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Not all the details are equally important 

!  Science, after Leibniz, is about sorting out what is necessary from 
what is contingent 
!  Contingent: it is A, but it could have been B 

!  Necessary: there is a reason why it had to be A 

!  We should be aware of this distinction in our work, and be 
consistent with it when we write scientific papers (the speaker is no 
exception) 

!  Therefore, I will try to point out what is necessary in the flood of 
information that will follow. 
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3D modeling from images 

!  The holy grail of computer vision for  ~20 years 

!  Input: pictures (nothing else) 

!  Output: a 3D model (points, lines, surfaces) 
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Why image-based modeling? 

!  The process of modeling is cumbersome 

!  Requires well trained personnel 

!  Image-based modeling is simple (to use) 

!  Consider the the “Web 2.0” revolution:  everyone can be a (3D) 
contents creator. 
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A short introduction 

!  A camera is modeled by a 3x4 matrix P 

!  Given P and corresponding points, the 3D structure can be 
reconstructed by triangulation 
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A short introduction 

!  Problems: 
 
!  Matching: compute corresponding points 

 
 
 
 
 

!  Structure and Motion: recover camera 
matrices 
 
 
 
 

!  Bridging the semantic gap: upgrade from 
cloud of points to a high-level model 
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Early works 
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Schaffalitzky and Zisserman - ECCV 2002 

Brown and Lowe - 3DIM 2005 

Debevec, et al -  SIGGRAPH 1996 

Pollefeys et al. -  IJCV 2004 

Andrea Fusiello 



A short genealogy 
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Background theory 
Where we fill our box with the (geometric) tools 
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2 Projective Geometry

The physical space is the Euclidean 3-D space E3, a real 3-dimensional affine space
endowed with the inner product.

Our ambient space is the projective 3-D space P3, obtained by completing E3

with a projective plane, known as plane at infinity Π∞. In this ideal plane lie the
intersections of the planes parallel in E3.

The projective (or homogeneous) coordinates of a point in P3 are 4-tuples defined
up to a scale factor. We write

M � (x, y, z, t) (1)

where � indicates equality to within a multiplicative factor.

The affine points are those of P3 which do not belong to Π∞. Their projective
coordinates are of the form (x, y, z, 1), where (x, y, z) are the usual Cartesian
coordinates.

Π∞ is defined by its equation t = 0.
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The linear transformations of a projective space into itself are called collineations
or homographies. Any collineation of P3 is represented by a generic 4× 4 invertible
matrix.

Affine transformations are the subgroup of collineations of P3 that preserves the
plane at infinity (i.e., parallelism).

Similarity transformations are the subgroup of affine transformations that leave
invariant a very special curve, the absolute conic, which is in the plane at infinity
and whose equation is:

x2
+ y2

+ z2
= 0 = t (2)

Similarity transformations preserves the angles.
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3 Pin-hole Camera Geometry

The pin-hole camera is described by its optical centre C (also known as camera

projection centre) and the image plane.

The distance of the image plane from C is the focal length f .

The line from the camera centre perpendicular to the image plane is called the
principal axis or optical axis of the camera.

The plane parallel to the image plane containing the optical centre is called the
principal plane or focal plane of the camera.

The relationship between the 3-D coordinates of a scene point and the coordinates
of its projection onto the image plane is described by the central or perspective

projection.
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Fig. 2. Pin-hole camera geometry. The left figure illustrates the projection of the point M on the
image plane by drawing the line through the camera centre C and the point to be projected. The
right figure illustrates the same situation in the YZ plane, showing the similar triangles used to
compute the position of the projected point m in the image plane.
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A 3-D point is projected onto the image plane with the line containing the point
and the optical centre (see Figure 2).

Let the centre of projection be the origin of a Cartesian coordinate system wherein
the z-axis is the principal axis.

By similar triangles it is readily seen that the 3-D point (x, y, z)

T is mapped to the
point (fx/z, fy/z)

T on the image plane.
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3.1 The camera projection matrix

If the world and image points are represented by homogeneous vectors, then per-
spective projection can be expressed in terms of matrix multiplication as

0

@
fx
fy
z

1

A
=

2

4
f 0 0 0

0 f 0 0

0 0 1 0

3
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0

BB@

x
y
z
1

1

CCA (3)

The matrix describing the mapping is called the camera projection matrix P .

Equation (3) can be written simply as:

zm = PM (4)

where M = (x, y, z, 1)

T are the homogeneous coordinates of the 3-D point and
m = (fx/z, fy/z, 1)

T are the homogeneous coordinates of the image point.

The projection matrix P in Eq. (3) represents the simplest possible case, as it only
contains information about the focal distance f .



Andrea Fusiello ICVSS -  Calabria, 2013 

General camera: bottom up approach

The above formulation assumes a special choice of world coordinate system and
image coordinate system. It can be generalized by introducing suitable changes of
the coordinates systems.

Changing coordinates in space is equivalent to multiplying the matrix P to the right
by a 4× 4 matrix:

G =

∑
R t

0 1

∏
(5)

G is composed by a rotation matrix R and a translation vector t. It describes the
position and orientation of the camera with respect to an external (world) coordinate
system. It depends on six parameters, called extrinsic parameters.

The rows of R are unit vectors that, together with the optical centre, define the
camera reference frame, expressed in world coordinates.
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Changing coordinates in the image plane is equivalent to multiplying the matrix P
to the left by a 3× 3 matrix:

K =

2

4
f/sx f/sx cot θ ox

0 f/sy oy

0 0 1

3

5 (6)

K is the camera calibration matrix; it encodes the transformation in the image
plane from the so-called normalized camera coordinates to pixel coordinates.

It depends on the so-called intrinsic parameters:

• focal distance f (in mm),

• principal point (or image centre) coordinates ox, oy (in pixel),

• width (sx) and height (sy) of the pixel footprint on the camera photosensor (in
mm),

• angle θ between the axes (usually π/2).

The ratio sy/sx is the aspect ratio (usually close to 1).
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Thus the camera matrix, in general, is the product of three matrices:

P = K[I|0]G = K[R|t] (7)

In general, the projection equation writes:

ζm = PM (8)

where ζ is the distance of M from the focal plane of the camera (this will be shown
after), and m = (u, v, 1)

T .

Note that, except for a very special choice of the world reference frame, this “depth”

does not coincide with the third coordinate of M.
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General camera: top down approach

If P describes a camera, also λP for any 0 �= λ ∈ R describes the same camera,
since these give the same image point for each scene point.

In this case we can also write:
m � PM (9)

where � means “equal up to a scale factor.”

In general, the camera projection matrix is a 3 × 4 full-rank matrix and, being
homogeneous, it has 11 degrees of freedom.

Using QR factorization, it can be shown that any 3× 4 full rank matrix P can be
factorised as:

P = λK[R|t], (10)

(λ is recovered from K(3, 3) = 1).
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3.2 Camera anatomy

Projection centre

The camera projection centre C is the only point for which the projection is not
defined, i.e.:

PC = P

µ
˜

C

1

∂
= 0 (11)

where ˜

C is a 3-D vector containing the Cartesian (non-homogeneous) coordinates
of the optical centre.

After solving for ˜

C we obtain:

˜

C = −P−1
1:3 P4 (12)

where the matrix P is represented by the block form: P = [P1:3|P4] (the subscript
denotes a range of columns).
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Optical ray

The projection can be geometrically modelled by a ray through the optical centre
and the point in space that is being projected onto the image plane (see Fig. 2).

The optical ray of an image point m is the locus of points in space that projects
onto m.

It can be described as a parametric line passing through the camera projection
centre C and a special point (at infinity) that projects onto m:

M =

µ
−P−1

1:3 P4

1

∂
+ ζ

µ
P−1

1:3 m

0

∂
, ζ ∈ R. (14)

If λ = 1 the parameter ζ in Eq. (14) represent the the depth of the point M. �01

Knowing the intrinsic parameters is equivalent to being able to trace the optical ray
of any image point (with P = [K|0]).
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3.3 Camera calibration (or resection)

A number of point correspondences mi ↔Mi is given, and we are required to find
a camera matrix P such that

mi � PMi for all i. (15)

The equation can be rewritten in terms of the cross product as

mi × PMi = 0. (16)

This form will enable a simple a simple linear solution for P to be derived. Using
the properties of the Kronecker product (⊗) and the vec operator [18], we derive:

mi × PMi = 0 ⇐⇒ [mi]×PMi = 0 ⇐⇒ vec([mi]×PMi) = 0 ⇐⇒
⇐⇒ (M

T
i ⊗ [mi]×) vec P = 0

These are three equations in 12 unknown.
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Although there are three equations, only two of them are linearly independent:
Indeed, the rank of (M

T
i ⊗ [mi]×) is two because it is the Kronecker product of a

rank-1 matrix by a a rank-2 matrix.

From a set of n point correspondences, we obtain a 2n × 12 coefficient matrix A
by stacking up two equations for each correspondence.

In general A will have rank 11 (provided that the points are not all coplanar) and
the solution is the 1-dimensional right null-space of A.

The projection matrix P is computed by solving the resulting linear system of
equations, for n ≥ 6.

If the data are not exact (noise is generally present) the rank of A will be 12 and
a least-squares solution is sought.

The least-squares solution for vec(P ) is the singular vector corresponding to the
smallest singular value of A.

This is called the Direct Linear Transform (DLT) algorithm [10].
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4 Two-View Geometry

The two-view geometry is the intrinsic geometry of two different perspective views
of the same 3-D scene (see Figure 3). It is usually referred to as epipolar geometry.

The two perspective views may be acquired simultaneously, for example in a stereo
rig, or sequentially, for example by a moving camera. From the geometric view-
point, the two situations are equivalent, provided that that the scene do not change
between successive snapshots.

Most 3-D scene points must be visible in both views simultaneously. This is not
true in case of occlusions, i.e., points visible only in one camera. Any unoccluded
3-D scene point M = (x, y, z, 1)

T is projected to the left and right view as m� =

(u�, v�, 1)

T and mr = (ur, vr, 1)

T , respectively (see Figure 3).

Image points m� and mr are called corresponding points (or conjugate points) as
they represent projections of the same 3-D scene point M.

The knowledge of image correspondences enables scene reconstruction from images.
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The concept of correspondence is a cornerstone of multiple-view vision. In this notes
we assume known correspondences, and explore their use in geometric algorithms.
Techniques for computing dense correspondences are surveyed in [23, 2].

Fig. 3. Two perspective views of the same 3-D scene with conjugate points highlighted
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We will refer to the camera projection matrix of the left view as P� and of the right
view as Pr. The 3-D point M is then imaged as (17) in the left view, and (18) in
the right view:

ζ�m� = P�M (17)

ζrmr = PrM. (18)

Geometrically, the position of the image point m� in the left image plane I� can be
found by drawing the optical ray through the left camera projection centre C� and
the scene point M. The ray intersects the left image plane I� at m�.

Similarly, the optical ray connecting Cr and M intersects the right image plane Ir

at mr.

The relationship between image points m� and mr is given by the epipolar geometry,
described in Section 4.1.
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4.1 Epipolar Geometry

The epipolar geometry describes the geometric relationship between two perspective
views of the same 3-D scene.

The key finding, discussed below, is that corresponding image points must lie on

particular image lines, which can be computed without information on the calibra-
tion of the cameras.

This implies that, given a point in one image, one can search the corresponding
point in the other along a line and not in a 2-D region, a significant reduction in
complexity.



Andrea Fusiello ICVSS -  Calabria, 2013 

Fig. 4. The epipolar geometry and epipolar constraint.
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Any 3-D point M and the camera projection centres C� and Cr define a plane that
is called epipolar plane.

The projections of the point M, image points m� and mr, also lie in the epipolar
plane since they lie on the rays connecting the corresponding camera projection
centre and point M.

The conjugate epipolar lines, l� and lr, are the intersections of the epipolar plane
with the image planes. The line connecting the camera projection centres (C�,Cr)

is called the baseline.

The baseline intersects each image plane in a point called epipole.

By construction, the left epipole e� is the image of the right camera projection
centre Cr in the left image plane. Similarly, the right epipole er is the image of the
left camera projection centre C� in the right image plane.

All epipolar lines in the left image go through e� and all epipolar lines in the right
image go through er.
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The epipolar constraint.

An epipolar plane is completely defined by the camera projection centres and one
image point.

Therefore, given a point m�, one can determine the epipolar line in the right image
on which the corresponding point, mr, must lie.

The equation of the epipolar line can be derived from the equation describing the
optical ray. As we mentioned before, the right epipolar line corresponding to m�

geometrically represents the projection (Eq. (8)) of the optical ray through m�

(Eq. (14)) onto the right image plane:

ζrmr = PrM = Pr

µ
−P−1

�1:3
P�4

1

∂

| {z }
er

+ ζ�Pr

µ
P−1

�1:3
m�

0

∂
(19)
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If we now simplify the above equation we obtain the description of the right epipolar
line:

ζrmr = er + ζ�Pr1:3
P−1

�1:3
m�| {z }

m

�
�

(20)

This is the equation of a line through the right epipole er and the image point m

�
�

which represents the projection onto the right image plane of the point at infinity
of the optical ray of m�.

The equation for the left epipolar line is obtained in a similar way.
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Fig. 5. Left and right images with epipolar lines.
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4.2 Triangulation

Given the camera matrices P� and Pr, let m� and mr be two corresponding points
satisfying the epipolar constraint. It follows that mr lies on the epipolar line Fm�

and so the two rays back-projected from image points m� and mr lie in a common
epipolar plane. Since they lie in the same plane, they will intersect at some point.
This point is the reconstructed 3-D scene point M.

Analytically, the reconstructed 3-D point M can be found by solving for parameter
ζ� or ζr in Eq. (20). Let us rewrite it as:

er = ζrmr − ζ�m
�
� (21)

The depth ζr and ζ� are unknown. Both encode the position of M in space, as ζr is
the depth of M wrt the right camera and ζ� is the depth of M wrt the left camera.
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However, triangulation can also be cast as a null-space problem.

Let us consider m = [u, v, 1]

T , the projection of the 3D point M according to the
perspective projection matrix P . From (8) one obtains:

Ω
(p1 − up3)

T
M = 0

(p2 − vp3)
T
M = 0

(22)

and then, in matrix form:
∑

(p1 − up3)
T

(p2 − vp3)
T

∏
M = 02×1 (23)

Hence, one point gives two homogeneous equations.

Let us consider now m

�
= [u�, v�, 1]

T , the corresponding point of m in the second
image, and let P � be the second perspective projection matrix.
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Being both projection of the same 3D point M, the equations provided by m and
m

� can be stacked:

2

664

(p1 − up3)
T

(p2 − vp3)
T

(p

�
1 − u�p�

3)
T

(p

�
2 − v�p�

3)
T

3

775M = 04×1 (24)

The solution is the null-space of the 4× 4 coefficient matrix, which must then have
rank three, otherwise only the trivial solution M = 0 would be possible. In the
presence of noise this rank condition cannot be fulfilled exactly, so a lest squares
solution is sought, typically via SVD, as in calibration with DLT. In [12] this method
is called “linear-eigen”.

This method generalizes to the case of N > 2 cameras: each one gives two equa-
tions and one ends up with 2N equations in four unknowns.

Triangulation is addressed in more details in [1, 12, 10].
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Levels of description...

The epipolar geometry can be described analytically in several ways, depending on
the amount of the a priori knowledge about the stereo system. We can identify
three general cases.

(i) If both intrinsic and extrinsic camera parameters are known, we can describe
the epipolar geometry in terms of the projection matrices (Equation (20)).

(ii) If only the intrinsic parameters are known, we work in normalized camera coor-
dinates and the epipolar geometry is described by the essential matrix.

(iii) If neither intrinsic nor extrinsic parameters are known the epipolar geometry is
described by the fundamental matrix.
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...and ambiguity in reconstruction.

Likewise, what can be reconstructed (by triangulation) depends on what is known
about the scene and the stereo system. We can identify three cases.

(i) If both the intrinsic and extrinsic camera parameters are known, we can solve
the reconstruction problem unambiguously.

(ii) If only the intrinsic parameters are known, we can estimate the extrinsic param-
eters and solve the reconstruction problem up to an unknown scale factor (+
a rigid transformation that correspond to the arbitrariness in fixing the world
reference frame). In other words, R can be estimated completely, and t up to
a scale factor.

(iii) If neither intrinsic nor extrinsic parameters are known, i.e., the only information
available are pixel correspondences, we can still solve the reconstruction problem
but only up to an unknown, global projective transformation of the world. This
ambiguity w may be reduced if additional information is supplied on the cameras
or the scene (see Sec .5).
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4.3 The calibrated case

Suppose that a set of image correspondences m

i
� ↔ m

i
r are given. It is assumed

that these correspondences come from a set of 3-D points Mi, which are unknown.

The intrinsic parameters are known, i.e. the cameras are calibrated, but the position
and attitude of the cameras are unknown.

The situation – discussed previously – when the intrinsic and extrinsic parameters
are known will be referred to as full calibrated for the sake of clarity.

We will see that the epipolar geometry is described by the essential matrix and
that, starting from the essential matrix, only a reconstruction up to a similarity
transformation (rigid+uniform scale) can be achieved. Such a reconstruction is
referred to as “Euclidean”.
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4.3.1 The Essential Matrix E

As the intrinsic parameters are known, we can switch to normalized camera coordi-

nates: m← K−1
m (please note that this change of notation will hold throughout

this section).

Consider a pair of cameras P� and Pr. Without loss of generality, we can fix the
world reference frame onto the first camera, hence:

P� = [I|0] and Pr = [R|t]. (25)

With this choice, the unknown extrinsic parameters have been made explicit.

If we substitute these two particular instances of the camera projection matrices in
Equation (20), we get

ζrmr = t + ζ�Rm�; (26)

in other words, the point mr lies on the line through the points t and Rm�. In
homogeneous coordinates, this can be written as follows: �14

m

T
r (t×Rm�) = 0, (27)

(20) 
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as the homogeneous line through two points is expressed as their cross product, and
a dot product of a point and a line is zero if the point lies on the line.

The cross product of two vectors can be written as a product of a skew-symmetric
matrix and a vector. Equation (27) can therefore be equivalently written as

m

T
r [t]×Rm� = 0, (28)

where [t]× is the skew-symmetric matrix of the vector t. Let us define the essential

matrix E:
E , [t]×R. (29)

In summary, the relationship between the corresponding image points m� and mr

in normalized camera coordinates is the bilinear form:

m

T
r Em� = 0. (30)

E encodes only information on the rigid displacement between cameras. It has five
degrees of freedom: a 3-D rotation and a 3-D translation direction.

E is singular, since det[t]× = 0, and it is a homogeneous quantity.
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4.3.2 Reconstruction up to a Similarity

If a sufficient number of point correspondences m

i
� ↔ m

i
r is given, we can use

Equation (30) to compute the unknown matrix E (see Sec. 4.4.2).

The reconstruction is achieved starting from the essential matrix, which contains –
entangled – the unknown extrinsic parameters.

Unlike the fundamental matrix, the only property of which is to have rank two, the
essential matrix is characterised by the following theorem [15].

Theorem 4.1 A real 3 × 3 matrix E can be factorised as product of a nonzero

skew-symmetric matrix and a rotation matrix if and only if E has two identical

singular values and a zero singular value.
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The rotation R and translation t are then used to instantiate a camera pair as
in Equation (25), and this camera pair is subsequently used to reconstruct the
structure of the scene by triangulation.

The rigid displacement ambiguity arises from the arbitrary choice of the world refer-
ence frame, whereas the scale ambiguity derives from the fact that t can be scaled
arbitrarily in Equation (29) and one would get the same essential matrix (E is
defined up to a scale factor).

Therefore translation can be recovered from E only up to an unknown scale factor
which is inherited by the reconstruction. �15

This is also known as depth-speed ambiguity (in a context where points are moving
and camera is stationary): a large motion of a distant point and a small motion of
a nearby point produces the same motion in the image.



Andrea Fusiello ICVSS -  Calabria, 2013 

4.4 The weakly calibrated case

Suppose that a set of image correspondences m

i
� ↔ m

i
r are given. It is assumed

that these correspondences come from a set of 3-D points Mi, which are unknown.

Similarly, the position, attitude and calibration of the cameras are not known.

This situation is usually referred to as weak calibration, and we will see that the
epipolar geometry is described by the fundamental matrix and the scene may be
reconstructed up to a projective ambiguity.
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4.4.1 The Fundamental Matrix F

The fundamental matrix can be derived in a similar way to the essential matrix.
All camera parameters are assumed unknown; we write therefore a more general
version of Equation (25):

P� = K�[I|0] and Pr = Kr[R|t]. (33)

Inserting these two projection matrices into Equation (20), we get

ζrmr = er + ζ�KrRK−1
� m� with er = Krt, (34)

which states that point mr lies on the line through er and KrRK−1
� m�. As in the

case of the essential matrix, this can be written in homogeneous coordinates as:

m

T
r [er]×KrRK−1

� m� = 0. (35)

The matrix
F = [er]×KrRK−1

� (36)

is the fundamental matrix F , giving the relationship between the corresponding
image points in pixel coordinates.
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Therefore, the bilinear form that links corresponding points writes:

m

T
r Fm� = 0. (37)

F is the algebraic representation of the epipolar geometry in the least information
case. It is a 3 × 3, rank-two homogeneous matrix. It has only seven degrees of
freedom since it is defined up to a scale and its determinant is zero. Notice that
F is completely defined by pixel correspondences only (the intrinsic parameters are
not needed).

For any point m� in the left image, the corresponding epipolar line lr in the right
image can be expressed as

lr = Fm�. (38)

Similarly, the epipolar line l� in the left image for the point mr in the right image
can be expressed as

l� = FT
mr. (39)
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The left epipole e� is the right null-vector of the fundamental matrix and the right
epipole is the left null-vector of the fundamental matrix:

Fe� = 0 (40)

e

T
r F = 0 (41)

One can see from the derivation that the essential and fundamental matrices are
related through the camera calibration matrices K� and Kr:

F = K−T
r EK−1

� . (42)

Consider a camera pair. Using the fact that if F maps points in the left image to
epipolar lines in the right image, then FT maps points in the right image to epipolar
lines in the left image, Equation (34) gives: �10

ζrF
T
mr = ζ�(e� ×m�). (43)

This is another way of writing the epipolar constraint: the epipolar line of mr

(FT
mr) is the line containing its corresponding point (m�) and the epipole in the

left image (e�).
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4.4.2 Estimating F: the eight-point algorithm

If a number of point correspondences m

i
� ↔m

i
r is given, we can use Equation (37)

to compute the unknown matrix F .

We need to convert Equation (37) from its bilinear form to a form that matches
the null-space problem. To this end we use again the vec operator, as in the DLT
algorithm:

m

T
r Fm� = 0 ⇐⇒ vec(m

T
r Fm�) = 0 ⇐⇒ (m

T
r ⊗m

T
� ) vec(F ) = 0.

Each point correspondence gives rise to one linear equation in the unknown entries
of F . From a set of n point correspondences, we obtain a n× 9 coefficient matrix
A by stacking up one equation for each correspondence.

In general A will have rank 8 and the solution is the 1-dimensional right null-space
of A.
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The fundamental matrix F is computed by solving the resulting linear system of
equations, for n ≥ 8.

If the data are not exact and more than 8 points are used, the rank of A will be 9
and a least-squares solution is sought.

The least-squares solution for vec(F ) is the singular vector corresponding to the
smallest singular value of A.

This method does not explicitly enforce F to be singular, so it must be done a

posteriori.

Replace F by F
�
such that det F

�
= 0, by forcing to zero the least singular value.

It can be shown that F
�
is the closest singular matrix to F in Frobenius norm.

Geometrically, the singularity constraint ensures that the epipolar lines meet in a
common epipole.
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4.4.3 Reconstruction up to a Projective Transformation

The reconstruction task is to find the camera matrices P� and Pr, as well as the
3-D points Mi such that

m

i
� = P�M

i and m

i
r = PrM

i, ∀i (44)

If T is any 4 × 4 invertible matrix, representing a collineation of P3, then replac-
ing points M

i by TM

i and matrices P� and Pr by P�T
−1 and PrT

−1 does not
change the image points m

i
�. This shows that, if nothing is known but the image

points, the structure M

i and the cameras can be determined only up to a projective
transformation.

The procedure for reconstruction follows the previous one. Given the weak cali-
bration assumption, the fundamental matrix can be computed (using the algorithm
described in Section 4.4.1), and from a (non-unique) factorization of F of the form

F = [er]×A (45)

two camera matrices P� and Pr:

P� = [I|0] and Pr = [A|er], (46)



Andrea Fusiello ICVSS -  Calabria, 2013 

can be created in such a way that they yield the fundamental matrix F , as can
be easily verified. The position in space of the points M

i is then obtained by
triangulation.

The matrix A in the factorization of F can be set to A = −[er]×F (this is called

the epipolar projection matrix [17]). �08

Unlike the essential matrix, F does not admit a unique factorization, whence the
projective ambiguity follows.

Indeed, for any A satisfying Equation (45), also A+erx
T for any vector x, satisfies

Equation (45).

More in general, any homography induced by a plane can be taken as the A matrix.
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4.5 More on calibration

Calibration problems can be cast as determining the transformation between two
reference frames. Depending on the nature of the available measures and where the
reference frames are attached we have four calibration or orientation problems1:

Relative orientation is the problem of determining the position and attitude of
one perspective camera with respect to another camera from correspondences
between points in 2-D images (See. Sec. 4.3.2).

Absolute orientation is the problem of aligning two sets of points, whose 3-D lo-
cations have been measured (or reconstructed) in two different reference frames.

Exterior orientation is the problem of determining the position and attitude of
a perspective camera from correspondences between 3-D points and their 2-D
images.

Interior orientation is the problem of determining the (affine) transformation
from normalized camera coordinates to pixel coordinates, i.e., the intrinsic pa-
rameters of the camera.

1

this terminology comes from Photogrammetry.
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4.5.1 Absolute orientation (with scaling)

Given two sets of 3-D points X

i and Y

i, related by2

X

i
= s(RY

i
+ t) for all i = 1 . . . N (47)

we are required to find the rotation matrix R, the vector t and the scalar s.

Summing these equations for all i and dividing by N shows that the translation is
found with:

t =

1

s

√
1

N

NX

i=1

X

i

!
−R

√
1

N

NX

i=1

Y

i

!

Combining this with Eq. (47) gives

¯

X

i
= sR ¯

Y

i

where ¯

X

i
= X

i − 1
N

PN
i=1 X

i and ¯

Y

i
= Y

i − 1
N

PN
i=1 Y

i.

Because the rotation matrix does not change the length of the vectors, we can
immediately solve for the scale from || ¯

X

i|| = s|| ¯

Y

i||.
2

Please note the change of notation: points are represented by Cartesian (non-homogeneous) coordinates.
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We are left with the problem of estimating the unknown rotation between two sets
of points.

Let ¯X be the 3×N matrix formed by stacking the points ¯

X

i side by side and ¯Y be
the matrix formed likewise by stacking the scaled points s ¯

Y

i.In presence of noise,
we would like to minimize the sum of the square of the errors, or

NX

i=1

|| ¯

X

i − sR ¯

Y

i||2 = || ¯X −R ¯Y ||2F

where || · ||F is the Frobenius norm.

This problem is known as the Orthogonal Procrustes Problem and the solution is
given by [16]

R = V

2

4
1 0 0

0 1 0

0 0 det(V UT )

3

5UT

where UDV T = ¯Y ¯XT is the SVD of the 3× 3 matrix ¯Y ¯XT .
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4.5.2 Exterior orientation

Exterior orientation (also called Perspective n-Points camera pose) is a problem
that appears repeatedly in computer vision, but in context different from 3-D re-
construction, such as visual servoing and augmented reality.

Given a number of point correspondences m

i ↔ M

i and the intrinsic camera
parameters K, we are required to find a rotation matrix R and a translation vector
t (which specify attitude and position of the camera) such that:

ζ iK−1
m

i
= [R|t]Mi

= (R ˜

M

i
+ t) for all i. (48)

One could immediately solve this problem by doing camera resection with DLT in
normalized camera coordinates. The algorithm is linear, but it does not enforces
the orthonormality constraints on the rotation matrix.

Instead, we present here the linear method proposed by Fiore [6]. He first recovers
the unknown depths ζ i, and then observes that what is left is an absolute orientation
problem, whose solution yields a rotation matrix which is inherently orthonormal.
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In order to recover the depths, let’s write Eq. (48) in matrix form:

K−1
£
ζ1

m

1, ζ2
m

2, . . . ζn
m

n
§

| {z }
W

= [R|t]
£
M

1, M

2, . . . M

n
§

| {z }
M

. (49)

Let r = rank M . Take its SVD: M = UDV T and let V2 be a matrix composed
by the last n− r columns of V , which spans the null-space of M . Then, MV2 =

03×(n−r), and also
K−1WV2 = 03×(n−r) (50)

By taking vec on both sides we get:

(V T
2 ⊗K−1

) vec(W ) = 0. (51)

Let us observe that:

vec(W ) =

2

664

ζ1
m

1

ζ1
m

2

...
ζn

m

n

3

775 =

2

4
m

1
0 . . . 0

. . .
0 0 . . . m

n

3

5

| {z }
D

2

4
ζ1

...
ζn

3

5

| {z }
ζ

(52)
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Hence °
(V T

2 ⊗K−1
)D

¢
ζ = 0. (53)

From the last equation the depths ζ can be recovered (up to a scale factor) by
solving a null-space problem.

The size of the coefficients matrix is 3(n − r) × n, and in order to determine a
one-parameter family of solutions, it must have rank n−1, hence 3(n−r) ≥ n−1.

Therefore, at least n ≥ (3r − 1)/2 points are needed. If points are in general
position, 6 are sufficient, but if they are on a plane, only 4 suffices.

Now that the left side of Eq. (48) is known, up to a scale factor, we are left with
an absolute orientation (with scale) problem:

ζ iK−1
m

i
= s(R ˜

M

i
+ t) for all i. (54)

which we solve using the algorithm of Sec. 4.5.1. As a result, the rotation matrix
estimate is orthonormal by construction.
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5 Autocalibration

The aim of autocalibration is to compute the intrinsic parameters, starting from
weakly calibrated cameras.

More in general, the task is to recover metric properties of camera and/or scene,
i.e., to compute a Euclidean reconstruction.

There are two classes of methods:

1. Direct: solve directly for the intrinsic parameters.

2. Stratified: first obtain a projective reconstruction and then transform it to a
Euclidean reconstruction (in some cases an affine reconstruction is obtained in
between).

The reader is referred to [7] for a review of autocalibration, and to [19, 26, 14, 21,
20, 9] for classical and recent work on the subject.
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5.1 Counting argument

Consider m cameras. The difference between the d.o.f. of the multifocal geometry
(e.g. 7 for two views) and the d.o.f. of the rigid displacements (e.g. 5 for two
views) is the number of independent constraints available for the computation of
the intrinsic parameters (e.g. 2 for two views).

The multifocal geometry of m cameras (represented by the m-focal tensor) has
11m − 15 d.o.f. Proof: a set of m cameras have 11m d.o.f., but they determine
the m-focal geometry up to a collineation of P3, which has 15 d.o.f. The net sum
is 11m− 15 d.o.f.

On the other hand, the rigid displacements in m views are described by 6m − 7

parameters: 3(m− 1) for rotations, 2(m− 1) for translations, and m− 2 ratios of
translation norms.

Thus, m weakly calibrated views give 5m − 8 constraints available for computing

the intrinsic parameters.
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Let us suppose that mk parameters are known and mc parameters are constant.

The first view introduces 5 − mk unknowns. Every view but the first introduces
5−mk −mc unknowns.

Therefore, the unknown intrinsic parameters can be computed provided that

5m− 8 ≥ (m− 1)(5−mk −mc) + 5−mk. (55)

For example, if the intrinsic parameters are constant, three views are sufficient to
recover them.

If one parameter (usually the skew) is known and the other parameters are varying,
at least eight views are needed.
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5.2 A simple direct method

If we consider two views, two independent constraints are available for the compu-
tation of the intrinsic parameters from the fundamental matrix.

Indeed, F has 7 d.o.f, whereas E, which encode the rigid displacement, has only
5 d.o.f. There must be two additional constraint that E must satisfy, with respect
to F .

In particular, these constraints stem from the equality of two singular values of
the essential matrix (Theorem 4.1) which can be decomposed in two independent
polynomial equations.

Let Fij be the (known) fundamental matrix relating views i and j, and let Ki and
Kj be the respective (unknown) intrinsic parameter matrices.

The idea of [20] is that the matrix

Eij = KT
i FijKj, (56)

satisfies the constraints of Theorem 4.1 only if the intrinsic parameters are correct.
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5.3 Stratification

We have seen that a projective reconstruction can be computed starting from points
correspondences only (weak calibration), without any knowledge of the camera
matrices.

Projective reconstruction differs from Euclidean by an unknown projective trans-
formation in the 3-D projective space, which can be seen as a suitable change of
basis.

Starting from a projective reconstruction the problem is computing the transforma-
tion that “straighten” it, i.e., that upgrades it to an Euclidean reconstruction.

To this purpose the problem is stratified [17, 4] into different representations: de-
pending on the amount of information and the constraints available, it can be
analyzed at a projective, affine, or Euclidean level.
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Let us assume that a projective reconstruction is available, that is a sequence Pi of
m + 1 camera matrices and a set M

j of n + 1 3-D points such that:

m

j
i � PiM

j i = 0 . . . m, j = 0 . . . n. (58)

Without loss of generality, we can assume that camera matrices writes:

P0 = [I | 0]; Pi = [Ai | ei] for i = 1 . . .m (59)

We are looking for the a 4× 4 non-singular matrix T that upgrades the projective
reconstruction to Euclidean:

m

j
i � PiT|{z}

PE
i

T−1
M

j| {z }
structure

, (60)

PE
i = PiT is the Euclidean camera,

We can choose the first Euclidean-calibrated camera to be PE
0 = K0[I | 0], thereby

fixing arbitrarily the world reference frame:

PE
0 = K0[I | 0] PE

i = Ki[Ri | ti] for i = 1 . . . m. (61)
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With this choice, it is easy to see that PE
0 = P0T implies

T =

∑
K0 0

r

T s

∏
(62)

where r

T is a 3-D vector and s is a scale factor, which we will arbitrarily set to 1
(the Euclidean reconstruction is up to a scale factor).

Under this parametrization T is clearly non singular, and it depends on eight pa-
rameters.

Substituting (62) in PE
i � PiT gives

PE
i = [KiRi | Kiti] � PiT = [AiK0 + eir

T | ei] for i > 0 (63)

and, considering only the leftmost 3× 3 submatrix, gives

KiRi � AiK0 + eir
T

= Pi

∑
K0

r

T

∏
(64)
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Rotation can be eliminated using RRT
= I , leaving:

KiK
T
i � Pi

∑
K0K

T
0 K0r

r

TKT
0 r

T
r

∏
PT

i (65)

This is the basic equation for autocalibration (called absolute quadric constraint),
relating the unknowns Ki (i = 0 . . . m) and r to the available data Pi (obtained
from weakly calibrated images).

Note that (65) contains five equations, because the matrices of both members are
symmetric, and the homogeneity reduces the number of equations with one.



Geometric toolbox review 

!  Resection:  

!  given image to 3D correspondences, compute P 

!  Exterior orientation:  

!  given image to 3D correspondences, compute (R,t) 

!  Absolute orientation: 

!  Given 3D-3D correspondences, compute similarity or projectivity linking 
the two sets 

!  Relative orientation 

!  Essential matrix E can be computed from image correspondences + 
camera parameters K 

!  Rigid motion (R,t) can be extracted from E 

Andrea Fusiello ICVSS -  Calabria, 2013 



Geometric toolbox review 

!  Triangulation (or intersection) 

!  Given P (>=2) and image correspondences, compute 3D points. 

!  Autocalibration. 

!   Recover K from image correspondences. 

!  Bundle adjustment.  

!  Optimize for P and 3D points simultaneously. 

ICVSS -  Calabria, 2013 Andrea Fusiello 
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6 Dealing with errors

In this section we will approach estimation problems from a more “practical” point
of view.

First, we will discuss how the presence of errors in the data affects our estimates
and describe the countermeasures that must be taken to obtain a good estimate.

Errors can be small (the match is correct but the position of the point has a limited
accuracy), and these are usually modeled as Gaussian noise, or large (the match is
wrong) and these are called outliers.

Since they have a different nature, they will be treated differently.
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6.1 Pre-conditioning

In presence of noise (or errors) on input data, the accuracy of the solution of a
linear system depends crucially on the condition number of the system. The lower
the condition number, the less the input error gets amplified (the system is more
stable).

As [11] pointed out, it is crucial for linear algorithms (as the DLT algorithm) that
input data is properly pre-conditioned, by a suitable coordinate change (origin and
scale): points are translated so that their centroid is at the origin and are scaled so
that their average distance from the origin is

√
2.

This improves the condition number of the linear system that is being solved.

Apart from improved accuracy, this procedure also provides invariance under simi-
larity transformations in the image plane.
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6.2 Algebraic vs geometric error

Measured data (i.e., image or world point positions) is noisy.

Usually, to counteract the effect of noise, we use more equations than necessary
and solve with least-squares.

What is actually being minimized by least squares?

In a typical null-space problem formulation Ax = 0 (like the DLT algorithm) the
quantity that is being minimized is the square of the residual ||Ax||.

In general, if ||Ax|| can be regarded as a distance between the geometrical entities
involved (points, lines, planes, etc..), than what is being minimized is a geometric
error, otherwise (when the error lacks a good geometrical interpretation) it is called
an algebraic error.

All the linear algorithm (DLT and others) we have seen so far minimize an algebraic
error. Actually, there is no justification in minimizing an algebraic error apart from
the ease of implementation, as it results in a linear problem.
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Usually, the minimization of a geometric error is a non-linear problem, that admit
only iterative solutions and requires a starting point.

So, why should we prefer to minimize a geometric error? Because:

• The quantity being minimized has a meaning

• The solution is more stable

• The solution is invariant under Euclidean transforms

Often linear solution based on algebraic residuals are used as a starting point for a
non-linear minimization of a geometric cost function, which “gives the solution a
final polish” [10].
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Geometric error for resection

The goal is to estimate the camera matrix, given a number of correspondences
(m

j,Mj
) j = 1 . . . n

The geometric error associated to a camera estimate ˆP is the distance between the
measured image point m

j and the re-projected point ˆPiM
j:

min

P̂

X

j

d(

ˆPM

j,mj
)

2 (75)

where d() is the Euclidean distance between the homogeneous points.

The DLT solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton)
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Geometric error for triangulation

The goal is to estimate the 3-D coordinates of a point M, given its projection mi

and the camera matrix Pi for every view i = 1 . . .m.

The geometric error associated to a point estimate ˆ

M in the i-th view is the distance
between the measured image point mi and the re-projected point Pi

ˆ

M:

min

M̂

X

i

d(Pi
ˆ

M,mi)
2 (76)

where d() is the Euclidean distance between the homogeneous points.

The linear solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).



Andrea Fusiello ICVSS -  Calabria, 2013 

Geometric error for F

The goal is to estimate F given a a number of point correspondences m

i
� ↔m

i
r.

The geometric error associated to an estimate ˆF is given by the distance of conju-
gate points from conjugate lines (note the symmetry):

min

F̂

X

j

d(

ˆFm

j
�,m

j
r)

2
+ d(

ˆFT
m

j
r,m

j
�)

2 (77)

where d() here is the Euclidean distance between a line and a point (in homogeneous
coordinates).

The eight-point solution is used as a starting point for the iterative minimization
(e.g. Gauss-Newton).

Note that F must be suitably parameterized, as it has only seven d.o.f. �11
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Geometric error for H

The goal is to estimate H given a a number of point correspondences m

i
� ↔m

i
r.

The geometric error associated to an estimate ˆH is given by the symmetric distance
between a point and its transformed conjugate:

min

Ĥ

X

j

d(

ˆHm

j
�,m

j
r)

2
+ d(

ˆH−1
m

j
r,m

j
�)

2 (78)

where d() is the Euclidean distance between the homogeneous points. This also
called the symmetric transfer error.

The linear solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).
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Bundle adjustment (reconstruction)

If measurements are noisy, the projection equation will not be satisfied exactly by
the reconstructed camera matrices and structure.

We wish to minimize the image distance between the re-projected point ˆPi
ˆMj and

measured image points mj
i for every view in which the 3-D point appears:

min

P̂i,M̂j

X

i,j

d(

ˆPi
ˆMj,mj

i )
2 (125)

where d() is the Euclidean distance between the homogeneous points.

If the reconstruction is projective ˆPi is parameterized with its 11 d.o.f. whereas if
the reconstruction is Euclidean, one should use ˆPi =

ˆKi[
ˆRi|ˆti] where the rotation

has to be suitably parameterized with 3 d.o.f.
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As m and n increase, this becomes a very large minimization problem.

However the Jacobian of the residual has a specific structure that can be exploited
to gain efficiency.

Primary structure: on the row corresponding ro mj
i , only the two elements corre-

sponding to camera ˆPi and to point ˆMj are nonzero.

Secondary strcture: not all points are seen in all views (data-dependent).

See [53] for a review and a more detailed discussion on bundle adjustment.
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6.3 Robust estimation

Up to this point, we have assumed that the only source of error affecting corre-
spondences is in the measurements of point’s position. This is a small-scale noise
that gets averaged out with least-squares.

In practice, we can be presented with mismatched points, which are outliers to
the noise distribution (i.e., rogue measurements following a different, unmodelled,
distribution).

These outliers can severely disturb least-squares estimation (even a single outlier
can totally offset the least-squares estimation, as illustrated in Fig. 6.)
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Fig. 6. A single outlier can severely offset the least-squares estimate (red line), whereas the robust
estimate (green line) is unaffected.

The goal of robust estimation is to be insensitive to outliers (or at least to reduce
sensitivity).
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M-estimators

Least squares:
min

θ

X

i

(ri/σi)
2 (80)

where θ are the regression coefficient (what is being estimated) and ri is the residual.
M-estimators are based on the idea of replacing the squared residuals by another
function of the residual, yielding

min

θ

X

i

ρ(ri/σi) (81)

ρ is a symmetric function with a unique minimum at zero that grows sub-quadratically,
called loss function.

Differentiating with respect to θ yields:
X

i

1

σi
ρ�

(ri/σi)
dri

dθ
= 0 (82)

The M-estimate is obtained by solving this system of non-linear equations.



Andrea Fusiello ICVSS -  Calabria, 2013 

RANSAC

Given a model that requires a minimum of p data points to instantiate its free
parameters θ, and a set of data points S containing outliers:

1. Randomly select a subset of p points of S and instantiate the model from this
subset

2. Determine the set Si of data points that are within an error tolerance t of the
model. Si is the consensus set of the sample.

3. If the size of Si is greater than a threshold T , re-estimate the model (possibly
using least-squares) using Si (the set of inliers) and terminate.

4. If the size of Si is less than T , repeat from step 1.

5. Terminate after N trials and choose the largest consensus set found so far.
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Three parameters need to be specified: t, T and N .

Both T and N are linked to the (unknown) fraction of outliers �.

N should be large enough to have a high probability of selecting at least one sample
containing all inliers. The probability to randomly select p inliers in N trials is:

P = 1− (1− (1− �)p)N (83)

By requiring that P must be near 1, N can be solved for given values of p and �.

T should be equal to the expected number of inliers, which is given (in fraction) by
(1− �).

At each iteration, the largest consensus set found so fare gives a lower bound on
the fraction of inliers, or, equivalently, an upper bound on the number of outliers.
This can be used to adaptively adjust the number of trials N .

t is determined empirically, but in some cases it can be related to the probability
that a point under the threshold is actually an inlier [10].
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As pointed out in [25], RANSAC can be viewed as a particular M-estimator.

The objective function that RANSAC maximizes is the number of data points having
absolute residuals smaller that a predefined value t. This may be seen a minimising
a binary loss function that is zero for small (absolute) residuals, and 1 for large
absolute residuals, with a discontinuity at t.

t ri

Fig. 7. RANSAC loss function

By virtue of the prespecified inlier band, RANSAC can fit a model to data corrupted
by substantially more than half outliers. However, if more than 50% of the data are 

ouliers they may conspire to to arrange 
themselves in such a way as to produce a 
smaller total residual than the true inliers.  
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LMedS

Another popular robust estimator is the Least Median of Squares. It is defined by:

min

θ
mediri (84)

It can tolerate up to 50% of outliers, as up to half of the data point can be arbitrarily
far from the “true” estimate without changing the objective function value.

Since the median is not differentiable, a random sampling strategy similar to RANSAC
is adopted. Instead of using the consensus, each sample of size p is scored by the
median of the residuals of all the data points. The model with the least median
(lowest score) is chosen.

A final weighted least-squares fitting is used.

With respect to RANSAC, LMedS can tolerate “only” 50% of outliers, but requires
no setting of thresholds.



Andrea Fusiello ICVSS -  Calabria, 2013 

References

[1] S. Avidan and A. Shashua. Novel view synthesis in tensor space. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1034–1040, 1997.

[2] P. Beardsley, A. Zisserman, and D. Murray. Sequential update of projective and affine structure from motion.
International Journal of Computer Vision, 23(3):235–259, 1997.

[3] B. S. Boufama. The use of homographies for view synthesis. In Proceedings of the International Conference
on Pattern Recognition, pages 563–566, 2000.

[4] Myron Z. Brown, Darius Burschka, and Gregory D. Hager. Advances in computational stereo. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(8):933–1008, August 2003.

[5] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press, Cambridge, MA,
1993.

[6] O. Faugeras. Stratification of 3-D vision: projective, affine, and metric representations. Journal of the Optical
Society of America A, 12(3):465–484, 1994.

[7] O. Faugeras and Q-T Luong. The geometry of multiple images. MIT Press, 2001.

[8] O. D. Faugeras and L. Robert. What can two images tell us about a third one? In Proceedings of the European
Conference on Computer Vision, pages 485–492, Stockholm, 1994.

[9] Paul D. Fiore. Efficient linear solution of exterior orientation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(2):140–148, 2001.



Andrea Fusiello ICVSS -  Calabria, 2013 

[10] A. Fusiello. Uncalibrated Euclidean reconstruction: A review. Image and Vision Computing, 18(6-7):555–563,
May 2000.

[11] A. Fusiello, A. Benedetti, M. Farenzena, and A. Busti. Globally convergent autocalibration using interval
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(12):1633–1638, December 2004.

[12] A. Fusiello, E. Trucco, and A. Verri. A compact algorithm for rectification of stereo pairs. Machine Vision and
Applications, 12(1):16–22, 2000.

[13] Andrea Fusiello. A matter of notation: several uses of the kronecker product in computer vision. Submitted
to Pattern Recognition Letters.

[14] R. Hartley, E. Hayman, L. de Agapito, and I. Reid. Camera calibration and the search for infinity. In Proceedings
of the International Conference on Computer Vision, 1999.

[15] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2nd
edition, 2003.

[16] R. I. Hartley. In defence of the 8-point algorithm. In Proceedings of the International Conference on Computer
Vision, pages 1064–1071, Washington, DC, USA, 1995. IEEE Computer Society.

[17] R. I. Hartley and P. Sturm. Triangulation. Computer Vision and Image Understanding, 68(2):146–157,
November 1997.

[18] R.I. Hartley. Theory and practice of projective rectification. International Journal of Computer Vision, 35(2):1–
16, November 1999.

[19] A. Heyden. Projective structure and motion from image sequences using subspace methods. In Scandinavian
Conference on Image Analysis, pages 963–968, 1997.



Andrea Fusiello ICVSS -  Calabria, 2013 

[20] A. Heyden. A common framework for multiple-view tensors. In Proceedings of the European Conference on
Computer Vision, Freiburg, Germany,, 1998.

[21] A. Heyden. Tutorial on multiple view geometry. In conjunction with ICPR00, September 2000.
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[23] A. Heyden and K. Åström. Minimal conditions on intrinsic parameters for Euclidean reconstruction. In
Proceedings of the Asian Conference on Computer Vision, page XXX, Hong Kong, 1998.

[24] T.S. Huang and O.D. Faugeras. Some properties of the E matrix in two-view motion estimation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(12):1310–1312, December 1989.
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[26] F. Isgrò, E. Trucco, P. Kauff, and O. Schreer. 3-D image processing in the future of immersive media. IEEE
Transactions on Circuits and Systems for Video Technology, 14(3):288–303, 2004.

[27] S. Ivekovic, A. Fusiello, and E. Trucco. Fundamentals of multiple view geometry. In O. Schreer, P. Kauff, and
T. Sikora, editors, 3D Videocommunication. Algorithms, concepts and real-time systems in human centered
communication, chapter 6. John Wiley & Sons, 2005. ISBN: 0-470-02271-X.

[28] K. Kanatani. Geometric Computation for Machine Vision. Oxford University Press, 1993.

[29] S. Laveau and O. Faugeras. 3-D scene representation as a collection of images and foundamental matrices.
Technical Report 2205, INRIA, Institut National de Recherche en Informatique et an Automatique, February
1994.



Andrea Fusiello ICVSS -  Calabria, 2013 

[30] Jed Lengyel. The convergence of graphics and vision. IEEE Computer, 31(7):46–53, July 1998.

[31] D. Liebowitz and A. Zisserman. Metric rectification for perspective images of planes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 482–488, 1998.

[32] C. Loop and Z. Zhang. Computing rectifying homographies for stereo vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages I:125–131, Fort Collins, CO, June 23-25 1999.

[33] Q.-T. Luong and T. Viéville. Canonical representations for the geometries of multiple projective views. Com-
puter Vision and Image Understanding, 64(2):193–229, 1996.

[34] Yi Ma, Stefano Soatto, Jana Kosecka, and Shankar S. Sastry. An Invitation to 3-D Vision. Springer, November
2003.

[35] J. R. Magnus and H. Neudecker. ”Matrix Differential Calculus with Applications in Statistics and Economet-
rics”. John Wiley & Sons, revised edition, 1999.

[36] S. Mahamud, M. Hebert, Y. Omori, and J. Ponce. Provably-convergent iterative methods for projective
structure from motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages I:1018–1025, 2001.

[37] S. J. Maybank and O. Faugeras. A theory of self-calibration of a moving camera. International Journal of
Computer Vision, 8(2):123–151, 1992.

[38] P.R.S. Mendonça and R. Cipolla. A simple technique for self-calibration. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages I:500–505, 1999.

[39] J. Oliensis. Fast and accurate self-calibration. In Proceedings of the International Conference on Computer
Vision, 1999.



Andrea Fusiello ICVSS -  Calabria, 2013 

[40] M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric reconstruction in spite of varying and
unknown internal camera parameters. In Proceedings of the International Conference on Computer Vision,
pages 90–95, Bombay, 1998.

[41] M. Pollefeys, F. Verbiest, and L. Van Gool. Surviving dominant planes in uncalibrated structure and motion
recovery. In Proceedings of the European Conference on Computer Vision, pages 837–851, 2002.
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Structure from motion (in practice) 
Where we describe a working pipeline 
 
Credits to  R. Toldo (3Dflow s.r.l.) , R. Gherardi and M.Farenzena (Univ. Verona) 
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Piazza delle erbe, Udine ~200 views 
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Courtesy of 3Dflow s.r.l. 



Approaches to structure from motion 

!  Resection-intersection cycle (use 2-views tools, incremental) 

!  Global rotation first (2-views tools, starts from a network of E 
matrices, solve for R of each camera then compute t) [Govindu 11] 

!  Multiple-view geometry: generalizes 2-views but needs all points 
seen in all views, in principle)  [Sturm, Triggs 96] 
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Sequential structure from motion 
!  1. Match or track points over the whole image sequence  

!  2. Initialize the structure and motion recovery 
!  (a) Select two views that are suited for initialization;  
!  (b) Solve relative orientation and set up the initial frame; 

!  (c) Reconstruct the initial structure (intersection) 

!  3. For every additional view, 
!  (a) Infer matches to the existing 3D structure,  
!  (b) Compute the camera orientation (exterior orientation)  

using a robust algorithm  
!  (c) Refine the existing structure (intersection); 
!  (d) Initialize new structure points (intersection); 

!  (e) Refine the structure and motion through BA. 
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R
esection-intersection cycle 



Sequence… who said sequence? 

!  We assumed images come in a sequence, but usually they are 
unordered.  

!  We need to: 

!  Discover putative matching images without doing the actual match 

!  Based on image content 

!  Sequence the images (after matching): 

!  Define the seed pair (critical!) 

!  Define next view  to process based on match 
 

Andrea Fusiello ICVSS -  Calabria, 2013 



Pre-processing summary 

!  Keypoint extraction 

!  Matching - broad phase: select O(n) views to be matched  

!  Matching – narrow phase: match keypoints between pair 

!  Sequencing: determine processing order (can be on-line) 
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Keypoint extraction 

!  Detector: scale-space extrema of the scale-normalized Laplacian  
[T. Lindeberg, 1994].  SIFT is an variation on this theme. 

!  Eg. , we used a 8-level scale-space and in each level the Laplacian is 
computed by convolution (in CUDA) with a 3 × 3 kernel.  

!  Key: multiresolution pyramid based on derivative operator (LoG, DoG, 
DoH). 

!  Descriptor: 128- dimensional radial descriptor based on the 
accumulated response of steerable derivative filters (similar to GLOH 
and SIFT).  

!  Key: derivatives, directions histogram,  

!  Important details: subpixel estimation in scale-space, votes with radial 
weights and interpolation. 
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Which images are to be matched? 

!  Recover the image graph, i.e., the graph that tells which image 
overlaps (or can be matched) with which other.  

!  For each key-point descriptor its approximate k nearest neighbours 
in feature space are computed (via ANN) 

!  A 2D histogram is then built:  
increment bin(i,j) whenever a  
keypoint of image i has a keypoint 
of image j in its k-neighbourhood; 
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Which images are to be matched? 

!  Consider the complete weighted graph G = (V,E) where V are views 
and the weighted adjacency matrix is the 2D histogram. 

!  This graph  has |V | = O(n2). The objective is to extract a subgraph G’ 
with a number of edges that is linear in n.  

!  Lowe’s approach: every image is connected (node) to the m (=8) 
images that have the greatest number of keypoints matches in 
common . This creates a graph with mn = O(n) edges,  being m 
constant.  

!  When the number of images is large, however, this tends to create 
cliques of very similar images with weak inter-cliques connections  
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Which images are to be matched? 

!  In graph theory, a graph is k-edge- connected if it remains 
connected whenever fewer than k edges are removed.  

!  The graph produced by the original approach has a low k, while one 
would like to have k as high as possible (ideally k = m).  

!  We devised a strategy that builds a subgraph G’ of G which is m-
edge-connected by construction.  

!  Build the maximum spanning tree of G: (has n � 1 edges);  

!  remove them from G and add them to G’  

!  repeat m times.  

!  The resulting graph has (n-1)m = O(n) edges and is m-edge-
connected 
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Matching and model selection 

!  Match SIFT keypoints (images connected in the graph) 

!  Compute F and H with RANSAC 

!  Non linear refinement 

!  Compute GRIC-F and GRIC-H 



Tracks 

!  From pairwise matches to tracks 

!  a lot of bookeeping… 



Sequencing 

!  Initial pair selection. 

!   Score based on:  

!  # features in common 

!  god image coverage 

!  good geometry (F vs H)  

!  Next view:  

!  # visible points of the partial  
reconstruction 

Many equivalent heuristics can be devised! 



Sequential Structure from Motion 
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Sequential 
paradigm 

"  Incremental addition, one view at a time 

"  Always grows a single reconstruction 



Hierachical Structure from Motion 
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Hierachical 
paradigm 

"  Leaves correspond to images 

"  Internal nodes are partial reconstructions 

"  Root node is the final reconstruction 

Andrea Fusiello 

!  Easily parallelizable 
!  No initial pair dependency 
!  Less drift, error containement 
!  Provably lower complexity 
!  Graceful failure 



Tree construction 

!  Agglomerative, hierarchical clustering problem 

!  Simple (complete, average, ward’s) linkage 

!  Distance needed: 

!  Common matches 

!  Good coverage 

!  Pairs only:  
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Tree traversal 
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view w/ view 
cluster w/ view 
cluster w/ cluster 



Improving on hierachical SfM 

!  Local bundle adjustment 

!  Balanced tree 

!  Autocalibration 

!  Intrinsics locking 
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Local BA 

!  Consider two clusters A and B, where |A| < |B|.  

!  Merge by transforming A onto B. 

!  The bundle adjustment involves all the views of A and the subset  
B’ of views of B that share some tracks with A  

!   As a consequence, the points not visible by views in A�B’ are 
excluded from bundle adjustment. 
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Balancing the tree 

!  Hiarchical SfM is less computational demanding than the 
sequential one by one order of magnitude (best case) 

!  Complexity analysis assumed the tree perfectly balanced 

!  Worst case is equivalent to the sequential paradigm 

!  Can we obtain a balanced tree, approximating best complexity? 
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Balancing the tree 

!  Agglomerative clustering: closest first 

!  Balanced tree: smallest first 

!  Idea: prefer smaller clusters in a distance neighbourhood of size l 
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increasing distance 

l = 3 l = 2 



Balancing the tree 

!  Points and cameras unchanged 

!  Running time more than halved 
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l  



Practical autocalibration 

!  Given a guess on the intrinsic parameters of two cameras 
estimate (in closed form)  a consistent upgrading collineation. 
 This yields an estimate of all cameras but the first.  

!  Score the intrinsic parameters of these n-1 cameras based on the 
likelihood of skew, aspect ratio and principal point.  

!  Iterate through all possible (finite) combinations of intrinsic 
parameters looking for the best upgrading homography 
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Estimation of the plane at infinity 

!  Given a projective reconstruction in canonical form: 

 

!  The Euclidean perspective projection matrices are: 

!  Hence R2 is the sum of a 3 by 3 matrix and a rank 1 term: 
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Estimation of the plane at infinity 

!  There always exist R* such that: 

!  From v the upgrading collineatin H is obtained 
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Scoring rectifying homographies 

!  We score each sample (f1,f2) with a cost function based on the 
expectation of intrinsic parameters of the transformed cameras 

!  Plots shows very clear valleys, aggregated cost has a unambiguous 
minima (even from 2 images!) 
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Exaustive search 

!  Space of internal parameters is inherently bounded by the 
finiteness of the acquisition devices 

 

 

!  Approximating (u0,v0) with the image centre, the search space is 
reduced to a bounded region of R2 
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0.3 (W + H) < f < 3 (W + H) 
sk ≈ 0 
ar ≈ 1 

W / 2 - 0.1 W < u0 < W / 2 + 0.1 W 
H / 2 - 0.1 H < v0 < H / 2 + 0.1 H  



Intrinsics locking 

!  Bundle adjustment optimizes internal camera parameters 

!  Idea: lock the intrinsic parameters after stabilization (threshold on 
cluster size or height) 
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Things we learnt 

!  Use good features: SIFT are the best ones. Scale-normalized Laplacian  
works as good as; Descriptors based on i) directional histograms of ii) 
derivatives work as good as BUT careful tuning is crucial. 

!  Be selective on accepting matches, reject when uncertain (you will be 
able to recover uncertain point later). The use of tracks consistency is 
crucial (not just pairwise matching) 

!  Error containment: BA is great but has local convergence. Since you 
never know when you are in the convergence basin you should always 
keep drift under control:  refine geometric objects with proper 
geometric error minimization and do BA as often as possible. 

!  Autocalibration: it works, however better results when subsets of 
images with the same internal parameters are singled out.  
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References (on hierarchical SfM) 

!  R. Gherardi, M. Farenzena, A. Fusiello. Improving the Efficiency of 
Hierarchical Structure-and-Motion.  CVPR 2010, San Francisco, 
USA, June 13-18, 2010. 

!  M. Farenzena, A. Fusiello, R. Gherardi. Structure-and-motion 
pipeline on a hierarchical cluster tree. In 3DIM’09, ICCV 
Workshops, pages 1489–1496, Kyoto, Japan, October 3-4 2009. 

!  M. Farenzena, A. Fusiello, R. Gherardi, and R. Toldo. Towards 
unsupervised reconstruction of architectural models. In VMV 
2008, pages 41–50, Konstanz, DE, October 8-10 2008. IOS 
Press 

!  Code (author: R. Toldo) is available at:  samantha.3dflow.net  
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