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Introduction

In a network of nodes, each node has an unknown state and measures of di↵erences
(or ratios) of states are available.

Example in Z:
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The goal is to guess the unknown states from the available measures.



• adding a constant to the solution yields another valid solution
• not every set of measures produces a solvable problem: circuits must have zero
sum.

• Kirchho↵’s voltage law (the directed sum of the electrical potential di↵erences
around any closed network is zero).



This is an istance of the synchronization problem. In general, states can be elements
of any group, possibly with noisy or wrong measures.

In Computer Vision the state is the origin and/or attitude of a local reference frame
(e.g., attached to a camera).

Starting from known interior orientation and tie-points compute epipolar geometry
which results in relative rotations and relative translations (up to a scale).

Synchronization brings from relative to absolute orientations.

Displacements are known only partially, as directions. Let us assume for the moment
that the magnitude of translation is known, we deal with this at the end.



The underlying graph G = (V, E) is referred to as the epipolar graph (in the following
n = |V | and m = |E|):

• vertices correspond to cameras/images
• edges correspond to pairs of cameras sharing a su�cient number of tie-points.
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The unknown vertex labels Mi represent absolute orientations of cameras, while edge
labels Mij represent (measured) relative orientations.

Mi =

✓
Ri xi
0 1

◆
2 SE(3) Mij =

✓
Rij xi j
0 1

◆
2 SE(3) (1)

where Ri, Rij 2 SO(3) and xi , xi j 2 R3 represent the rotation and translation com-
ponents of the rigid motion.

The vertex labeling is consistent i↵ Mij = M
�1
i Mj , which is equivalent to

Rij = R
T
i Rj (2)

xi j = R
T
i xj � RTi xi (3)

by considering separately the rotation and translation terms.

MatrixMi is the inverse of the usual matrix Gi found in the definition of the perspective
projection matrix: Pi = [I|0]Gi (assuming normalized coordinates).

In order to haveMij = M
�1
i Mj encoded in Eij , then the essential matrix must defined

by pTi Eijpj . Then: Eij = [xi j ]⇥Rij .



1 Rotation synchronization

It is also known as multiple rotation averaging (?).

Rotation synchronization is a particular case of the synchronization problem in the
group of rotations SO(3) = {R 2 R3⇥3 s.t. RTR = I, det(R) = 1}.

In matrix form:
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Therefore, the consistency constraint Rij = R
T
i Rj becomes:

Z = XXT. (5)



The rank-3 matrix Z containing all the edge labels is symmetric and positive semidef-
inite.

Since XTX = nI, the consistency can be rewriten as:

ZX = nX. (6)

Hence, the 3 columns of X are the eigenvectors of Z corresponding to the 3 nonzero
eigenvalues of Z.

This was for a complete graph; in general Z has zero blocks in correspondence of
missing edges, and the solution X is recovered as the 3 top eigenvectors of

(D ⌦ I
3

)�1ZA, (7)

where A is the adjacency matrix of the epipolar graph, D = diag(A1) is the degree
matrix, and ZA (with zero blocks) contains the available measures.

At the end, each 3⇥ 3 block of X is projected onto SO(3) through SVD.



2 Translation synchronization.

The consistency constraint for translations (3):

xi j = R
T
i xj � RTi xi (8)

can be written equivalently as

Rixi j = xj � xi := ui j (9)

where xi is the centre of the i -th camera and ui j is the baseline (available only after
rotation synchronization)

Let us denote the incidence vector of the edge (i , j) with

bi j = (0, . . . ,�1
"
i

, . . . , 1
"
j

, . . . , 0)T (10)

Equation (9) writes:
Xbi j = ui j (11)

where the columns of X are the centres xi .



Let B be the n ⇥m incidence matrix of G, which has the bi j as columns; it is easy
to see that for all the edges the equation above writes

XB = U (12)

where all the m baselines ui j are juxtaposed in one 3⇥m matrix U.

Equivalently, using the Kronecker product:

(BT ⌦ I
3

) vecX = vecU. (13)

If we assume that the epipolar graph is connected, rank (B) = n � 1. Since the
solution is defined up to a global translation, we are allowed w.l.o.g. to arbitrarily set
xj = 0. Removing xj from the unknowns and the corresponding row in B leaves a
full-rank n � 1⇥m matrix Bj .

Is that all? No, the magnitude of translations are unknown.



3 Magnitude revovery

Node-based. Let us multiply the translation synchronization equation:

(BT ⌦ I
3

) vecX = vecU (14)

by the block diagonal matrix

bS = blkdiag ({[ûi j ]⇥}
(i ,j)2E)

yielding
bS(BT ⌦ I

3

) vecX = ⇠⇠⇠⇠⇠⇠⇠bS vecU = 0 (15)

This step has the e↵ect of substituting U, which is unknown, with bS (derived from
bU) which is known instead.

This equation is also called the node-based bearing constraint in ?. Its solution yields
the locations X, hence implicitly recovering the scales.



Egde-based. Let us start from the translation synchronization:

(BT ⌦ I
3

) vecX = vecU (16)

If the baselines ui j are expanded into magnitude ↵i j and direction ûi j : ui j = ↵i j ûi j ,
the matrix U writes:

U = ↵T � bU (17)

where bU contains the baseline directions (or bearings) in columns, ↵ is a vector
containing the magnitudes and � denotes the Khatri-Rao product. Therefore:

(BT ⌦ I
3

) vecX = vec(↵T � bU) = (I � bU)↵ (18)

Let us consider a cycle basis matrix C and multiply left and right by (C ⌦ I
3

):

(C ⌦ I
3

)(BT ⌦ I
3

) vecX = (C ⌦ I
3

)(I � bU)↵ (19)

((((((((((((((((

(CBT ⌦ I
3

) vecX = (C � bU)↵ (20)

because CBT = 0 for any cycle basis matrix C, leaving

(C � bU)↵ = 0 (21)

It can be seen that the above equation express the condition that with the correct ↵
the bearings sums up to zero in every cycle.
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4 Graphs basics

Let G = (V, E) a finite simple undirected graph with n nodes and m vertices. The
adjacency matrix of G is defined as the n ⇥ n matrix A(G) in which:

A(G)i j =

(
1, if i and j are adjacent

0, otherwise

The incidence matrix of a finite simple directed graph ~G = (V, E) with n nodes and
m edges is defined as:

B(~G)i j =

8
><

>:

1, if i is the head of ej

�1, if i is the tail of ej

0, otherwise

The rows of the incidence matrix correspond to vertices of G and its columns to
edges of G.



The degree matrix of the graph is the diagonal matrix defined as:

D(G)i j =

(
deg(vi) =

P
j A(G)i ,j , if i = j

0, otherwise

or, equivalently: D = diag(Z1).

A cycle in a undirected graph is a subgraph in which every vertex has even degree.

A circuit is a connected cycle where every vertex has degree two.



Viewing cycles as vectors indexed by edges, addition of cycles corresponds to modulo-2
sum of vectors, and the cycles of a graph form a vector space in Zm
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Fig. 1: The sum of two cycles is a cycle where the common edges vanish.



A cycle basis is a minimal set of circuits such that any cycle can be written as linear
combination of the circuits in the basis.

If we stack the indicator vectors of the circuits of a basis in a matrix C (by rows) we
obtain the cycle basis matrix.

The dimension of the cycle space is m � n + c , where c denotes the number of
connected components in G = (V, E).
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(a) Graph G = (V, E).
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(b) Cycle Basis.

Fig. 2: Example of a cycle basis associated to a given graph G = (V, E). In general, a cycle basis is not unique.

It can be proven that CBT = 0.



5 Khatri-Rao product

The Khatri-Rao product (?), denoted by �, is in some sense a partitioned Kronecker
product, where by default the column-wise partitioning is considered.

Let us consider two matrices A of order p ⇥ r and B of order q ⇥ r and denote the
columns of A by a

1

· · · ar and the those of B by b1 · · ·br . The Khatri-Rao product
is defined to be the partitioned matrix of order pq ⇥ r :

A� B = [a
1

⌦ b
1

, · · · ar ⌦ br ] (22)

where ⌦ denotes the Kronecker product.

If X is diagonal, then

vec(AXB) = (BT � A) diag�1(X) (23)

where diag�1 returns a vector containing the diagonal elements of its argument.



With B = I one obtains

vec(AX) = (I � A) diag�1(X). (24)

It it is easy to see that
(I � A) = blkdiag(a

1

. . . an) (25)

where a
1

. . . an are the columns of A and blkdiag is the operator that construct a
block diagonal matrix with its arguments as blocks.

Property: (C ⌦D)(A� B) = CA�DB (provided sizes are compatible)


