P to the right
by a 4× 4 matrix:

G =

[
R t
0 1

]
(5)

G is composed by a rotation matrix R and a translation vector t. It describes the
position and orientation of the camera with respect to an external (world) coordinate
system. It depends on six parameters, called extrinsic parameters.

The rows of R are unit vectors that, together with the optical centre, define the
camera reference frame, expressed in world coordinates.
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Changing coordinates in the image plane is equivalent to multiplying the matrix P
to the left by a 3× 3 matrix:

K =




f/sx f/sx cot θ ox

0 f/sy oy

0 0 1


 (6)

K is the camera calibration matrix; it encodes the transformation in the image
plane from the so-called normalized camera coordinates to pixel coordinates.

It depends on the so-called intrinsic parameters:

• focal distance f (in mm),

• principal point (or image centre) coordinates ox, oy (in pixel),

• width (sx) and height (sy) of the pixel footprint on the camera photosensor (in
mm),

• angle θ between the axes (usually π/2).

The ratio sy/sx is the aspect ratio (usually close to 1).
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Thus the camera matrix, in general, is the product of three matrices:

P = K[I|0]G = K[R|t] (7)

In general, the projection equation writes:

ζm = PM (8)

where ζ is the distance of M from the focal plane of the camera (this will be shown
after), and m = (u, v, 1)T .

Note that, except for a very special choice of the world reference frame, this “depth”
does not coincide with the third coordinate of M.
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General camera: top down approach

If P describes a camera, also λP for any 0 6= λ ∈ R describes the same camera,
since these give the same image point for each scene point.

In this case we can also write:
m ' PM (9)

where ' means “equal up to a scale factor.”

In general, the camera projection matrix is a 3 × 4 full-rank matrix and, being
homogeneous, it has 11 degrees of freedom.

Using QR factorization, it can be shown that any 3× 4 full rank matrix P can be
factorised as:

P = λK[R|t], (10)

(λ is recovered from K(3, 3) = 1).
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3.2 Camera anatomy

Projection centre

The camera projection centre C is the only point for which the projection is not
defined, i.e.:

PC = P

(
C̃
1

)
= 0 (11)

where C̃ is a 3-D vector containing the Cartesian (non-homogeneous) coordinates
of the optical centre.

After solving for C̃ we obtain:

C̃ = −P−1
1:3 P4 (12)

where the matrix P is represented by the block form: P = [P1:3|P4] (the subscript
denotes a range of columns).
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Depth of a point

We observe that:

ζm = PM = PM− PC = P (M−C) = P1:3(M̃− C̃). (13)

In particular, plugging Eq. (10), the third component of this equation is

ζ = λrT
3 (M̃− C̃)

where rT
3 is the third row of the rotation matrix R, which correspond to the versor

of the principal axis.

If λ = 1, ζ is the projection of the vector (M̃− C̃) onto the principal axis, i.e., the
depth of M.
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Optical ray

The projection can be geometrically modelled by a ray through the optical centre
and the point in space that is being projected onto the image plane (see Fig. 2).

The optical ray of an image point m is the locus of points in space that projects
onto m.

It can be described as a parametric line passing through the camera projection
centre C and a special point (at infinity) that projects onto m:

M =

( −P−1
1:3 P4

1

)
+ ζ

(
P−1

1:3 m
0

)
, ζ ∈ R. (14)

If λ = 1 the parameter ζ in Eq. (14) represent the the depth of the point M. ©01

Knowing the intrinsic parameters is equivalent to being able to trace the optical ray
of any image point (with P = [K|0]).
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3.2.1 Image of the absolute conic

We will prove now that the image of the absolute conic depends on the intrinsic
parameters only (it is unaffected by camera position and orientation).

The points in the plane at infinity have the form M = (M̃T , 0)T , hence

m ' K[R | t](M̃T , 0)T = KRM̃. (15)

The image of points on the plane at infinity does not depend on camera position
(it is unaffected by camera translation).

The absolute conic (which is in the plane at infinity) has equation M̃TM̃ = 0,
therefore its projection has equation:

mT (K−TK−1)m = 0. (16)

The conic ω = (KKT )−1 is the image of the absolute conic.
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The angle (a metrical property) between two rays is determined by the image of

the absolute conic. ©02

Let us consider a camera P = [K|0], then m = 1
zKM̃. Let θ be the angle between

the rays trough M1 and M1, then

cos θ =
M̃T

1 M̃2

||M̃1||||M̃2||
=

mT
1 ωm2√

mT
1 ωm1

√
mT

2 ωm2

(17)

θ

2

1

2

1

m

C

Z

X

Y

M

M

m
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3.3 Camera calibration (or resection)

A number of point correspondences mi ↔Mi is given, and we are required to find
a camera matrix P such that

mi ' PMi for all i. (18)

The equation can be rewritten in terms of the cross product as

mi × PMi = 0. (19)

This form will enable a simple a simple linear solution for P to be derived. Using
the properties of the Kronecker product (⊗) and the vec operator [35], we derive:

mi × PMi = 0 ⇐⇒ [mi]×PMi = 0 ⇐⇒ vec([mi]×PMi) = 0 ⇐⇒
⇐⇒ (MT

i ⊗ [mi]×) vec P = 0

These are three equations in 12 unknown.
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Although there are three equations, only two of them are linearly independent:
Indeed, the rank of (MT

i ⊗ [mi]×) is two because it is the Kronecker product of a
rank-1 matrix by a a rank-2 matrix.

From a set of n point correspondences, we obtain a 2n × 12 coefficient matrix A
by stacking up two equations for each correspondence.

In general A will have rank 11 (provided that the points are not all coplanar) and
the solution is the 1-dimensional right null-space of A.

The projection matrix P is computed by solving the resulting linear system of
equations, for n ≥ 6.

If the data are not exact (noise is generally present) the rank of A will be 12 and
a least-squares solution is sought.

The least-squares solution for vec(P ) is the singular vector corresponding to the
smallest singular value of A.

This is called the Direct Linear Transform (DLT) algorithm [15].
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4 Two-View Geometry

The two-view geometry is the intrinsic geometry of two different perspective views
of the same 3-D scene (see Figure 3). It is usually referred to as epipolar geometry.

The two perspective views may be acquired simultaneously, for example in a stereo
rig, or sequentially, for example by a moving camera. From the geometric view-
point, the two situations are equivalent, provided that that the scene do not change
between successive snapshots.

Most 3-D scene points must be visible in both views simultaneously. This is not
true in case of occlusions, i.e., points visible only in one camera. Any unoccluded
3-D scene point M = (x, y, z, 1)T is projected to the left and right view as m` =
(u`, v`, 1)T and mr = (ur, vr, 1)T , respectively (see Figure 3).

Image points m` and mr are called corresponding points (or conjugate points) as
they represent projections of the same 3-D scene point M.

The knowledge of image correspondences enables scene reconstruction from images.
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The concept of correspondence is a cornerstone of multiple-view vision. In this notes
we assume known correspondences, and explore their use in geometric algorithms.
Techniques for computing dense correspondences are surveyed in [43, 4].

Fig. 3. Two perspective views of the same 3-D scene. m` and mr are corresponding points, as they

are the projection of the same 3-D point, M.

28



We will refer to the camera projection matrix of the left view as P` and of the right
view as Pr. The 3-D point M is then imaged as (20) in the left view, and (21) in
the right view:

ζ`m` = P`M (20)

ζrmr = PrM. (21)

Geometrically, the position of the image point m` in the left image plane I` can be
found by drawing the optical ray through the left camera projection centre C` and
the scene point M. The ray intersects the left image plane I` at m`.

Similarly, the optical ray connecting Cr and M intersects the right image plane Ir

at mr.

The relationship between image points m` and mr is given by the epipolar geometry,
described in Section 4.1.
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4.1 Epipolar Geometry

The epipolar geometry describes the geometric relationship between two perspective
views of the same 3-D scene.

The key finding, discussed below, is that corresponding image points must lie on
particular image lines, which can be computed without information on the calibra-
tion of the cameras.

This implies that, given a point in one image, one can search the corresponding
point in the other along a line and not in a 2-D region, a significant reduction in
complexity.
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Fig. 4. The epipolar geometry and epipolar constraint.
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Any 3-D point M and the camera projection centres C` and Cr define a plane that
is called epipolar plane.

The projections of the point M, image points m` and mr, also lie in the epipolar
plane since they lie on the rays connecting the corresponding camera projection
centre and point M.

The conjugate epipolar lines, l` and lr, are the intersections of the epipolar plane
with the image planes. The line connecting the camera projection centres (C`,Cr)
is called the baseline.

The baseline intersects each image plane in a point called epipole.

By construction, the left epipole e` is the image of the right camera projection
centre Cr in the left image plane. Similarly, the right epipole er is the image of the
left camera projection centre C` in the right image plane.

All epipolar lines in the left image go through e` and all epipolar lines in the right
image go through er.
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The epipolar constraint.

An epipolar plane is completely defined by the camera projection centres and one
image point.

Therefore, given a point m`, one can determine the epipolar line in the right image
on which the corresponding point, mr, must lie.

The equation of the epipolar line can be derived from the equation describing the
optical ray. As we mentioned before, the right epipolar line corresponding to m`

geometrically represents the projection (Eq. (8)) of the optical ray through m`

(Eq. (14)) onto the right image plane:

ζrmr = PrM = Pr

( −P−1
`1:3

P`4
1

)

︸ ︷︷ ︸
er

+ ζ`Pr

(
P−1

`1:3
m`

0

)
(22)
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If we now simplify the above equation we obtain the description of the right epipolar
line:

ζrmr = er + ζ`Pr1:3
P−1

`1:3
m`︸ ︷︷ ︸

m′`

(23)

This is the equation of a line through the right epipole er and the image point m′`
which represents the projection onto the right image plane of the point at infinity
of the optical ray of m`.

The equation for the left epipolar line is obtained in a similar way.
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Fig. 5. Left and right images with epipolar lines.
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4.2 Triangulation

Given the camera matrices P` and Pr, let m` and mr be two corresponding points
satisfying the epipolar constraint. It follows that mr lies on the epipolar line Fm`

and so the two rays back-projected from image points m` and mr lie in a common
epipolar plane. Since they lie in the same plane, they will intersect at some point.
This point is the reconstructed 3-D scene point M.

Analytically, the reconstructed 3-D point M can be found by solving for parameter
ζ` or ζr in Eq. (23). Let us rewrite it as:

er = ζrmr − ζ`m
′
` (24)

The depth ζr and ζ` are unknown. Both encode the position of M in space, as ζr is
the depth of M wrt the right camera and ζ` is the depth of M wrt the left camera.
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The three points mr, er and m′` are known and are collinear, so we can solve for
ζr using the following closed form expressions [42]:

ζr =
(er ×m′`) · (mr ×m′`)
||mr ×m′`||2

(25)

The reconstructed point M can then be calculated by inserting the value ζ into
Equation (14).

In reality, camera parameters and image locations are known only approximately.
The back-projected rays therefore do not actually intersect in space. It can be
shown, however, that Formula (25) solve Eq. (24) in a least squares sense [28].

Triangulation can be also cast as a null-space problem, starting from the general

projection equation (8).©12

Triangulation is addressed in more details in [2, 17, 15].
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Levels of description...

The epipolar geometry can be described analytically in several ways, depending on
the amount of the a priori knowledge about the stereo system. We can identify
three general cases.

(i) If both intrinsic and extrinsic camera parameters are known, we can describe
the epipolar geometry in terms of the projection matrices (Equation (23)).

(ii) If only the intrinsic parameters are known, we work in normalized camera coor-
dinates and the epipolar geometry is described by the essential matrix.

(iii) If neither intrinsic nor extrinsic parameters are known the epipolar geometry is
described by the fundamental matrix.

38



...and ambiguity in reconstruction.

Likewise, what can be reconstructed (by triangulation) depends on what is known
about the scene and the stereo system. We can identify three cases.

(i) If both the intrinsic and extrinsic camera parameters are known, we can solve
the reconstruction problem unambiguously.

(ii) If only the intrinsic parameters are known, we can estimate the extrinsic param-
eters and solve the reconstruction problem up to an unknown scale factor (+
a rigid transformation that correspond to the arbitrariness in fixing the world
reference frame). In other words, R can be estimated completely, and t up to
a scale factor.

(iii) If neither intrinsic nor extrinsic parameters are known, i.e., the only information
available are pixel correspondences, we can still solve the reconstruction problem
but only up to an unknown, global projective transformation of the world. This
ambiguity w may be reduced if additional information is supplied on the cameras
or the scene (see Sec .7).
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4.3 The calibrated case

Suppose that a set of image correspondences mi
` ↔ mi

r are given. It is assumed
that these correspondences come from a set of 3-D points Mi, which are unknown.

The intrinsic parameters are known, i.e. the cameras are calibrated, but the position
and orientation of the cameras are unknown.

The situation – discussed previously – when the intrinsic and extrinsic parameters
are known will be referred to as full calibrated for the sake of clarity.

We will see that the epipolar geometry is described by the essential matrix and
that, starting from the essential matrix, only a reconstruction up to a similarity
transformation (rigid+uniform scale) can be achieved. Such a reconstruction is
referred to as “Euclidean”.
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4.3.1 The Essential Matrix E

As the intrinsic parameters are known, we can switch to normalized camera coordi-
nates: m← K−1m (please note that this change of notation will hold throughout
this section).

Consider a pair of cameras P` and Pr. Without loss of generality, we can fix the
world reference frame onto the first camera, hence:

P` = [I|0] and Pr = [R|t]. (26)

With this choice, the unknown extrinsic parameters have been made explicit.

If we substitute these two particular instances of the camera projection matrices in
Equation (23), we get

ζrmr = t + ζ`Rm`; (27)

in other words, the point mr lies on the line through the points t and Rm`. In

homogeneous coordinates, this can be written as follows: ©14

mT
r (t×Rm`) = 0, (28)
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as the homogeneous line through two points is expressed as their cross product, and
a dot product of a point and a line is zero if the point lies on the line.

The cross product of two vectors can be written as a product of a skew-symmetric
matrix and a vector. Equation (28) can therefore be equivalently written as

mT
r [t]×Rm` = 0, (29)

where [t]× is the skew-symmetric matrix of the vector t. Let us define the essential
matrix E:

E , [t]×R. (30)

In summary, the relationship between the corresponding image points m` and mr

in normalized camera coordinates is the bilinear form:

mT
r Em` = 0. (31)

E encodes only information on the rigid displacement between cameras. It has five
degrees of freedom: a 3-D rotation and a 3-D translation direction.

E is singular, since det[t]× = 0, and it is a homogeneous quantity.
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4.3.2 Reconstruction up to a Similarity

If a sufficient number of point correspondences mi
` ↔ mi

r is given, we can use
Equation (31) to compute the unknown matrix E (see Sec. 4.4.2).

The reconstruction is achieved starting from the essential matrix, which contains –
entangled – the unknown extrinsic parameters.

Unlike the fundamental matrix, the only property of which is to have rank two, the
essential matrix is characterised by the following theorem [24].

Theorem 4.1 A real 3 × 3 matrix E can be factorised as product of a nonzero
skew-symmetric matrix and a rotation matrix if and only if E has two identical
singular values and a zero singular value.
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Proof. Let E = SR where R is a rotation matrix and S is skew-symmetric. Let
S = [t]× where ||t|| = 1. Then

EET = SRRTST = SST = I − ttT

Let U the orthogonal matrix such that Ut = [0, 0, 1]T . Then

UEETUT = U(I−ttT )UT = I−U t tTUT = I− [0, 0, 1]T [0, 0, 1] =




1 0 0
0 1 0
0 0 0


 .

The elements of the diagonal matrix are the eigenvalues of EET i.e., the singular
values of E. This demonstrate one implication.

Let us now give a constructive proof of the converse. Let E = UDV T be the SVD
of E, with D = diag(1, 1, 0) (with no loss of generality, since E is defined up to a
scale factor) and U and V orthogonal. The key observation is that

D =




1 0 0
0 1 0
0 0 0


 =




0 −1 0
1 0 0
0 0 0







0 1 0
−1 0 0
0 0 1


 ∆

= S ′R′
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where S ′ is skew symmetric and R′ a rotation. Hence

E=UDV T=US ′R′V T=(US ′UT )(UR′V T ) = det(UV T )(US ′UT )︸ ︷︷ ︸
S

det(UV T )(UR′V T )︸ ︷︷ ︸
R

.

Q.E.D.

This factorization is not unique. Because of homogeneity of E, we can change its
sign, either by changing the sign of S ′ or by taking the transpose of R′ (because
S ′R

′T = −D). In total, we have four possible factorizations given by:

S = U(±S ′)UT (32)

R = det(UV T )UR′V T or R = det(UV T )UR′TV T , (33)

The choice between the four displacements is determined by the requirement that
the 3-D points must lie in front of both cameras, i.e., their depth must be positive.
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The rotation R and translation t are then used to instantiate a camera pair as
in Equation (26), and this camera pair is subsequently used to reconstruct the
structure of the scene by triangulation.

The rigid displacement ambiguity arises from the arbitrary choice of the world refer-
ence frame, whereas the scale ambiguity derives from the fact that t can be scaled
arbitrarily in Equation (30) and one would get the same essential matrix (E is
defined up to a scale factor).

Therefore translation can be recovered from E only up to an unknown scale factor

which is inherited by the reconstruction. ©15

This is also known as depth-speed ambiguity (in a context where points are moving
and camera is stationary): a large motion of a distant point and a small motion of
a nearby point produces the same motion in the image.

46



4.4 The weakly calibrated case

Suppose that a set of image correspondences mi
` ↔ mi

r are given. It is assumed
that these correspondences come from a set of 3-D points Mi, which are unknown.

Similarly, the position, orientation and calibration of the cameras are not known.

This situation is usually referred to as weak calibration, and we will see that the
epipolar geometry is described by the fundamental matrix and the scene may be
reconstructed up to a projective ambiguity.
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4.4.1 The Fundamental Matrix F

The fundamental matrix can be derived in a similar way to the essential matrix.
All camera parameters are assumed unknown; we write therefore a more general
version of Equation (26):

P` = K`[I|0] and Pr = Kr[R|t]. (34)

Inserting these two projection matrices into Equation (23), we get

ζrmr = er + ζ`KrRK−1
` m` with er = Krt, (35)

which states that point mr lies on the line through er and KrRK−1
` m`. As in the

case of the essential matrix, this can be written in homogeneous coordinates as:

mT
r [er]×KrRK−1

` m` = 0. (36)

The matrix
F = [er]×KrRK−1

` (37)

is the fundamental matrix F , giving the relationship between the corresponding
image points in pixel coordinates.
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Therefore, the bilinear form that links corresponding points writes:

mT
r Fm` = 0. (38)

F is the algebraic representation of the epipolar geometry in the least information
case. It is a 3 × 3, rank-two homogeneous matrix. It has only seven degrees of
freedom since it is defined up to a scale and its determinant is zero. Notice that
F is completely defined by pixel correspondences only (the intrinsic parameters are
not needed).

For any point m` in the left image, the corresponding epipolar line lr in the right
image can be expressed as

lr = Fm`. (39)

Similarly, the epipolar line l` in the left image for the point mr in the right image
can be expressed as

l` = F Tmr. (40)
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The left epipole e` is the right null-vector of the fundamental matrix and the right
epipole is the left null-vector of the fundamental matrix:

Fe` = 0 (41)

eT
r F = 0 (42)

One can see from the derivation that the essential and fundamental matrices are
related through the camera calibration matrices K` and Kr:

F = K−T
r EK−1

` . (43)

Consider a camera pair. Using the fact that if F maps points in the left image to
epipolar lines in the right image, then F T maps points in the right image to epipolar

lines in the left image, Equation (35) gives: ©10

ζrF
Tmr = ζ`(e` ×m`). (44)

This is another way of writing the epipolar constraint: the epipolar line of mr

(F Tmr) is the line containing its corresponding point (m`) and the epipole in the
left image (e`).
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4.4.2 Estimating F: the eight-point algorithm

If a number of point correspondences mi
` ↔mi

r is given, we can use Equation (38)
to compute the unknown matrix F .

We need to convert Equation (38) from its bilinear form to a form that matches
the null-space problem. To this end we use again the vec operator, as in the DLT
algorithm:

mT
r Fm` = 0 ⇐⇒ vec(mT

r Fm`) = 0 ⇐⇒ (mT
r ⊗mT

` ) vec(F ) = 0.

Each point correspondence gives rise to one linear equation in the unknown entries
of F . From a set of n point correspondences, we obtain a n× 9 coefficient matrix
A by stacking up one equation for each correspondence.

In general A will have rank 8 and the solution is the 1-dimensional right null-space
of A.
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The fundamental matrix F is computed by solving the resulting linear system of
equations, for n ≥ 8.

If the data are not exact and more than 8 points are used, the rank of A will be 9
and a least-squares solution is sought.

The least-squares solution for vec(F ) is the singular vector corresponding to the
smallest singular value of A.

This method does not explicitly enforce F to be singular, so it must be done a
posteriori.

Replace F by F
′
such that det F

′
= 0, by forcing to zero the least singular value.

It can be shown that F
′
is the closest singular matrix to F in Frobenius norm.

Geometrically, the singularity constraint ensures that the epipolar lines meet in a
common epipole.
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4.4.3 Reconstruction up to a Projective Transformation

The reconstruction task is to find the camera matrices P` and Pr, as well as the
3-D points Mi such that

mi
` = P`M

i and mi
r = PrM

i, ∀i (45)

If T is any 4 × 4 invertible matrix, representing a collineation of P3, then replac-
ing points Mi by TMi and matrices P` and Pr by P`T

−1 and PrT
−1 does not

change the image points mi
`. This shows that, if nothing is known but the image

points, the structure Mi and the cameras can be determined only up to a projective
transformation.

The procedure for reconstruction follows the previous one. Given the weak cali-
bration assumption, the fundamental matrix can be computed (using the algorithm
described in Section 4.4.1), and from a (non-unique) factorization of F of the form

F = [er]×A (46)

two camera matrices P` and Pr:

P` = [I|0] and Pr = [A|er], (47)
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can be created in such a way that they yield the fundamental matrix F , as can
be easily verified. The position in space of the points Mi is then obtained by
triangulation.

The matrix A in the factorization of F can be set to A = −[er]×F (this is called

the epipolar projection matrix [33]). ©08

Unlike the essential matrix, F does not admit a unique factorization, whence the
projective ambiguity follows.

Indeed, for any A satisfying Equation (46), also A+erx
T for any vector x, satisfies

Equation (46).

More in general, any homography induced by a plane can be taken as the A matrix
(see Sec. 4.5)
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4.5 Planes and collineations

When observing a plane, we obtain an interesting specialization of the epipolar
geometry of two views.

First, let us establish that the map between a world plane and its perspective image
is a collineation of P2. The easiest way to see it is to choose the world coordinate
system such that the plane has equation z = 0.

Expanding the projection equation gives:

ζ




u
v
1


 = P




x
y
0
1


 = [P1|P2|P4]




x
y
1


 . (48)

Points are mapped from the world plane to the image plane with a 3 × 3 (non-
singular) matrix, which represents a collineation of P2.
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Next, we prove that: images of points on a plane are related to corresponding image
points in a second view by a collineation (or homography) of P2.

We have one collineation from Π to the left image plane, and another collineation
from Π to the right image plane. By composing the inverse of the first with the
second, we define a collineation from the image plane of the left camera to the
image plane of the right camera.

The plane Π induces a collineation HΠ between the views, which transfers points
from one view to the other:

mr ' HΠm` if M ∈ Π. (49)

where HΠ is a 3× 3 non-singular matrix.
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Even though a collineation of P2 depends upon eight parameters, there is no con-
tradiction with the fact that a plane depends upon three parameters. Indeed, the
collineation induced by a plane must be compatible with the epipolar geometry, i.e.:

(HΠm`)
TFm` = 0 (50)

for all points m`. This implies that the matrix HT
ΠF is antisymmetric:

HT
ΠF + F THΠ = 0 (51)

and this imposes six homogeneous constraints on HΠ.

A collineation H that satisfies Eq. (51) is said to be compatible with F .

A collineation H is compatible with F if and only if ©03

F ' [er]×H. (52)

From the latter – provided that Π does not contain Cr – follows that: ©04

HΠe` ' er (53)
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4.5.1 Homography induced by a plane

If the 3-D point M lies on a plane Π with equation nTM = d, Eq. (35) can be

specialized, obtaining (after elaborating): ©05

ζr

ζ`
mr = Kr

(
R +

t nT

d

)
K−1

` m`. (54)

Therefore, the collineation induced by Π is given by:

HΠ = Kr

(
R +

t nT

d

)
K−1

` (55)

This is a three-parameter family of collineations, parametrized by n/d.
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4.5.2 Infinite homography

The infinite homography H∞ is the collineation induced by the plane at infinity; it
maps vanishing points to vanishing points (a vanishing point is where all the lines
that shares the same direction meet).

It can be derived by letting d→∞ in (54), thereby obtaining:

H∞ = KrRK−1
` (56)

The infinity homography does not depend on the translation between views.

In other terms, the vanishing points are fixed under camera translation.
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4.5.3 Plane induced parallax

In general, when points are not on the plane, the homography induced by a plane
generates a virtual parallax. This gives rise to an alternative representation of the
epipolar geometry and scene structure [44].

First, let us rewrite Eq. (35), which links two general conjugate points, as:

ζr

ζ`
mr = H∞m` +

1

ζ`
er, (57)

The mapping from one point to its conjugate can be seen as composed by a transfer

with the infinity homography (H∞m`) plus a parallax correction term (
1

ζ`
er).

Note that if t = 0, then the parallax vanishes. Thus H∞ not only relates points
at infinity when the camera describes a general motion, but it also relates image
points of any depth if the camera rotates about its centre.
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We want to generalize this equation to any plane. To this end we substitute ©06

H∞ = HΠ −Kr

(
t nT

d

)
K−1

` (58)

into Eq. (57), obtaining
ζr

ζ`
mr = HΠm` + γer (59)

with γ =

(
a

d ζ`

)
, where a is the distance of M to the plane Π.

When M is on the 3-D plane Π, then mr ' HΠm`. Otherwise there is a residual
displacement, called parallax, which is proportional to γ and oriented along the
epipolar line.

The magnitude parallax depends only on the left view and the plane. It does not
depend on the parameters of the right view.

From Eq. (59) we derive mT
r (er ×HΠm`) = 0, hence

F ' [er]×HΠ (60)
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Fig. 9. Left and right images. The leftmost image is a superposition of the warped left image and

the right image. The reference plane exactly coincide. However, points off the plane (such as the

bottle) do not coincide.
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4.5.4 Estimating H

A number of point correspondences mi
r ↔mi

` is given, and we are required to find
an homography matrix H such that

mi
r ' Hmi

` for all i (61)

The equation (we drop the index i for simplicity) can be rewritten in terms of the
cross product as

mr ×Hm` = 0 (62)

As we did before, we exploit the properties of the Kronecker product and the vec
operator to transform this into a null-space problem and then derive a linear solution:

mr ×Hm` = 0 ⇐⇒ [mr]×Hm` = 0 ⇐⇒ vec([mr]×Hm`) = 0

⇐⇒ (mT
` ⊗ [mr]×) vec(H) = 0

These are three equations in nine unknown.
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The rank of the matrix (mT
` ⊗ [mr]×) is two because it is the Kronecker product

of a rank-1 matrix by a a rank-2 matrix. Hence, only two equations out of three
are independent.

From a set of n point correspondences, we obtain a 2n× 9 coefficient matrix A by
stacking up two equations for each correspondence.

In general A will have rank 8 and the solution is the 1-dimensional right null-space
of A.

The projection matrix H is computed by solving the resulting linear system of
equations, for n ≥ 4.

If the data are not exact, and more than 4 points are used, the rank of A will be 9
and a least-squares solution is sought.

The least-squares solution for vec(HT ) is the singular vector corresponding to the
smallest singular value of A.

This is another incarnation of the DLT algorithm.
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4.5.5 Estimating the epipole

The epipole can be located [49] given the homography HΠ between two views and
two off-plane conjugate pairs m0

` ↔m0
r and m1

` ↔m1
r .

e

Hm

Hm

m
m

l

l

1

0

0

1

r

r

r

Following simple geometric consideration, the epipole is computed as the intersec-
tion between the line containing HΠm0

`,m
0
r and the line containing HΠm1

`,m
1
r:

er ' (HΠm0
` ×m0

r)× (HΠm1
` ×m1

r) (63)

In the projective plane, the line determined by two points is given by their cross
product, as well as the point determined by two lines.
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4.5.6 Estimating the parallax

We are required to compute the magnitude of the parallax γ for a point m` given
its corresponding point mr, the homography HΠ between the two views and the
epipole. To this end we rewrite (59) as:

HΠm` = −γer +
ζr

ζ`
mr (64)

and, given that points er, mr and HΠm` are collinear, we solve for γ using:

γ =
(HΠm` ×mr)

T (mr × er)

||mr × er||2 (65)

Please note that the epipole and the homography can be computed from images
only up to an unknown scale factor. It follows that the magnitude of the parallax
as well is known only up to a scale factor.
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4.5.7 Applications

Mosaics. Image mosaicing is the automatic alignment (or registration) of mul-
tiple images into larger aggregates [47]. There are two types of mosaics. In both
cases, it turns out that images are related by homographies, as we discussed previ-
ously.

Planar mosaic: result from the registration of different views of a planar
scene.

Panoramic mosaic result from the registration of views taken by a camera
rotating around its optical centre (typ. panning). In some cases, in order
to cope with large rotations (> 180 deg), the images are converted to
cylindrical coordinates.
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Fig. 10. Planar mosaic with components location shown as white outlines.
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Fig. 11. Selected frames from “Arena” sequence (top) and panoramic mosaic (bottom). Components

location shown as white outlines.
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Orthogonal rectification. The map between a world plane and its perspective
image is an homography. The world-plane to image-plane homography is fully
defined by four points of which we know the relative position in the world plane.
Once this homography is determined, the image can be back projected (warped)
onto the world plane. This is equivalent to synthesize an image as taken from a
fronto-parallel view of the plane. This is known as orthogonal rectification [31] of
a perspective image.

Fig. 12. A perspective image and a ortho-rectified image of the floor plane
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How is this possible?

It is useful to think of an image as the intersection of the image plane with the
cone of rays between points in 3-D space and the optical centre. We are moving
the image plane while leaving fixed the cone of rays.

C
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4.6 Rectification

Given a pair of stereo images, epipolar rectification (or simply rectification) deter-
mines a transformation of each image plane such that pairs of conjugate epipolar
lines become collinear and parallel to one of the image axes (usually the horizontal
one).

The rectified images can be thought of as acquired by two new virtual cameras,
obtained by rotating the actual cameras and possibly modifying the intrinsic pa-
rameters.

The important advantage of rectification is that computing stereo correspondences
is made simpler, because search is done along the horizontal lines of the rectified
images.

We assume here that the stereo pair is calibrated, i.e., the cameras’ intrinsic param-
eters, mutual position and orientation are known. This assumption is not strictly
necessary [18, 32, 25], but leads to a simpler technique and less distorted images.
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Specifying virtual cameras.

Given the actual camera matrices Por and Po`, the idea behind rectification is to
define two new virtual cameras Pnr and Pn` obtained by rotating the actual ones
around their optical centers until focal planes becomes coplanar, thereby containing
the baseline (Figure 13). This ensures that epipoles are at infinity, hence epipolar
lines are parallel.

To have horizontal epipolar lines, the baseline must be parallel to the x-axis of both
virtual cameras. In addition, to have a proper rectification, conjugate points must
have the same vertical coordinate.

In summary: positions (i.e, optical centers) of the virtual cameras are the same as
the actual cameras, whereas the orientation of both virtual cameras differs from
the actual ones by suitable rotations; intrinsic parameters are the same for both
cameras.

Therefore, the two resulting virtual cameras will differ only in their optical centers,
and they can be thought as a single camera translated along the x-axis of its
reference system.
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Using Eq. (10) and Eq. (12), we can write the virtual cameras matrices as:

Pn` = K[R | −R C̃`], Pnr = K[R | −R C̃r]. (66)

In order to define them, we need to assign K, R, C̃`, C̃r

The optical centers C` and Cr are the same as the actual cameras. The intrinsic
parameters matrix K can be chosen arbitrarily. The matrix R, which gives the
orientation of both cameras will be specified by means of its row vectors:

R =



rT

1

rT
2

rT
3


 (67)

that are the x, y, and z-axes, respectively, of the virtual camera reference frame,
expressed in world coordinates.
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According to the previous comments, we take:

(i) The x-axis parallel to the baseline: r1 = (C̃r − C̃`)/||C̃r − C̃`||
(ii) The y-axis orthogonal to x (mandatory) and to an arbitrary unit vector k:

r2 = k× r1

(iii) The z-axis orthogonal to xy (mandatory) : r3 = r1 × r2

In point 2, k fixes the position of the y-axis in the plane orthogonal to x. In order
to ensure that the virtual cameras look in the same direction as the actual ones, k
is set equal to the direction of the optical axis of one of the two actual cameras.

We assumed that both virtual cameras have the same intrinsic parameters. Actually,
the horizontal components of the image centre (v0) can be different, and this degree
of freedom might be exploited to “center” the rectified images in the viewport by
applying a suitable horizontal translation.
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The rectifying transformation.

In order to rectify the images, we need to compute the transformation mapping the
image plane of Po onto the image plane of Pn.

According to the equation of the optical ray, if M projects to mo in the actual
image and to mn in the rectified image, we have:

{
M̃ = C̃+ζoP

−1
o1:3

mo

M̃ = C̃+ζnP
−1
n1:3

mn
(68)

hence

mn =
ζo

ζn
Pn1:3

P−1
o1:3︸ ︷︷ ︸

H

mo (69)

The rectifying transformation is a linear transformation of the projective plane (a
collineation) given by the 3× 3 matrix H.

It is understood that this has to be applied to the left and right images.
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Reconstruction of 3-D points by triangulation can be performed from the rectified
images directly, using Pnr and Pn`.

Fig. 14. Original and rectified stereo pair.

More details on the rectification algorithm can be found in [12].
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5 More on Calibration

• Zhang’s calibration

• Absolute orientation

• Exterior orientation

81



5.1 Zhang’s calibration

Camera calibration (or resection) as described so far, requires a calibration object
that consists typically of two or three planes orthogonal to each other. This might
be difficult to obtain, without access to a machine tool.

Zhang [55] introduced a calibration technique that requires the camera to observe a
planar pattern (much easier to obtain) at a few (at least three) different orientation.
Either the camera or the planar pattern can be moved by hand.

Instead of requiring one image of many planes, this method requires many images
of one plane.

We will also introduce here a more realistic camera model that takes into account
non-linear effects produced by lenses.
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In each view, we assume that correspondences between image points and 3-D points
on the planar pattern have been established.

Fig. 15. Image of a planar calibration pattern. The points used for calibration are the corners of the

black squares.
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5.1.1 Estimating intrinsic parameters

Following the development of Sec. 4.5 we know that for a camera P = K[R|t] the
homography between a world plane at z = 0 and the image is

H ' K[r1, r2, t] (70)

where ri are the column of R.

Suppose that H is computed from correspondences between four or more known
world points and their images, then some constraints can be obtained on the intrinsic
parameters, thanks to the fact that the columns of R are orthonormal.

Writing H = [h1,h2,h3], from the previous equation we derive:

r1 = λK−1h1 and r2 = λK−1h2 (71)

where λ is an unknown scale factor.
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The orthogonality rT
1 r2 = 0 gives

λ2hT
1 (KKT )−1h2 = 0 (72)

or, equivalently (remember that ω = (KKT )−1)

hT
1 ωh2 = 0 (73)

Likewise, the condition on the norm rT
1 r1 = rT

2 r2 gives

hT
1 ωh1 = hT

2 ωh2 (74)

Introducing the Kronecker product as usual, we rewrite these two equations as:

(hT
1 ⊗ hT

2 ) vec ω = 0 (75)(
(hT

1 ⊗ hT
1 )− (hT

2 ⊗ hT
2 )

)
vec ω = 0 (76)
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As ω is a 3 × 3 symmetric matrix, its unique elements (the unknowns) are only
six. This fact can be neatly taken into account using the vech operator. The above
equations are equivalent to 1:

(hT
2 ⊗ hT

1 )D3 vech(ω) = 0 (77)(
(hT

1 ⊗ hT
1 )− (hT

2 ⊗ hT
2 )

)
D3 vech(ω) = 0 (78)

From a set of n images, we obtain a 2n × 6 coefficient matrix A by stacking up
two equations for each image. The solution is the 1-dimensional right null-space of
A.

At least five equations are needed (21
2 images). In practice, for a good calibration,

one should use around 12 views).

1The duplication matrix Dn is the unique n2 × n(n + 1)/2 matrix which, transforms vech(A) into vec(A): Dn vech(A) = vec(A).
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5.1.2 Estimating extrinsic parameters

K is obtained from the Cholesky factorization of ω, then R and t are recovered
from:

[r1|r2|t] =
1

||K−1h1||K
−1[h1|h2|h3] r3 = r1 × r2 (79)

Because of noise, the matrix R is not guaranteed to be orthogonal, hence we need
to recover the closest orthogonal matrix.

Let R = QS be the polar decomposition of R. Then Q is the closest possible
orthogonal matrix to R in Frobenius norm.
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In this way we have obtained the camera matrix P by minimizing an algebraic
distance which is not geometrically meaningful.

It is advisable to refine it with a (non-linear) minimization of a geometric error:

min
P̂i

n∑
i=1

m∑
j=1

d(P̂iM
j,mj

i )
2 (80)

where P̂i = K̂[R̂i|t̂i] and the rotation has to be suitably parametrized with three
parameters (see Rodrigues formula).

The linear solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).
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5.1.3 Radial distortion

A realistic model for a photocamera or a video-
camera must take into account non-linear distor-
tions introduced by the lenses, especially when
dealing with short focal lengths or low cost de-
vices (e.g. webcams, disposable cameras).

The more relevant effect is the radial distortion, which is modeled as a non-linear
transformation from the ideal (undistorted) pixel coordinates (u, v) to the observed
(distorted) pixel coordinates (û, v̂):

{
û = (u− u0)(1 + k1r

2
d) + u0

v̂ = (v − v0)(1 + k1r
2
d) + v0

. (81)

where r2
d =

(
(u−u0)

au

)2

+
(

(v−v0)
av

)2

and (u0, v0) are the coordinates of the image
centre.
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Estimating k1

Let us assume that the pinhole model is calibrated. The point m = (u, v) projected
according to the pinhole model (undistorted) do not coincide with the measured
points m̂ = (û, v̂) because of the radial distortion.

We wish to recover k1 from Eq. (81). Each point gives two equation:




(u− u0)

((
(u− u0)

au

)2

+

(
(v − v0)

av

)2
)

k1 = û− u

(v − u0)

((
(u− u0)

au

)2

+

(
(v − v0)

av

)2
)

k1 = v̂ − v

(82)

hence a least squares solution for k1 is readily obtained from n > 1 points.
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When calibrating a camera we are required to simultaneously estimate both the
pinhole model’s parameters and the radial distortion coefficient.

The pinhole calibration we have described so far assumed no radial distortion, and
the radial distortion calibration assumed a calibrated pinhole camera.

The solution (a very common one in similar cases) is to alternate between the two
estimation until convergence.

Namely: start assuming k = 0, calibrate the pinhole model, then use that model to
compute radial distortion. Once k1 is estimated, refine the pinhole model by solving
Eq. (80) with the radial distortion in the projection, and continue until the image
error is small enough.
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5.2 Orientation

Calibration problems can be cast as determining the transformation between two
reference frames. Depending on the nature of the available measures and where the
reference frames are attached we have four calibration or orientation problems2:

Relative orientation is the problem of determining the position and attitude of
one perspective camera with respect to another camera from correspondences
between points in 2-D images (See. Sec. 4.3.2).

Absolute orientation is the problem of aligning two sets of points, whose 3-D lo-
cations have been measured (or reconstructed) in two different reference frames.

Exterior orientation is the problem of determining the position and attitude of
a perspective camera from correspondences between 3-D points and their 2-D
images.

Interior orientation is the problem of determining the (affine) transformation
from normalized camera coordinates to pixel coordinates, i.e., the intrinsic pa-
rameters of the camera (See. Sec. 5.1.1).

2this terminology comes from Photogrammetry.
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5.2.1 Absolute orientation (with scaling)

Given two sets of 3-D points Xi and Yi, related by3

Xi = s(RYi + t) for all i = 1 . . . N (83)

we are required to find the rotation matrix R, the vector t and the scalar s.

Summing these equations for all i and dividing by N shows that the translation is
found with:

t =
1

s

(
1

N

N∑
i=1

Xi

)
−R

(
1

N

N∑
i=1

Yi

)

Combining this with Eq. (83) gives

X̄i = sRȲi

where X̄i = Xi − 1
N

∑N
i=1 Xi and Ȳi = Yi − 1

N

∑N
i=1 Yi.

Because the rotation matrix does not change the length of the vectors, we can
immediately solve for the scale from ||X̄i|| = s||Ȳi||.

3Please note the change of notation: points are represented by Cartesian (non-homogeneous) coordinates.
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We are left with the problem of estimating the unknown rotation between two sets
of points.

Let X̄ be the 3×N matrix formed by stacking the points X̄i side by side and Ȳ be
the matrix formed likewise by stacking the scaled points sȲi.In presence of noise,
we would like to minimize the sum of the square of the errors, or

N∑
i=1

||X̄i − sRȲi||2 = ||X̄ −RȲ ||2F

where || · ||F is the Frobenius norm.

This problem is known as the Orthogonal Procrustes Problem and the solution is
given by [28]

R = V




1 0 0
0 1 0
0 0 det(V UT )


UT

where UDV T = Ȳ X̄T is the SVD of the 3× 3 matrix Ȳ X̄T .
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5.2.2 Exterior orientation

Exterior orientation is a problem that appears repeatedly in computer vision, but in
context different from 3-D reconstruction, such as visual servoing and augmented
reality.

Given a number of point correspondences mi ↔ Mi and the intrinsic camera
parameters K, we are required to find a rotation matrix R and a translation vector
t (which specify attitude and position of the camera) such that:

ζ iK−1mi = [R|t]Mi = (RM̃i + t) for all i. (84)

One could immediately solve this problem by doing camera resection with DLT in
normalized camera coordinates. The algorithm is linear, but it does not enforces
the orthonormality constraints on the rotation matrix.

Instead, we present here the linear method proposed by Fiore [9]. He first recovers
the unknown depths ζ i, and then observes that what is left is an absolute orientation
problem, whose solution yields a rotation matrix which is inherently orthonormal.
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In order to recover the depths, let’s write Eq. (84) in matrix form:

K−1
[
ζ1m1, ζ2m2, . . . ζnmn

]
︸ ︷︷ ︸

W

= [R|t][M1, M2, . . . Mn
]

︸ ︷︷ ︸
M

. (85)

Let r = rank M . Take its SVD: M = UDV T and let V2 be a matrix composed
by the last n− r columns of V , which spans the null-space of M . Then, MV2 =
03×(n−r), and also

K−1WV2 = 03×(n−r) (86)

By taking vec on both sides we get:

(V T
2 ⊗K−1) vec(W ) = 0. (87)

Let us observe that:

vec(W ) =




ζ1m1

ζ1m2

...
ζnmn


 =



m1 0 . . . 0

. . .
0 0 . . . mn




︸ ︷︷ ︸
D




ζ1

...
ζn




︸ ︷︷ ︸
ζ

(88)
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Hence (
(V T

2 ⊗K−1)D
)
ζ = 0. (89)

From the last equation the depths ζ can be recovered (up to a scale factor) by
solving a null-space problem.

The size of the coefficients matrix is 3(n − r) × n, and in order to determine a
one-parameter family of solutions, it must have rank n−1, hence 3(n−r) ≥ n−1.

Therefore, at least n ≥ (3r − 1)/2 points are needed. If points are in general
position, 6 are sufficient, but if they are on a plane, only 4 suffices.

Now that the left side of Eq. (84) is known, up to a scale factor, we are left with
an absolute orientation (with scale) problem:

ζ iK−1mi = s(RM̃i + t) for all i. (90)

which we solve using the algorithm of Sec. 5.2.1. As a result, the rotation matrix
estimate is orthonormal by construction.
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6 Multiple View Geometry

In this section we study the relationship that links three or more views of the same
3-D scene, known in the three-view case as trifocal geometry.

This geometry could be described in terms of fundamental matrices linking pairs
of cameras, but a more compact and elegant description is provided by a suitable
trilinear form, in the same way as the epipolar (bifocal) geometry is described by a
bilinear form.

We also discover that three views are all we need, in the sense that additional views
do not allow us to compute anything we could not already compute (Section 6.4).

98



6.1 Trifocal geometry

Denoting the cameras by 1, 2, 3, there are now three fundamental matrices, F1,2,
F1,3, F2,3, and six epipoles, ei,j, as in Figure 16. The three fundamental matrices
describe completely the trifocal geometry [8].

The plane containing the three optical centres is called the trifocal plane. It inter-
sects each image plane along a line which contains the two epipoles.

Writing Eq. (44) for each camera pair (taking the centre of the third camera as the
point M) results in three epipolar constraints:

F3,1e3,2 ' e1,3 × e1,2 F1,2e1,3 ' e2,1 × e2,3 F2,3e2,1 ' e3,2 × e3,1 (91)

Three fundamental matrices include 21 free parameters, less the 3 constraints above;
the trifocal geometry is therefore determined by 18 parameters.

This description of the trifocal geometry fails when the three cameras are collinear,
and the trifocal plane reduces to a line.
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Fig. 16. Trifocal geometry.
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Point transfer

If the trifocal geometry is known, given two conjugate points m1 and m2 in view 1
and 2 respectively, the position of the conjugate point m3 in view 3 is completely
determined (Figure 17).

This allows for point transfer or prediction. Indeed, m3 belongs simultaneously to
the epipolar line of m1 and to the epipolar line of m2, hence:

m3 ' F1,3m1 × F2,3m2 (92)

13F

F
23

1 2 3

Fig. 17. Point transfer using epipolar constraints between three views.
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View synthesis [29, 1, 3], exploit the trifocal geometry to generate novel (synthetic)
images starting from two reference views. A related topic is image-based rendering
[30, 54, 26].

Epipolar transfer fails when the three optical rays are coplanar, because the epipolar
lines are coincident. This happens:

• if the 3-D point is on the trifocal plane;

• if the three cameras centres are collinear (independently of the position of 3-D
point).

These deficiencies motivate the introduction of an independent trifocal constraint.

In addition, by generalizing the case of two views, one might conjecture that the
trifocal geometry should be represented by a trilinear form in the coordinates of
three conjugate points.
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6.2 The trifocal constraint

Consider a point M in space projecting to m1, m2 and m3 in three cameras

P1 = [I|0], P2 = [A2|e2,1], and P3 = [A3|e3,1]. (93)

Let us write the epipolar line of m1 in the other two views (using Eq. (23)):

ζ2m2 = e2,1 + ζ1A2m1 (94)

ζ3m3 = e3,1 + ζ1A3m1. (95)

where ζi varies in R and correspond to the depth of the 3D point with respect to
view i.

Consider a line through m2, represented by s2; we have sT
2 m2 = 0, that substituted

in (94) gives:
0 = sT

2 e2,1 + ζ1s
T
2 A2m1 (96)

Likewise, for a line through m3 represented by s3 we can write:

0 = sT
3 e3,1 + ζ1s

T
3 A3m1 (97)
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After eliminating ζ1 from Equation (96) and (97) we obtain:

0 = (sT
2 e2,1)(s

T
3 A3m1)− (sT

3 e3,1)(s
T
2 A2m1) (98)

and after some re-writing:

0 = sT
2

(
e2,1m

T
1 AT

3 − A2m1e
T
3,1

)
s3 (99)

This is the trifocal constraint, that links (via a trilinear form) m1, s2 (any line
through m2) and s3 (any line through m3).

Geometrically, the trifocal constraint imposes that the optical rays of m1 intersect
the 3-D line L that projects onto s2 in the second image and s3 in the third image.

Please note that given two (arbitrary) lines in two images, they can be always seen
as the image of a 3-D line L, because two planes always define a line, in projective
space (this is why there is no such thing as the epipolar constraint between lines.)

The trifocal constraint represents the trifocal geometry (nearly) without singular-
ities. It only fails is when the cameras are collinear and the 3-D point is on the
same line.
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Fig. 18. Two arbitrary lines s2 and s3 through corresponding points m2 and m3 in the second and

third image respectively, define a 3-D line L that must intersect the optical ray of m1.
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Using the properties of the Kronecker product, the trifocal constraint (Eq. (99))
can be written as:

0 = (sT
3 ⊗ sT

2 ) vec
(
e2,1m

T
1 AT

3 − A2m1e
T
3,1

)

= (sT
3 ⊗ sT

2 ) ((A3 ⊗ e2,1) vec(m1)− (e3,1 ⊗ A2) vec(m1))

= (sT
3 ⊗ sT

2 ) ((A3 ⊗ e2,1)− (e3,1 ⊗ A2))m1)

= (sT
3 ⊗ sT

2 )Tm1 (100)

where T is the 9× 3 trifocal matrix [13] defined by

T = (A3 ⊗ e2,1)− (e3,1 ⊗ A2) (101)

The matrix T encodes the trifocal geometry. Its 27 entries are the coefficient of
the trilinear form.

An equivalent formulation of the trifocal constraint that generalizes the expression
of a bilinear form (Cfr. pg. 51) is obtained by applying once again the property
vec(AXB) = (BT ⊗ A) vec(X):

(mT
1 ⊗ sT

3 ⊗ sT
2 ) vec(T ) = 0. (102)

106



6.2.1 Trifocal constraint for lines.

Consider a line L in space projecting to s1, s2 and s3 in the three cameras. The
trifocal constraint must hold for any point m1 contained in the line s1:

(sT
3 ⊗ sT

2 )Tm1 = 0 ∀m1 : sT
1 m1 = 0 (103)

hence
sT
1 = (sT

3 ⊗ sT
2 )T (104)

This is the trifocal constraint for lines, which also allows direct line transfer: if s3

and s2 are two lines in the third and second view respectively, the image s1 in the
first view of the line in space determined by s2 and s3 is obtained by means of the
trifocal matrix.
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6.2.2 Trifocal constraints for points.

• In Eq. (99), s2 is any line through m2, and s3 is any line through m3.

• Each row of [m2]× (resp. [m3]×) represents a line through m2 (resp. m3),
because [m2]×m2 = 0.

Hence we can write a total of nine constraints similar to Eq. (99), only four of which
are independent (two for each point):

[m2]×
(
e2,1m

T
1 AT

3 − A2m1e
T
3,1

)
[m3]× = 03×3. (105)

Hence, the trifocal constraints for three points writes:

([m3]× ⊗ [m2]×)Tm1 = 0. (106)
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Or, equivalently
(mT

1 ⊗ [m3]× ⊗ [m2]×) vec(T ) = 0 (107)

This equation can be used to recover T (likewise we did for F ). The coefficient
matrix is a 9× 27 matrix; its rank is four, being the Kronecker product of a vector
by a rank-2 matrix by a rank-2 matrix.

Therefore, every triplet {m1, m2, m3} of corresponding points gives four linear
independent equations. Seven triplets determine the 27 entries of T .
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6.2.3 Point transfer.

A third equivalent formulation of the trifocal constraint is derived if we look at the
vector Tm1 in Eq. (100) as the vectorization of a suitable matrix. This is easy to
write thanks to the vector transposition4:

0 = (sT
3 ⊗ sT

2 )Tm1

= (sT
3 ⊗ sT

2 ) vec(Tm1)
(3)

= sT
2 (Tm1)

(3)s3 (108)

where (Tm1)
(3) is a 3× 3 matrix such that vec(Tm1)

(3) = Tm1.

4The vector transposition operator A(p)generalizes the transpose of a matrix A by operating on vectors of p entries at a time.
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By the same token as before, one can stack three equations similar to Eq. (108) as:
(
sT
2 (Tm1)

(3)
)

[m3]× = 0 (109)

This implies that the transpose of the leftmost term in parentheses (which is a 3-D
vector) belongs to the kernel of [m3]×, which is equal to m3 (up to a scale factor)
by construction. Hence

m3 ' (Tm1)
(3)Ts2 (110)

This is the point transfer equation: if m1 and m2 are conjugate points in the first
and second view respectively, the position of the conjugate point m3 in the third
view is computed by means of the trifocal matrix.
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6.2.4 Homography from the trifocal matrix

A line s2 in the second view defines (by back-projection) a 3-D plane, which induces
a homography H between the first and the third view.

Hence, s3 = HTs1 since s1 and s3 are both projection of the same line, that belongs
to the plane 5.

On the other hand, Eq. (104) is equivalent to

s1 = (I3×3 ⊗ sT
2 )T (3)s3.

Hence, the homography H can be expressed in terms of the trifocal matrix as:

HT = (I3×3 ⊗ sT
2 )T (3)

5The reader can verify that if H is the homography induced by a plane between two views, such that conjugate points are related by m2 = Hm1, conjugate
lines are related by s2 = HT s1.
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6.2.5 Relationship with the trifocal tensor.

The Kronecker notation and the tensorial notation are deeply related, as both rep-
resents multilinear forms. To draw this relationship in the case of the trifocal
geometry, let us expand the trifocal matrix into its columns T = [t1|t2|t3] and m1

into its components m1 = [u, v, w]T . Then, thanks to the linearity of the vector
transposition:

(Tm1)
(3) = ([t1|t2|t3]m1)

(3) = (ut1 +vt2 +wt3)
(3) = ut

(3)
1 +vt

(3)
2 +wt

(3)
3 (111)

This implies that (Tm1)
(3) can be seen as the linear combination of the matrices

t
(3)
1 , t

(3)
2 , t

(3)
3 with the components of m1 as coefficients. Therefore, the action of

the trilinear form Eq. (108) is to first combine matrices t
(3)
1 , t

(3)
2 , t

(3)
3 according to

m1, then combine the columns of the resulting matrix according to s3 and finally
to combine the elements of the resulting vector according to s2, to obtain a scalar.

The 3× 3× 3 array T obtained by stacking the three 3× 3 matrices t
(3)
1 , t

(3)
2 , t

(3)
3

is the trifocal tensor.
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1−d array

scalar

Comb.lin. with a

Trilinear form: T(a,b,c)

2−d array

3−d array
Comb.lin. with b

Fig. 19. Action of a trilinear form f(a,b,c) represented by a tensor.
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6.3 Reconstruction

As in the case of two views, what can be reconstructed depends on what is known
about the scene and the cameras.

If the intrinsic parameters of the cameras are known, we can obtain a Euclidean
reconstruction, that differs from the true reconstruction by a similarity transforma-
tion. This is composed by a rigid displacement (due to the arbitrary choice of the
world reference frame) plus a a uniform change of scale (due to the well-known
depth-speed ambiguity).

In the weakly calibrated case, i.e., when point correspondences are the only infor-
mation available, a projective reconstruction can be obtained.

In both cases, the solution is not a straightforward generalization of the two view
case, as the problem of global consistency comes into play (i.e., how to relate each
other the local reconstructions that can be obtained from view pairs).
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6.3.1 Euclidean Reconstruction

Let us consider for simplicity the case of three views, which generalizes straightfor-
ward to N views.

If one applies the method of Section 4.3.2 to view pairs 1-2, 1-3 and 2-3 one obtains
three displacements (R12, t̂12), (R13, t̂13) and (R23, t̂23) known up a scale factor, as
the norm of translation cannot be recovered, (the symbolˆ indicates a unit vector).

The “true” displacements must satisfy the following compositional rule

t13 = R23t12 + t23 (112)

which can be rewritten as

t̂13 = µ1R23t̂12 + µ2t̂23 (113)

where µ1 = ||t12||/||t13|| and µ2 = ||t23||/||t13|| are unknown.
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However, Eq. (112) constraints t̂13, R23t̂12 and t̂23 to be coplanar, hence the ratios
µ1, µ2 can be recovered:

||t12||
||t13|| = µ1 =

(t̂13 × t̂23) · (R23t̂12 × t̂23)

||R23t̂12 × t̂23||2
(114)

And similarly for µ2.

In this way three consistent camera matrices can be instantiated.

Note that only ratios of translation norm can be computed, hence the global scale
factor remains undetermined.
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6.3.2 Projective Reconstruction

If one applies the method of Section 4.4.3 to consecutive pairs of views, she would
obtain, in general, a set of reconstructions linked to each other by an unknown pro-
jective transformation (because each camera pair defines its own projective frame).

The trifocal geometry could be used to link together consistently triplets of views.
In Section 4.4.3 we saw how a camera pair can be extracted from the fundamental
matrix. Likewise, a triplet of consistent cameras can extracted from the trifocal
matrix (or tensor). The procedure is more tricky, though.

An elegant method for multi-image reconstruction was described in [46], based on
the same idea of the factorization method [48].
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Consider m cameras P1 . . . Pm looking at n 3-D points M1 . . .Mn. The usual
projection equation

ζj
i m

j
i = PiM

j i = 1 . . .m, j = 1 . . . n. (115)

can be written in matrix form:


ζ1
1m

1
1 ζ2

1m
2
1 . . . ζn

1 m
n
1

ζ1
2m

1
2 ζ2

2m
2
2 . . . ζn

2 m
n
2

... ... . . . ...
ζ1
mm1

m ζ2
mm2

m . . . ζn
mmn

m




︸ ︷︷ ︸
scaled measurements W

=




P1

P2
...

Pm




︸ ︷︷ ︸
P

[
M1, M2, . . . Mn

]
︸ ︷︷ ︸

structure M

. (116)

In this formula the mj
i are known, but all the other quantities are unknown, including

the projective depths ζj
i . Equation (116) tells us that W can be factored into the

product of a 3m × 4 matrix P and a 4 × n matrix M . This also means that W
has rank four.
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If we assume for a moment that the projective depths ζj
i are known, then matrix

W is known too and we can compute its singular value decomposition:

W = UDV T . (117)

In the noise-free case, D = diag(σ1, σ2, σ3, σ4, 0, . . . 0), thus, only the first 4
columns of U (V ) contribute to this matrix product. Let U3m×4 (Vn×4) the matrix
of the first 4 columns of U (V ). Then:

W = U3m×4 diag(σ1, σ2, σ3, σ4) V T
n×4. (118)

The sought reconstruction is obtained by setting:

P = U3m×4 diag(σ1, σ2, σ3, σ4) and M = V T
n×4 (119)

This reconstruction is unique up to a (unknown) projective transformation. Indeed,
for any non singular projective transformation T , TP and T−1M is an equally valid
factorization of the data into projective motion and structure.

Consistently, the choice to subsume diag(σ1, σ2, σ3, σ4) in P is arbitrary.
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In presence of noise, σ5 will not be zero. By forcing D = diag(σ1, σ2, σ3, σ4, 0, . . . 0)
one computes the solution that minimizes the following error:

||W − PM ||2F =
∑
i,j

||ζj
i m

j
i − PiM

j||2

where || · ||F is the Frobenius norm.

As the depth ζj
i are unknown, we are left with the problem of estimating them.

An iterative solution is to alternate estimating ζj
i (given P and M) with estimating

P and M (givenζj
i ).

If P and M are known, estimating ζj
i is a linear problem. Indeed, for a given point

j the projection equation writes:


ζj
1m

j
1

ζj
2m

j
2

...
ζj
mmj

m


 =




mj
1 0 . . . 0

0 mj
2 . . . 0

... ... . . . ...
0 0 . . . mj

m




︸ ︷︷ ︸
Qj




ζj
1

ζj
2
...

ζj
m




︸ ︷︷ ︸
ζj

= PM j (120)
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Starting from an initial guess for ζj
i (typically ζj

i = 1), the following iterative
procedure6 is used:

1. Normalize W such that ||W |||F = 1;

2. Factorize W and obtain an estimate of P and M ;

3. If ||W − PM ||2F is sufficiently small then stop;

4. Solve for ζj in Qjζj = PM j, for all j = 1 . . . n;

5. Update W .

6. Goto 1.

Step 1 is necessary to avoid trivial solutions (e.g. ζj
i = 0).

This technique is fast, requires no initialization, and gives good results in practice,
although there is no guarantee that the iterative process will converge. A provably
convergent iterative method has been presented in [36].

6Whilst this procedure captures the main idea of Sturm and Triggs, it is not exactly the algorithm proposed in [46]. To start with, the original algorithm [46]
was not iterative and used the epipolar constraint (Eq.44) to fix the ratio of the projective depths of one point in successive images. It was [50] who made the
scheme iterative. Moreover in [46] the normalization of W is performed by normalizing rows and columns of W . The Frobenius norm was used by [39]. A similar
scheme was also proposed by [19].
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6.4 Multifocal constraints

We outline here an alternative and elegant way to derive all the meaningful multi-
linear constraints on N views, based on determinants, described in [20]. Consider
one image point viewed by m cameras:

ζimi = PiM i = 1 . . . m (121)

By stacking all these equations we obtain:




P1 m1 0 . . . 0
P2 0 m2 . . . 0
... ... ... . . . ...

Pm 0 0 . . . mm




︸ ︷︷ ︸
L




M
−ζ1

−ζ2
...
−ζm




=




0
0
...
0


 (122)

This implies that the 3m×(m+4) matrix L is rank-deficient, i.e., rank L < m+4.
In other words, all the (m + 4)× (m + 4) minors of L are equal to 0.
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The minors that does not contain at least one row
from each camera are identically zero, since they
contain a zero column.
If a minor contains only one row from some view,
the image coordinate corresponding to this row
can be factored out (using Laplace expansion
along the corresponding column).
Hence, at least one row has to be taken from each
view to obtain a meaningful constraint, plus an-
other row from each camera to prevent the con-
straint to be trivially factorized.
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0
0
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*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

0
0
0

0
0
0

0
0
0

0
0
0

*
*
*

0
0
0

3m

0

4+m

0
0
0
0
0

Since there are m views, after taking one row from each camera, the remaining four
rows can be chosen as follows:

1. Two rows from one view and two rows from another view.

2. Two rows from one view, one row from another view and one row from a third
view.

3. One row from each of four different views.
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If m = 2 choosing two rows from one view and two rows from another view gives
a bilinear two-view constraint, expressed by the bifocal tensor i.e., the fundamental
matrix.

If m = 3, choosing two rows from one view, one row from another view and one row
from a third view gives a trilinear three-view constraint, expressed by the trifocal
tensor.

If m = 4, choosing one row from each of four different views gives a quadrilinear
four-view constraint, expressed by the quadrifocal tensor.

If m > 4, there is no way to avoid that the minors contain only one row from
some views. Hence, constraints involving more than 4 cameras can be factorised as
product of the two-, three-, or four-views constraints and image point coordinates.

This indicates that no interesting constraints can be written for more than four
views7.

7Actually, it can be proven that also the quadrifocal constraints are not independent [34].
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Please note that Eq. (122) can be also used to triangulate one point M in multiple
views, by solving the homogeneous linear system for [M,−ζ1,−ζ2, · · · ,−ζm]T .
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7 Autocalibration

The aim of autocalibration is to compute the intrinsic parameters, starting from
weakly calibrated cameras.

More in general, the task is to recover metric properties of camera and/or scene,
i.e., to compute a Euclidean reconstruction.

There are two classes of methods:

1. Direct: solve directly for the intrinsic parameters.

2. Stratified: first obtain a projective reconstruction and then transform it to a
Euclidean reconstruction (in some cases an affine reconstruction is obtained in
between).

The reader is referred to [10] for a review of autocalibration, and to [37, 51, 23, 40,
38, 14] for classical and recent work on the subject.
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7.1 Counting argument

Consider m cameras. The difference between the d.o.f. of the multifocal geometry
(e.g. 7 for two views) and the d.o.f. of the rigid displacements (e.g. 5 for two
views) is the number of independent constraints available for the computation of
the intrinsic parameters (e.g. 2 for two views).

The multifocal geometry of m cameras (represented by the m-focal tensor) has
11m − 15 d.o.f. Proof: a set of m cameras have 11m d.o.f., but they determine
the m-focal geometry up to a collineation of P3, which has 15 d.o.f. The net sum
is 11m− 15 d.o.f.

On the other hand, the rigid displacements in m views are described by 6m − 7
parameters: 3(m− 1) for rotations, 2(m− 1) for translations, and m− 2 ratios of
translation norms.

Thus, m weakly calibrated views give 5m − 8 constraints available for computing
the intrinsic parameters.
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Let us suppose that mk parameters are known and mc parameters are constant.

The first view introduces 5 − mk unknowns. Every view but the first introduces
5−mk −mc unknowns.

Therefore, the unknown intrinsic parameters can be computed provided that

5m− 8 ≥ (m− 1)(5−mk −mc) + 5−mk. (123)

For example, if the intrinsic parameters are constant, three views are sufficient to
recover them.

If one parameter (usually the skew) is known and the other parameters are varying,
at least eight views are needed.
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7.2 A simple direct method

If we consider two views, two independent constraints are available for the compu-
tation of the intrinsic parameters from the fundamental matrix.

Indeed, F has 7 d.o.f, whereas E, which encode the rigid displacement, has only
5 d.o.f. There must be two additional constraint that E must satisfy, with respect
to F .

In particular, these constraints stem from the equality of two singular values of
the essential matrix (Theorem 4.1) which can be decomposed in two independent
polynomial equations.

Let Fij be the (known) fundamental matrix relating views i and j, and let Ki and
Kj be the respective (unknown) intrinsic parameter matrices.

The idea of [38] is that the matrix

Eij = KT
i FijKj, (124)

satisfies the constraints of Theorem 4.1 only if the intrinsic parameters are correct.
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Hence, the cost function to be minimized is

C(Ki, i = 1 . . . n) =

n∑
i=1

n∑
j>n

wij

1σij − 2σij

1σij + 2σij
, (125)

where 1σij > 2σij are the non zero singular values of Eij and wij are normalized
weight factors (linked to the reliability of the fundamental matrix estimate).

The previous counting argument shows that, in the general case of n views, the
n(n − 1)/2 two-view constraints that can be derived are not independent, never-
theless they can be used as they over-determine the solution.

A non-linear least squares solution is obtained with an iterative algorithm (e.g.
Gauss-Newton) that uses analytical derivatives of the cost function.

A starting guess is needed, but this cost function is less affected than others by
local minima problems. A globally convergent algorithm based on this cost function
is described in [11].
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7.3 Stratification

We have seen that a projective reconstruction can be computed starting from points
correspondences only (weak calibration), without any knowledge of the camera
matrices.

Projective reconstruction differs from Euclidean by an unknown projective trans-
formation in the 3-D projective space, which can be seen as a suitable change of
basis.

Starting from a projective reconstruction the problem is computing the transforma-
tion that “straighten” it, i.e., that upgrades it to an Euclidean reconstruction.

To this purpose the problem is stratified [33, 6] into different representations: de-
pending on the amount of information and the constraints available, it can be
analyzed at a projective, affine, or Euclidean level.
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Let us assume that a projective reconstruction is available, that is a sequence Pi of
m + 1 camera matrices and a set Mj of n + 1 3-D points such that:

mj
i ' PiM

j i = 0 . . . m, j = 0 . . . n. (126)

Without loss of generality, we can assume that camera matrices writes:

P0 = [I | 0]; Pi = [Ai | ei] for i = 1 . . .m (127)

We are looking for the a 4× 4 non-singular matrix T that upgrades the projective
reconstruction to Euclidean:

mj
i ' PiT︸︷︷︸

PE
i

T−1Mj︸ ︷︷ ︸
structure

, (128)

PE
i = PiT is the Euclidean camera,

We can choose the first Euclidean-calibrated camera to be PE
0 = K0[I | 0], thereby

fixing arbitrarily the world reference frame:

PE
0 = K0[I | 0] PE

i = Ki[Ri | ti] for i = 1 . . . m. (129)
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With this choice, it is easy to see that PE
0 = P0T implies

T =

[
K0 0
rT s

]
(130)

where rT is a 3-D vector and s is a scale factor, which we will arbitrarily set to 1
(the Euclidean reconstruction is up to a scale factor).

Under this parametrization T is clearly non singular, and it depends on eight pa-
rameters.

Substituting (130) in PE
i ' PiT gives

PE
i = [KiRi | Kiti] ' PiT = [AiK0 + eir

T | ei] for i > 0 (131)

and, considering only the leftmost 3× 3 submatrix, gives

KiRi ' AiK0 + eir
T = Pi

[
K0

rT

]
(132)
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Rotation can be eliminated using RRT = I , leaving:

KiK
T
i ' Pi

[
K0K

T
0 K0r

rTKT
0 rTr

]
P T

i (133)

This is the basic equation for autocalibration (called absolute quadric constraint),
relating the unknowns Ki (i = 0 . . . m) and r to the available data Pi (obtained
from weakly calibrated images).

Note that (133) contains five equations, because the matrices of both members are
symmetric, and the homogeneity reduces the number of equations with one.
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7.3.1 Geometric interpretation

Under camera matrix P the outline of the quadric Q is the conic C given by:

C∗ ' PQ∗P T (134)

where C∗ is the dual conic and Q∗ is the dual quadric. An expression with Q and
C may be derived, but it is quite complicated. C∗ (resp. Q∗) is the adjoint matrix
of C (resp. Q). If C is non singular, then C∗ = C−1.

In the beginning we introduced the absolute conic Ω, which is invariant under
similarity transformation, hence deeply linked with the Euclidean stratum.

In a Euclidean frame, its equation is x2
1 + x2

2 + x2
3 = 0 = x4.

The absolute conic may be regarded as a special quadric (a disk quadric), therefore
its dual is a quadric, the dual absolute quadric, denoted by Ω∗. Its representation
is:

Ω∗ = diag(1, 1, 1, 0). (135)
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As we already know, the image of the absolute conic under camera matrix PE is
given by ω = (KKT )−1, that is :

ω∗ = (KKT ) ' PEΩ∗PET
(136)

This property is independent on the choice of the projective basis. What changes
is the representation of the dual absolute quadric, which is mapped to

Ω∗ = Tdiag(1, 1, 1, 0)T T . (137)

under the collineation T .

Substituting T from Eq. (130) into the latter gives:

Ω∗ =

[
K0K

T
0 K0r

rTKT
0 rTr

]
(138)

Recalling that ω∗i = KiK
T
i , then Eq. (133) is equivalent to

ω∗i ' PiΩ
∗P T

i (139)
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7.3.2 Solution strategies

Autocalibration requires to solve Eq. (139), with respect to Ω∗ (and ω∗i ).

If Ω∗ is known, the collineation T that upgrades cameras from projective to Eu-
clidean is obtained by decomposing Ω∗ as in Eq. (137).

Ω∗ might be parametrized as in Eq. (138) with 8 d.o.f. or parametrized as a generic
4× 4 symmetric matrix (10 d.o.f.). The latter is an over-parametrization, as Ω∗ is
also singular and defined up to a scale factor (which gives again 8 d.o.f.).

There are several strategies for dealing with the scale factor.

• Introduce the scale factor explicitly as an additional unknown [22]:

ω∗i − λiPiΩ
∗P T

i = 0 (140)

This gives 6 equations but introduces one additional unknown (the net sum is 5).

138



• Eliminate it by using the same idea of the cross product for 3-D vectors [51].

vech(ω∗i ) ' vech(PiΩ
∗P T

i ) ⇐⇒ rank [vech(ω∗i )| vech(PiΩ
∗P T

i )]︸ ︷︷ ︸
B

= 1

where vech is the column-wise vectorization with the upper portion excluded,
as matrices in Eq. (139) are symmetric.

This is tantamount to say that every 2 × 2 minor of B is zero. There are 15
different order-2 minors of a 6×2 matrix, but only 5 equations are independent.
©13

• Use a matrix norm (namely, Frobenius norm) [40]:

ω∗i
||ω∗i ||F

− PiΩ
∗P T

i

||PiΩ
∗P T

i ||F
= 0 (141)

In any case, a non-linear least-squares problem has to be solved. Available numerical
techniques (based on the Gauss-Newton method) are iterative, and requires an
estimate of the solution to start.

This can be obtained by doing an educated guess about skew, principal point and
aspect ratio, and solve the linear problem that results [41].
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Linear solution

If some of the intrinsic parameters are known, one can perform a partial normaliza-
tion of the coordinates, such that the corresponding elements of ω∗i vanish. Linear
equations on Ω∗ are generated from zero-entries of ω∗i (because this eliminates the
scale factor):

ω∗i (k, `) = 0 ⇒ pT
i,kΩ

∗pi,` = 0

where pT
i,k is the k-th row of Pi.

Likewise, linear constraints on Ω∗ can be obtained from the equality of elements in
the the upper (or lower) triangular part of ω∗i (because ω∗i is symmetric).

In order to be able to solve linearly for Ω∗, at least 10 linear equations must be
stacked up, to form a homogeneous linear system, which can be solved as usual
(via SVD). Singularity of Ω∗ can be enforced a-posteriori by forcing the smallest
singular value to zero.

If the principal point is known, ω∗i (1, 3) = 0 = ω∗i (2, 3) and this gives two linear
constraints. If, in addition, skew is zero we have ω∗i (1, 2) = 0. Known aspect ratio
r provides a further constraint: rω∗i (1, 1) = ω∗i (2, 2).
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Constant intrinsic parameters

If all the cameras has the same intrinsic parameters, so Ki = K, then Eq. (133)
becomes

KKT ' Pi

[
KKT Kr
rTKT rTr

]
P T

i (142)

The constraints expressed by Eq. (142) are called the Kruppa constraints in [22].

Since each camera matrix, apart from the first one, gives five equations in the eight
unknowns, a unique solution is obtained when at least three views are available.

The resulting system of equations is solved with a non-linear least-squares technique
(e.g. Gauss-Newton).
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8 Getting practical

In this section we will approach estimation problems from a more “practical” point
of view.

First, we will discuss how the presence of errors in the data affects our estimates
and describe the countermeasures that must be taken to obtain a good estimate.

Second, we will introduce non-linear distortions due to lenses into the pinhole model
and we illustrate a practical calibration algorithm that works with a simple planar
object.

Finally, we will describe rectification, a transformation of image pairs such that
conjugate epipolar lines become collinear and parallel to one of the image axes,
usually the horizontal one. In such a way, the correspondence search is reduced to
a 1D search along the trivially identified scanline.
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8.1 Pre-conditioning

In presence of noise (or errors) on input data, the accuracy of the solution of a
linear system depends crucially on the condition number of the system. The lower
the condition number, the less the input error gets amplified (the system is more
stable).

As [16] pointed out, it is crucial for linear algorithms (as the DLT algorithm) that
input data is properly pre-conditioned, by a suitable coordinate change (origin and
scale): points are translated so that their centroid is at the origin and are scaled so
that their average distance from the origin is

√
2.

This improves the condition number of the linear system that is being solved.

Apart from improved accuracy, this procedure also provides invariance under simi-
larity transformations in the image plane.
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8.2 Algebraic vs geometric error

Measured data (i.e., image or world point positions) is noisy.

Usually, to counteract the effect of noise, we use more equations than necessary
and solve with least-squares.

What is actually being minimized by least squares?

In a typical null-space problem formulation Ax = 0 (like the DLT algorithm) the
quantity that is being minimized is the square of the residual ||Ax||.
In general, if ||Ax|| can be regarded as a distance between the geometrical entities
involved (points, lines, planes, etc..), than what is being minimized is a geometric
error, otherwise (when the error lacks a good geometrical interpretation) it is called
an algebraic error.

All the linear algorithm (DLT and others) we have seen so far minimize an algebraic
error. Actually, there is no justification in minimizing an algebraic error apart from
the ease of implementation, as it results in a linear problem.
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Usually, the minimization of a geometric error is a non-linear problem, that admit
only iterative solutions and requires a starting point.

So, why should we prefer to minimize a geometric error? Because:

• The quantity being minimized has a meaning

• The solution is more stable

• The solution is invariant under Euclidean transforms

Often linear solution based on algebraic residuals are used as a starting point for a
non-linear minimization of a geometric cost function, which “gives the solution a
final polish” [15].
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8.2.1 Geometric error for resection

The goal is to estimate the camera matrix, given a number of correspondences
(mj,Mj) j = 1 . . . n

The geometric error associated to a camera estimate P̂ is the distance between the
measured image point mj and the re-projected point P̂iM

j:

min
P̂

∑
j

d(P̂Mj,mj)2 (143)

where d() is the Euclidean distance between the homogeneous points.

The DLT solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton)
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8.2.2 Geometric error for triangulation

The goal is to estimate the 3-D coordinates of a point M, given its projection mi

and the camera matrix Pi for every view i = 1 . . .m.

The geometric error associated to a point estimate M̂ in the i-th view is the distance
between the measured image point mi and the re-projected point PiM̂:

min
M̂

∑
i

d(PiM̂,mi)
2 (144)

where d() is the Euclidean distance between the homogeneous points.

The linear solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).
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8.2.3 Geometric error for F

The goal is to estimate F given a a number of point correspondences mi
` ↔mi

r.

The geometric error associated to an estimate F̂ is given by the distance of conju-
gate points from conjugate lines (note the symmetry):

min
F̂

∑
j

d(F̂mj
`,m

j
r)

2 + d(F̂ Tmj
r,m

j
`)

2 (145)

where d() here is the Euclidean distance between a line and a point (in homogeneous
coordinates).

The eight-point solution is used as a starting point for the iterative minimization
(e.g. Gauss-Newton).

Note that F must be suitably parametrized, as it has only seven d.o.f. ©11
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8.2.4 Geometric error for H

The goal is to estimate H given a a number of point correspondences mi
` ↔mi

r.

The geometric error associated to an estimate Ĥ is given by the symmetric distance
between a point and its transformed conjugate:

min
Ĥ

∑
j

d(Ĥmj
`,m

j
r)

2 + d(Ĥ−1mj
r,m

j
`)

2 (146)

where d() is the Euclidean distance between the homogeneous points. This also
called the symmetric transfer error.

The linear solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).
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8.2.5 Bundle adjustment (reconstruction)

If measurements are noisy, the projection equation will not be satisfied exactly by
the camera matrices and structure computed in Sec. 6.3.2.

We wish to minimize the image distance between the re-projected point P̂iM̂
j and

measured image points mj
i for every view in which the 3-D point appears:

min
P̂i,M̂j

∑
i,j

d(P̂iM̂
j,mj

i )
2 (147)

where d() is the Euclidean distance between the homogeneous points.

As m and n increase, this becomes a very large minimization problem.

A solution is to alternate minimizing the re-projection error by varying P̂i with
minimizing the re-projection error by varying M̂j.

See [52] for a review and a more detailed discussion on bundle adjustment.
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8.3 Robust estimation

Up to this point, we have assumed that the only source of error affecting corre-
spondences is in the measurements of point’s position. This is a small-scale noise
that gets averaged out with least-squares.

In practice, we can be presented with mismatched points, which are outliers to
the noise distribution (i.e., rogue measurements following a different, unmodelled,
distribution).

These outliers can severely disturb least-squares estimation (even a single outlier
can totally offset the least-squares estimation, as illustrated in Fig. 20.)
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Fig. 20. A single outlier can severely offset the least-squares estimate (red line), whereas the robust

estimate (blue line) is unaffected.

The goal of robust estimation is to be insensitive to outliers (or at least to reduce
sensitivity).
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8.3.1 M-estimators

Least squares:

min
θ

∑
i

(ri/σi)
2 (148)

where θ are the regression coefficient (what is being estimated) and ri is the residual.
M-estimators are based on the idea of replacing the squared residuals by another
function of the residual, yielding

min
θ

∑
i

ρ(ri/σi) (149)

ρ is a symmetric function with a unique minimum at zero that grows sub-quadratically,
called loss function.

Differentiating with respect to θ yields:
∑

i

1

σi
ρ′(ri/σi)

dri

dθ
= 0 (150)

The M-estimate is obtained by solving this system of non-linear equations.
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8.3.2 RANSAC

Given a model that requires a minimum of p data points to instantiate its free
parameters θ, and a set of data points S containing outliers:

1. Randomly select a subset of p points of S and instantiate the model from this
subset

2. Determine the set Si of data points that are within an error tolerance t of the
model. Si is the consensus set of the sample.

3. If the size of Si is greater than a threshold T , re-estimate the model (possibly
using least-squares) using Si (the set of inliers) and terminate.

4. If the size of Si is less than T , repeat from step 1.

5. Terminate after N trials and choose the largest consensus set found so far.
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Three parameters need to be specified: t, T and N .

Both T and N are linked to the (unknown) fraction of outliers ε.

N should be large enough to have a high probability of selecting at least one sample
containing all inliers. The probability to randomly select p inliers in N trials is:

P = 1− (1− (1− ε)p)N (151)

By requiring that P must be near 1, N can be solved for given values of p and ε.

T should be equal to the expected number of inliers, which is given (in fraction) by
(1− ε).

At each iteration, the largest consensus set found so fare gives a lower bound on
the fraction of inliers, or, equivalently, an upper bound on the number of outliers.
This can be used to adaptively adjust the number of trials N .

t is determined empirically, but in some cases it can be related to the probability
that a point under the threshold is actually an inlier [15].
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As pointed out in [45], RANSAC can be viewed as a particular M-estimator.

The objective function that RANSAC maximizes is the number of data points having
absolute residuals smaller that a predefined value t. This may be seen a minimising
a binary loss function that is zero for small (absolute) residuals, and 1 for large
absolute residuals, with a discontinuity at t.

t ri

Fig. 21. RANSAC loss function

By virtue of the prespecified inlier band, RANSAC can fit a model to data corrupted
by substantially more than half outliers.
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8.3.3 LMedS

Another popular robust estimator is the Least Median of Squares. It is defined by:

min
θ

mediri (152)

It can tolerate up to 50% of outliers, as up to half of the data point can be arbitrarily
far from the “true” estimate without changing the objective function value.

Since the median is not differentiable, a random sampling strategy similar to RANSAC
is adopted. Instead of using the consensus, each sample of size p is scored by the
median of the residuals of all the data points. The model with the least median
(lowest score) is chosen.

A final weighted least-squares fitting is used.

With respect to RANSAC, LMedS can tolerate “only” 50% of outliers, but requires
no setting of thresholds.
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9 Further readings

General books on (Geometric) Computer Vision are: [5, 53, 7, 15].
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[33] Q.-T. Luong and T. Viéville. Canonical representations for the geometries of multiple projective views. Com-
puter Vision and Image Understanding, 64(2):193–229, 1996.

[34] Yi Ma, Stefano Soatto, Jana Kosecka, and Shankar S. Sastry. An Invitation to 3-D Vision. Springer, November
2003.

[35] J. R. Magnus and H. Neudecker. ”Matrix Differential Calculus with Applications in Statistics and Economet-
rics”. John Wiley & Sons, revised edition, 1999.

[36] S. Mahamud, M. Hebert, Y. Omori, and J. Ponce. Provably-convergent iterative methods for projective
structure from motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages I:1018–1025, 2001.

[37] S. J. Maybank and O. Faugeras. A theory of self-calibration of a moving camera. International Journal of
Computer Vision, 8(2):123–151, 1992.

[38] P.R.S. Mendonça and R. Cipolla. A simple techinique for self-calibration. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages I:500–505, 1999.

[39] J. Oliensis. Fast and accurate self-calibration. In Proceedings of the International Conference on Computer
Vision, 1999.

162



[40] M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric reconstruction in spite of varying and
unknown internal camera parameters. In Proceedings of the International Conference on Computer Vision,
pages 90–95, Bombay, 1998.

[41] M. Pollefeys, F. Verbiest, and L. Van Gool. Surviving dominant planes in uncalibrated structure and motion
recovery. In Proceedings of the European Conference on Computer Vision, pages 837–851, 2002.
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Mathematical prerequisites

Homogeneous coordinates
Projective space
Orthogonal matrices
Null space (kernel)
Matrix rank
Determinant, Laplace expansion
Cross product
Triple product
Frobenius norm
Cholesky decomposition
QR decomposition
Eigenvalues and eigenvectors
Singular Value decomposition
Polar decomposition
Kronecker product
Multilinear forms
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