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1 Introduction

This notes introduces the basic geometric concepts of multiple-view computer vision.
The focus is on geometric models of perspective cameras, and the constraints and
properties such models generate when multiple cameras observe the same 3-D scene.

Geometric vision is an important and well-studied part of computer vision. A wealth of
useful results has been achieved in the last 15 years and has been reported in compre-
hensive monographies, e.g., [8, 21, 10], a sign of maturity for a research subject.

It is worth reminding the reader that geometry is an important but not the only impor-
tant aspect of computer vision, and in particular of multi-view vision. The information
brought by each image pixel is twofold: its position and its colour (or brightness, for a
monochrome image). Ultimately, each computer vision system must start with bright-
ness values, and, to smaller or greater depth, link such values to the 3-D world.



Fig. 1. Example of reconstruction from images. Original images (top row) and reconstructed model

(bottom row).



2 Projective Geometry

The physical space is the Euclidean 3-D space E3, a real 3-dimensional affine space
endowed with the inner product.

Our ambient space is the projective 3-D space P3, obtained by completing E3 with a
projective plane, known as plane at infinity Π∞. In this ideal plane lie the intersections
of the planes parallel in E3.

The projective (or homogeneous) coordinates of a point in P3 are 4-tuples defined up
to a scale factor. We write

M ' (x, y, z, t) (1)

where ' indicates equality to within a multiplicative factor.

The affine points are those of P3 which do not belong to Π∞. Their projective coordi-
nates are of the form (x, y, z, 1), where (x, y, z) are the usual Cartesian coordinates.

Π∞ is defined by its equation t = 0.



The linear transformations of a projective space into itself are called collineations or
homographies. Any collineation of P3 is represented by a generic 4 × 4 invertible
matrix.

Affine transformations are the subgroup of collineations of P3 that preserves the plane
at infinity (i.e., parallelism).

Similarity transformations are the subgroup of affine transformations that leave invariant
a very special curve, the absolute conic, which lies in the plane at infinity and whose
equation is:

x2 + y2 + z2 = 0 = t (2)

Similarity transformations preserves the angles.



The space is therefore stratified into more and more specialized structures:

• projective

• affine (knowing the plane at infinity)

• Euclidean (knowing the absolute conic)

The stratification reflects the amount of knowledge that we possess about the scene
and the sensor.



3 Pin-hole Camera Geometry

The pin-hole (or stenopeic) camera is described by its centre C (also known as centre
of projection) and the image plane.

The distance of the image plane from C is the focal length f (or principal distance).

The line from the camera centre perpendicular to the image plane is called the principal
axis of the camera.

The plane parallel to the image plane containing the centre of projection is called the
principal plane or focal plane of the camera.

The relationship between the 3-D coordinates of a scene point and the coordinates of
its projection onto the image plane is described by the central or perspective projection.



Fig. 2. Pin-hole camera geometry. The left figure illustrates the projection of the point M on the image

plane by drawing the line through the camera centre C and the point to be projected. The right figure

illustrates the same situation in the Y Z plane, showing the similar triangles used to compute the position

of the projected point m in the image plane.



A 3-D point is projected onto the image plane with the line containing the point and
the centre of projection (see Figure 2).

Let the centre of projection be the origin of a Cartesian coordinate system wherein the
z-axis is the principal axis.

By similar triangles it is readily seen that the 3-D point (x, y, z)T is mapped to the
point (fx/z, fy/z)T on the image plane.



3.1 The Camera Projection Matrix

If the world and image points are represented by homogeneous vectors, then perspective
projection can be expressed in terms of matrix multiplication as fx

fy
z

 =

 f 0 0 0
0 f 0 0
0 0 1 0



x
y
z
1

 (3)

The matrix describing the mapping is called camera projection matrix P .

Equation (3) can be written simply as:

zm = PM (4)

where M = (x, y, z, 1)T are the homogeneous coordinates of the 3-D point and m =
(fx/z, fy/z, 1)T are the homogeneous coordinates of the image point.

The projection matrix P in Eq. (3) represents the simplest possible case, as it only
contains information about the focal length f .



General Camera: Bottom Up

The above formulation assumes a special choice of world coordinate system and im-
age coordinate system. It can be generalized by introducing suitable changes of the
coordinates systems.

Changing coordinates in space is equivalent to multiplying the matrix P to the right by
a 4× 4 matrix:

G =

[
R t
0 1

]
(5)

G is composed by a rotation matrix R and a translation vector t. It describes the posi-
tion and angular attitude of the camera with respect to an external (world) coordinate
system. It depends on six parameters, called exterior parameters.

The rows of R are unit vectors that, together with the centre of projection, define the
camera reference frame, expressed in world coordinates.



Changing coordinates in the image plane is equivalent to multiplying the matrix P to
the left by a 3× 3 matrix (affine transform):

K =

 f γf u0

0 rf v0

0 0 1

 (6)

K is the camera calibration matrix; it encodes the transformation in the image plane
from the so-called normalized camera coordinates to pixel coordinates.

It depends on the so-called interior parameters:

• focal length f (in pixel),

• principal point (or image centre) coordinates uo, vo (in pixel),

• aspect ratio r (usually ≈ 1),

• skew γ, modelling non-rectangular photosensor grid (usually ≈ 0).



Two hidden parameters are the width (sx) and height (sy) of the pixel footprint on the
camera photosensor (in mm). They turn up in the conversion of the focal length from
mm to pixels, and they define the aspect ratio: r = sx/sy

1.

The focal length f is related to the horizontal field of view by: fov = 2 tan w
2f where w

is the image width (in pixels).

Thus the camera matrix, in general, is the product of three matrices:

P = K[I|0]G = K[R|t] (7)

In general, the projection equation writes:

ζm = PM (8)

where ζ is the distance of M from the focal plane of the camera (this will be shown
after), and m = (u, v, 1)T .

Note that, except for a very special choice of the world reference frame, this “depth”
does not coincide with the third coordinate of M.

1Please note that if γ 6= 0 then r contains also the angle θ between the axes.



General Camera: Top Down

If P describes a camera, also λP for any 0 6= λ ∈ R describes the same camera, since
these give the same image point for each scene point.

In this case we can also write:
m ' PM (9)

where ' means “equal up to a scale factor.”

In general, the camera projection matrix is a 3 × 4 full-rank matrix and, being homo-
geneous, it has 11 degrees of freedom.

Using QR factorization, it can be shown that any 3 × 4 full rank matrix P can be
factorized as:

P = λK[R|t], (10)

(λ is recovered from K(3, 3) = 1).



3.2 Camera Anatomy

Projection Centre

The camera projection centre C is the only point for which the projection is not defined,
i.e.:

PC = P

(
C̃
1

)
= 0 (11)

where C̃ is a 3-D vector containing the Cartesian (non-homogeneous) coordinates of
the centre of projection.

After solving for C̃ we obtain:
C̃ = −P−1

1:3P4 (12)

where the matrix P is represented by the block form: P = [P1:3|P4] (the subscript
denotes a range of columns).



Depth of a Point

We observe that:

ζm = PM = PM− PC = P (M−C) = P1:3(M̃− C̃). (13)

In particular, plugging Eq. (10), the third component of this equation is

ζ = λrT3 (M̃− C̃)

where rT3 is the third row of the rotation matrix R, which correspond to the versor of
the principal axis.

If λ = 1, ζ is the projection of the vector (M̃ − C̃) onto the principal axis, i.e., the
depth of M.



Ray of a point

The projection can be geometrically modelled by a ray through the centre of projection
and the point in space that is being projected onto the image plane (see Fig. 2).

The ray of an image point m is the locus of points in space that projects onto m.

It can be described as a parametric line passing through the camera projection centre
C and a special point (at infinity) that projects onto m:

M =

(
−P−1

1:3P4

1

)
+ ζ

(
P−1

1:3 m
0

)
, ζ ∈ R. (14)

If λ = 1 the parameter ζ in Eq. (14) represents the the depth of the point M. ©01

Knowing the interior parameters is equivalent to being able to trace the ray of any
image point (with P = [K|0]).



3.3 Camera Calibration (or Resection)

A number of point correspondences mi ↔Mi is given, and we are required to find a
camera matrix P such that

mi ' PMi for all i. (15)

The equation can be rewritten in terms of the cross product as

mi × PMi = 0. (16)

This form will enable a simple a simple linear solution for P to be derived. Using the
properties of the Kronecker product (⊗) and the vec operator [44], we derive:

mi × PMi = 0 ⇐⇒ [mi]×PMi = 0 ⇐⇒ vec([mi]×PMi) = 0 ⇐⇒
⇐⇒ (MT

i ⊗ [mi]×) vecP = 0

These are three equations in 12 unknown.



Although there are three equations, only two of them are linearly independent: Indeed,
the rank of (MT

i ⊗ [mi]×) is two because it is the Kronecker product of a rank-1 matrix
by a a rank-2 matrix.

From a set of n point correspondences, we obtain a 2n × 12 coefficient matrix A by
stacking up two equations for each correspondence.

In general A will have rank 11 (provided that the points are not all coplanar) and the
solution is the 1-dimensional right null-space of A.

The projection matrix P is computed by solving the resulting linear system of equations,
for n ≥ 6.

If the data are not exact (noise is generally present) the rank of A will be 12 and a
least-squares solution is sought.

The least-squares solution for vec(P ) is the singular vector corresponding to the smallest
singular value of A.

This is called the Direct Linear Transform (DLT) algorithm [21].



3.4 Exterior Orientation

Exterior orientation2 is a problem that appears repeatedly in computer vision, also in
context different from 3-D reconstruction, such as visual servoing and augmented reality.

Given a number of point correspondences mi ↔Mi and the interior camera parameters
K, we are required to find a rotation matrix R and a translation vector t (which specify
attitude and position of the camera) such that:

ζ iK−1mi = [R|t]Mi = (RM̃i + t) for all i. (17)

One could immediately solve this problem by doing camera resection with DLT in nor-
malized camera coordinates. The algorithm is linear, but it does not enforces the
orthonormality constraints on the rotation matrix.

Instead, we present here the linear method proposed by Fiore [12], that first recovers
the depths ζ i and then solves an absolute orientation problem.

A related method which minimize a geometric residual is [17].

2This terminology comes from Photogrammetry (and from German), where “orientation” means angular attitude and position [37].



The first step is to recover the unknown depths ζ i. Let us write Eq. (17) in matrix
form:

K−1
[
ζ1m1, ζ2m2, . . . ζnmn

]︸ ︷︷ ︸
W

= [R|t]
[
M1, M2, . . . Mn

]︸ ︷︷ ︸
M

. (18)

Let r = rankM . Take its SVD: M = UDV T and let V2 be a matrix composed by the
last n − r columns of V , which spans the null-space of M . Then, MV2 = 03×(n−r),
and also

K−1WV2 = 03×(n−r) (19)

By taking vec on both sides we get:

(V T
2 ⊗K−1) vec(W ) = 0. (20)

Let us observe that:

vec(W ) =


ζ1m1

ζ1m2

...
ζnmn

 =

m1 0 . . . 0
. . .

0 0 . . . mn


︸ ︷︷ ︸

D

ζ1

...
ζn


︸ ︷︷ ︸
ζ

(21)



Hence (
(V T

2 ⊗K−1)D
)
ζ = 0. (22)

From the last equation the depths ζ can be recovered (up to a scale factor) by solving
a null-space problem.

The size of the coefficients matrix is 3(n − r) × n, and in order to determine a one-
parameter family of solutions, it must have rank n− 1, hence 3(n− r) ≥ n− 1.

Therefore, at least n ≥ (3r− 1)/2 points are needed. If points are in general position,
6 are sufficient, but if they are on a plane, only 4 suffices.

Now that the left side of Eq. (17) is known, up to a scale factor, we are left with an
absolute orientation (with scale) problem:

ζ iK−1mi = s(RM̃i + t) for all i. (23)

which we solve using the algorithm of Sec. 3.4.1. As a result, the rotation matrix
estimate is orthonormal by construction.



3.4.1 Absolute Orientation (with scaling)

Given two sets of 3-D points Xi and Yi, related by3

Xi = s(RYi + t) for all i = 1 . . . N (24)

we are required to find the rotation R, the translation t and the scale s.

Summing these equations for all i and dividing by N shows that the translation is found
with:

t =
1

s

(
1

N

N∑
i=1

Xi

)
−R

(
1

N

N∑
i=1

Yi

)
Combining this with Eq. (24) gives

X̄i = sRȲi

where X̄i = Xi − 1
N

∑N
i=1 Xi and Ȳi = Yi − 1

N

∑N
i=1 Yi.

Because the rotation matrix does not change the length of the vectors, we can imme-
diately solve for the scale from ||X̄i|| = s||Ȳi||.

3Please note the change of notation: points are represented by Cartesian (non-homogeneous) coordinates.



We are left with the problem of estimating the unknown rotation between two sets of
points.

Let X̄ be the 3 × N matrix formed by stacking the points X̄i side by side and Ȳ be
the matrix formed likewise by stacking the scaled points sȲi.In presence of noise, we
would like to minimize the sum of the square of the errors, or

N∑
i=1

||X̄i − sRȲi||2 = ||X̄ −RȲ ||2F

where || · ||F is the Frobenius norm.

This problem is known as the Orthogonal Procrustes Problem4 and the solution is given
by [36]

R = V

1 0 0
0 1 0
0 0 det(V UT )

UT

where UDV T = Ȳ X̄T is the SVD of the 3× 3 matrix Ȳ X̄T .

4This is related (with Ȳ = I) to the polar decomposition of a matrix, i.e, the problem finding the closest rotation matrix to a given matrix X̄.



4 Two-View Geometry

The two-view geometry is the interior geometry of two different perspective views of
the same 3-D scene (see Figure 3). It is usually referred to as epipolar geometry.

Fig. 3. Two perspective views of the same 3-D scene with conjugate points highlighted



The two perspective views may be acquired simultaneously, for example in a stereo
rig, or sequentially, for example by a moving camera. From the geometric viewpoint,
the two situations are equivalent, provided that that the scene do not change between
successive snapshots.

Most 3-D scene points must be visible in both views simultaneously. This is not true
in case of occlusions, i.e., points visible only in one camera. Any unoccluded 3-D scene
point M = (x, y, z, 1)T is projected to the left and right view as m` = (u`, v`, 1)T and
mr = (ur, vr, 1)T , respectively (see Figure 3).

Image points m` and mr are called corresponding points (or conjugate points) as they
represent projections of the same 3-D scene point M.

The knowledge of image correspondences enables scene reconstruction from images.

The concept of correspondence is a cornerstone of multiple-view vision. In this notes we
assume known correspondences, and explore their use in geometric algorithms. Tech-
niques for computing dense correspondences are surveyed in [53, 7].



We will refer to the camera projection matrix of the left view as P` and of the right
view as Pr. The 3-D point M is then imaged as (25) in the left view, and (26) in the
right view:

ζ`m` = P`M (25)

ζrmr = PrM. (26)

Geometrically, the position of the image point m` in the left image plane I` can be
found by drawing its ray through the left camera projection centre C` and the scene
point M. The ray intersects the left image plane I` at m`.

Similarly, the ray connecting Cr and M intersects the right image plane Ir at mr.

The relationship between image points m` and mr is given by the epipolar geometry,
described in Section 4.1.



4.1 Epipolar Geometry

The epipolar geometry describes the geometric relationship between two perspective
views of the same 3-D scene.

The key finding, discussed below, is that corresponding image points must lie on par-
ticular image lines, which can be computed without information on the calibration of
the cameras.

This implies that, given a point in one image, one can search the corresponding point
in the other along a line and not in a 2-D region, a significant reduction in complexity.

The correspondence search can be further simplified by rectification. Rectification de-
termines a transformation of each image such that pairs of conjugate epipolar lines
become collinear and parallel to one of the image axes, usually the horizontal one.
The correspondence search is then reduced to a 1D search along the trivially identified
scanline. We will postpone a more detailed description of rectification to Section 8.2.



Fig. 4. The epipolar geometry and epipolar constraint.



Any 3-D point M and the camera projection centres C` and Cr define a plane that is
called epipolar plane.

The projections of the point M, image points m` and mr, also lie in the epipolar plane
since they lie on the rays connecting the corresponding camera projection centre and
point M.

The conjugate epipolar lines, l` and lr, are the intersections of the epipolar plane with
the image planes. The line connecting the camera projection centres (C`,Cr) is called
the baseline.

The baseline intersects each image plane in a point called epipole.

By construction, the left epipole e` is the image of the right camera projection centre
Cr in the left image plane. Similarly, the right epipole er is the image of the left camera
projection centre C` in the right image plane.

All epipolar lines in the left image go through e` and all epipolar lines in the right image
go through er.



The Epipolar Constraint.

An epipolar plane is completely defined by the camera projection centres and one image
point.

Therefore, given a point m`, one can determine the epipolar line in the right image on
which the corresponding point, mr, must lie.

Fig. 5. Left and right images with epipolar lines.



The equation of the epipolar line can be derived from the equation describing the
ray of a point. As we mentioned before, the right epipolar line corresponding to m`

geometrically represents the projection (Eq. (8)) of the ray of m` (Eq. (14)) onto the
right image plane:

ζrmr = PrM = Pr

(
−P−1

`1:3
P`4

1

)
︸ ︷︷ ︸

er

+ ζ`Pr

(
P−1
`1:3

m`

0

)
(27)

If we now simplify the above equation we obtain the description of the right epipolar
line:

ζrmr = er + ζ`Pr1:3
P−1
`1:3

m`︸ ︷︷ ︸
m′`

(28)

This is the equation of a line through the right epipole er and the image point m′`
which represents the projection onto the right image plane of the point at infinity of
the ray of m`.

The equation for the left epipolar line is obtained in a similar way.



4.2 Triangulation (Intersection)

Given the camera matrices P` and Pr, let m` and mr be two conjugate points, hence
satisfying the epipolar constraint. It follows the two rays back-projected from image
points m` and mr lie in a common epipolar plane, therefore they will intersect at some
point. This point is the 3-D scene point M.

Analytically, the reconstructed 3-D point M can be found by solving for parameter ζ`
or ζr in Eq. (28). Let us rewrite it as:

er = ζrmr − ζ`m′` (29)

The depth ζr and ζ` are unknown. Both encode the position of M in space, as ζr is
the depth of M wrt the right camera and ζ` is the depth of M wrt the left camera.

The three points mr, er and m′` are known and are collinear, so we can solve for ζ` (or
ζr) using the following closed form expressions [51]:

ζ` =
(er ×mr) · (mr ×m′`)

||mr ×m′`||2
(30)



The reconstructed point M can then be computed by inserting the value ζ into Equation
(14).

In reality, camera parameters and image locations are known only approximately. The
back-projected rays therefore do not actually intersect in space. It can be shown,
however, that Formula (30) solve Eq. (29) in a least squares sense [36].

Triangulation can be solved in many other different ways (the topic addressed in more
details in [3, 23, 21]). Here we will cast it as a null-space problem, which fits well with
the homogeneous representaton of the solution M.

Let us write the projection equations for the two conjugate points using the cross
product, as in Eq.(16):

m` × P`M = 0 and mr × PrM = 0 (31)

Hence, one point in one camera gives three homogeneous equations, two of which are
independent.



The equations provided by m` and mr can be stacked, thereby obtaining a homogeneous
linear system of six equations in four unknown (including the last component of M):[

[m`]×P`
[mr]×Pr

]
M = 0 (32)

The solution is the null-space of the 6 × 4 coefficient matrix, which must then have
rank three, otherwise only the trivial solution M = 0 would be possible.

In the presence of noise this rank condition cannot be fulfilled exactly, so a lest squares
solution is sought, typically via SVD, as in calibration with DLT. In [23] this method is
called “linear-eigen”.

This method generalizes to the case of N > 2 cameras: each one gives three equations
(two independent) and one ends up with 3N equations in four unknowns.



Levels of Description...

The epipolar geometry can be described analytically in several ways, depending on the
amount of the a priori knowledge about the stereo system. We can identify three general
cases.

(i) If both interior and exterior camera parameters are known, we can describe the
epipolar geometry in terms of the projection matrices (Equation (28)).

(ii) If only the interior parameters are known, we work in normalized camera coordinates
and the epipolar geometry is described by the essential matrix.

(iii) If neither interior nor exterior parameters are known the epipolar geometry is de-
scribed by the fundamental matrix.



...and Ambiguity in the Reconstruction.

Likewise, what can be reconstructed (by triangulation) depends on what is known about
the scene and the stereo system. We can identify three cases.

(i) If both the interior and exterior camera parameters are known, we can solve the
reconstruction problem unambiguously.

(ii) If only the interior parameters are known, we can estimate the exterior parameters
and solve the reconstruction problem up to an unknown scale factor (+ a rigid
transformation that correspond to the arbitrariness in fixing the world reference
frame). In other words, R can be estimated completely, and t up to a scale factor.

(iii) If neither interior nor exterior parameters are known, i.e., the only information avail-
able are pixel correspondences, we can still solve the reconstruction problem but only
up to an unknown, global projective transformation of the world. This ambiguity w
may be reduced if additional information is supplied on the cameras or the scene
(see Sec .6).



4.3 The Calibrated Case

Suppose that a set of image correspondences mi
` ↔ mi

r are given. It is assumed that
these correspondences come from a set of 3-D points Mi, which are unknown.

The interior parameters are known, i.e. the cameras are calibrated, but the position
and angular attitude of the cameras are unknown.

The situation – discussed previously – when the interior and exterior parameters are
known will be referred to as full calibrated for the sake of clarity.

We will see that the epipolar geometry is described by the essential matrix and that,
starting from the essential matrix, only a reconstruction up to a similarity transforma-
tion (rigid+uniform scale) can be achieved. Such a reconstruction is referred to as
“Euclidean”.



4.3.1 The Essential Matrix E

As the interior parameters are known, we can switch to normalized camera coordinates:
m ← K−1m (please note that this change of notation will hold throughout this
section).

Consider a pair of cameras P` and Pr. Without loss of generality, we can fix the world
reference frame onto the first camera, hence:

P` = [I|0] and Pr = [R|t]. (33)

With this choice, the unknown exterior parameters have been made explicit.

If we substitute these two particular instances of the camera projection matrices in
Equation (28), we get

ζrmr = t + ζ`Rm`; (34)

in other words, the point mr lies on the line through the points t and Rm`. In

homogeneous coordinates, this can be written as follows: ©14

mT
r (t×Rm`) = 0, (35)

as the homogeneous line through two points is expressed as their cross product, and a
dot product of a point and a line is zero if the point lies on the line.



The cross product of two vectors can be written as a product of a skew-symmetric
matrix and a vector. Equation (35) can therefore be equivalently written as

mT
r [t]×Rm` = 0, (36)

where [t]× is the skew-symmetric matrix of the vector t. Let us define the essential
matrix E:

E , [t]×R. (37)

In summary, the relationship between the corresponding image points m` and mr in
normalized camera coordinates is the bilinear form:

mT
rEm` = 0. (38)

E encodes only information on the rigid displacement between cameras. It has five
degrees of freedom: a 3-D rotation and a 3-D translation direction.

E is singular, since det[t]× = 0, and it is a homogeneous quantity.



4.3.2 Reconstruction up to a Similarity

If a sufficient number of point correspondences mi
` ↔mi

r is given, we can use Equation
(38) to compute the unknown matrix E (see Sec. 4.4.2).

The reconstruction is achieved starting from the essential matrix, which contains –
entangled – the unknown exterior parameters.

Unlike the fundamental matrix, the only property of which is to have rank two, the
essential matrix is characterized by the following theorem [31].

Theorem 4.1 A real 3 × 3 matrix E can be factorized as product of a nonzero skew-
symmetric matrix and a rotation matrix if and only if E has two identical singular values
and a zero singular value.



Proof. Let E = SR where R is a rotation matrix and S is skew-symmetric. Let
S = [t]× where ||t|| = 1. Then

EET = SRRTST = SST = I − ttT

Let U the orthogonal matrix such that Ut = [0, 0, 1]T . Then

UEETUT = U(I − ttT )UT = I − U t tTUT = I − [0, 0, 1]T [0, 0, 1] =

1 0 0
0 1 0
0 0 0

 .
The elements of the diagonal matrix are the eigenvalues of EET i.e., the singular values
of E. This demonstrates one implication.

Let us now give a constructive proof of the converse. Let E = UDV T be the SVD of
E, with D = diag(1, 1, 0) (with no loss of generality, since E is defined up to a scale
factor) and U and V orthogonal. The key observation is that

D =

1 0 0
0 1 0
0 0 0

 =

0 −1 0
1 0 0
0 0 0

 0 1 0
−1 0 0
0 0 1

 ∆
= S ′R′



where S ′ is skew symmetric and R′ a rotation. Hence

E=UDV T=US ′R′V T=det(UV T )(US ′UT )︸ ︷︷ ︸
S

det(UV T )(UR′V T )︸ ︷︷ ︸
R

Q.E.D.

This factorization is not unique. Because of homogeneity of E, we can change its
sign, either by changing the sign of S ′ or by taking the transpose of R′ (because
S ′R

′T = −D). In total, we have four possible factorizations given by:

S = U(±S ′)UT (39)

R = det(UV T )UR′V T or R = det(UV T )UR′TV T , (40)

The choice between the four displacements is determined by the requirement that the
3-D points must lie in front of both cameras, i.e., their depth must be positive.



The rotation R and translation t are then used to instantiate a camera pair as in
Equation (33), and this camera pair is subsequently used to reconstruct the structure
of the scene by triangulation.

The rigid displacement ambiguity arises from the arbitrary choice of the world reference
frame, whereas the scale ambiguity derives from the fact that t can be scaled arbitrarily
in Equation (37) and one would get the same essential matrix (E is defined up to a
scale factor).

Therefore translation can be recovered from E only up to an unknown scale factor

which is inherited by the reconstruction. ©15

This is also known as depth-speed ambiguity (in a context where points are moving
and camera is stationary): a large motion of a distant point and a small motion of a
nearby point produces the same motion in the image.

The problem of determining the position and attitude of one perspective camera with
respect to another camera from image points correspondences is also called relative
orientation



4.4 The Weakly Calibrated Case

Suppose that a set of image correspondences mi
` ↔ mi

r are given. It is assumed that
these correspondences come from a set of 3-D points Mi, which are unknown.

Similarly, the position, angular attitude and calibration of the cameras are not known.

This situation is usually referred to as weak calibration, and we will see that the epipolar
geometry is described by the fundamental matrix and the scene may be reconstructed
up to a projective ambiguity.



4.4.1 The Fundamental Matrix F

The fundamental matrix can be derived in a similar way to the essential matrix. All
camera parameters are assumed unknown; we write therefore a more general version of
Equation (33):

P` = K`[I|0] and Pr = Kr[R|t]. (41)

Inserting these two projection matrices into Equation (28), we get

ζrmr = er + ζ`KrRK
−1
` m` with er = Krt, (42)

which states that point mr lies on the line through er and KrRK
−1
` m`. As in the case

of the essential matrix, this can be written in homogeneous coordinates as:

mT
r [er]×KrRK

−1
` m` = 0. (43)

The matrix
F = [er]×KrRK

−1
` (44)

is the fundamental matrix F , giving the relationship between the corresponding image
points in pixel coordinates.

Therefore, the bilinear form that links corresponding points writes:

mT
r Fm` = 0. (45)



F is the algebraic representation of the epipolar geometry in the least information case,
F is completely defined by pixel correspondences only (the interior parameters are not
needed).

It is a 3× 3, rank-two homogeneous matrix. It has only seven degrees of freedom since
it is defined up to a scale and its determinant is zero.

For any point m` in the left image, the corresponding epipolar line lr in the right image
can be expressed as

lr = Fm`. (46)

Similarly, the epipolar line l` in the left image for the point mr in the right image can
be expressed as

l` = F Tmr. (47)



The left epipole e` is the right null-vector of the fundamental matrix and the right
epipole is the left null-vector of the fundamental matrix:

Fe` = 0, eTr F = 0 (48)

One can see from the derivation that the essential and fundamental matrices are related
through the camera calibration matrices K` and Kr:

F = K−Tr EK−1
` . (49)

Consider a camera pair. Using the fact that if F maps points in the left image to
epipolar lines in the right image, then F T maps points in the right image to epipolar

lines in the left image, Equation (42) gives: ©10

ζrF
Tmr = ζ`(e` ×m`). (50)

This is another way of writing the epipolar constraint: the epipolar line of mr (F Tmr)
is the line containing its corresponding point (m`) and the epipole in the left image
(e`).



4.4.2 Estimating F: the Eight-point Algorithm

If a number of point correspondences mi
` ↔mi

r is given, we can use Equation (45) to
compute the unknown matrix F .

We need to convert Equation (45) from its bilinear form to a form that matches the
null-space problem. To this end we use again the vec operator, as in the DLT algorithm:

mT
r Fm` = 0 ⇐⇒ vec(mT

r Fm`) = 0 ⇐⇒ (mT
` ⊗mT

r ) vec(F ) = 0.

Each point correspondence gives rise to one linear equation in the unknown entries of
F . From a set of n point correspondences, we obtain a n× 9 coefficient matrix A by
stacking up one equation for each correspondence.

In general A will have rank 8 and the solution is the 1-dimensional right null-space of
A.



The fundamental matrix F is computed by solving the resulting linear system of equa-
tions, for n ≥ 8.

If the data are not exact and more than 8 points are used, the rank of A will be 9 and
a least-squares solution is sought.

The least-squares solution for vec(F ) is the singular vector corresponding to the smallest
singular value of A.

This method does not explicitly enforce F to be singular, so it must be done a posteriori.

Replace F by F
′

such that detF
′
= 0, by forcing to zero the least singular value.

It can be shown that F
′

is the closest singular matrix to F in Frobenius norm.

Geometrically, the singularity constraint ensures that the epipolar lines meet in a com-
mon epipole.



4.4.3 Reconstruction up to a Projective Transformation

The reconstruction task is to find the camera matrices P` and Pr, as well as the 3-D
points Mi such that

mi
` = P`M

i and mi
r = PrM

i, ∀i (51)

If T is any 4×4 invertible matrix, representing a collineation of P3, then replacing points
Mi by TMi and matrices P` and Pr by P`T

−1 and PrT
−1 does not change the image

points mi
`. This shows that, if nothing is known but the image points, the structure

Mi and the cameras can be determined only up to a projective transformation.

The procedure for reconstruction follows the previous one. Given the weak calibration
assumption, the fundamental matrix can be computed (using the algorithm described
in Section 4.4.1), and from a (non-unique) factorization of F of the form

F = [er]×A (52)



two camera matrices P` and Pr:

P` = [I|0] and Pr = [A|er], (53)

can be created in such a way that they yield the fundamental matrix F , as can be easily
verified. The position in space of the points Mi is then obtained by triangulation.

The matrix A in the factorization of F can be set to A = −[er]×F (this is called the

epipolar projection matrix [42]). ©08

Unlike the essential matrix, F does not admit a unique factorization, whence the pro-
jective ambiguity follows.

Indeed, for any A satisfying Equation (52), also A + erx
T for any vector x, satisfies

Equation (52).

More in general, any homography induced by a plane can be taken as the A matrix (see
Sec. 4.5)



4.5 Planes and Collineations

When observing a plane, we obtain an interesting specialization of the epipolar geometry
of two views.

First, let us establish that the map between a world plane and its perspective image is
a collineation of P2. The easiest way to see it is to choose the world coordinate system
such that the plane has equation z = 0.

Expanding the projection equation gives:

ζ

 uv
1

 = P


x
y
0
1

 = [P1|P2|P4]

 xy
1

 . (54)

Points are mapped from the world plane to the image plane with a 3× 3 (non-singular)
matrix, which represents a collineation of P2.
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Fig. 6. The map between a world plane Π

and a perspective image is a collineation.
Fig. 7. The plane Π induces a collineation

between two views.



Next, we prove that: images of points on a plane are related to corresponding image
points in a second view by a collineation (or homography) of P2.

We have one collineation from Π to the left image plane, and another collineation from
Π to the right image plane. By composing the inverse of the first with the second, we
define a collineation from the image plane of the left camera to the image plane of the
right camera.

The plane Π induces a collineation HΠ between the views, which transfers points from
one view to the other:

mr ' HΠm` if M ∈ Π. (55)

where HΠ is a 3× 3 non-singular matrix, and ' means “equal up to a scale factor”.



Even though a collineation of P2 depends upon eight parameters, there is no contradic-
tion with the fact that a plane depends upon three parameters. Indeed, the collineation
induced by a plane must be compatible with the epipolar geometry, i.e.:

(HΠm`)
TFm` = 0 (56)

for all points m`. This implies that the matrix HT
ΠF is antisymmetric:

HT
ΠF + F THΠ = 03×3 (57)

and this imposes six homogeneous constraints on HΠ.

A collineation H that satisfies Eq. (57) is said to be compatible with F .

A collineation H is compatible with F if and only if ©03

F ' [er]×H. (58)

From the latter – provided that Π does not contain Cr – follows that: ©04

HΠe` ' er (59)



4.5.1 Homography Induced by a Plane

If the 3-D point M lies on a plane Π with equation nTM = d, Eq. (42) can be

specialized, obtaining (after elaborating): ©05

ζr
ζ`

mr = Kr

(
R +

t nT

d

)
K−1
` m`. (60)

Therefore, the collineation induced by Π is given by:

HΠ = Kr

(
R +

t nT

d

)
K−1
` (61)

This is a three-parameter family of collineations, parameterized by n/d.



4.5.2 Infinite Homography

The infinite homography H∞ is the collineation induced by the plane at infinity; it maps
vanishing points to vanishing points (a vanishing point is where all the lines that shares
the same direction meet).

It can be derived by letting d→∞ in (60), thereby obtaining:

H∞ = KrRK
−1
` (62)

The infinity homography does not depend on the translation between views.

In other terms, the vanishing points are fixed under camera translation.



4.5.3 Plane-induced Parallax

In general, when points are not on the plane, the homography induced by a plane
generates a virtual parallax. This gives rise to an alternative representation of the
epipolar geometry and scene structure [52, 55].

First, let us rewrite Eq. (42), which links two general conjugate points, as:

ζr
ζ`

mr = H∞m` +
1

ζ`
er, (63)

The mapping from one point to its conjugate can be seen as composed by a transfer

with the infinity homography (H∞m`) plus a parallax correction term (
1

ζ`
er).

Note that if t = 0, then the parallax vanishes. Thus H∞ not only relates points at
infinity when the camera describes a general motion, but it also relates image points of
any depth if the camera rotates about its centre.



We want to generalize this equation to any plane. To this end we substitute

H∞ = HΠ −Kr

(
t nT

d

)
K−1
` (64)

into Eq. (63), obtaining ©06

ζr
ζ`

mr = HΠm` + γer (65)

with γ =

(
a

d ζ`

)
, where a is the distance of M to the plane Π.

When M is on the 3-D plane Π, then mr ' HΠm`. Otherwise there is a residual
displacement, called parallax, which is proportional to γ and oriented along the epipolar
line.

The magnitude parallax depends only on the left view and the plane. It does not depend
on the parameters of the right view.

From Eq. (65) we derive mT
r (er ×HΠm`) = 0, hence

F ' [er]×HΠ (66)
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Fig. 9. Left and right images. The leftmost image is a superposition of the warped left image and the

right image. The reference plane exactly coincide. However, points off the plane (such as the bottle) do

not coincide.



4.5.4 Estimating the Homography

A number of point correspondences mi
r ↔mi

` is given, and we are required to find an
homography matrix H such that

mi
r ' Hmi

` for all i (67)

The equation (we drop the index i for simplicity) can be rewritten in terms of the cross
product as

mr ×Hm` = 0 (68)

As we did before, we exploit the properties of the Kronecker product and the vec
operator to transform this into a null-space problem and then derive a linear solution:

mr ×Hm` = 0 ⇐⇒ [mr]×Hm` = 0 ⇐⇒ vec([mr]×Hm`) = 0

⇐⇒ (mT
` ⊗ [mr]×) vec(H) = 0

These are three equations in nine unknowns.



The rank of the matrix (mT
` ⊗ [mr]×) is two because it is the Kronecker product of

a rank-1 matrix by a a rank-2 matrix. Hence, only two equations out of three are
independent.

From a set of n point correspondences, we obtain a 2n × 9 coefficient matrix A by
stacking up two equations for each correspondence.

In general A will have rank 8 and the solution is the 1-dimensional right null-space of
A.

The projection matrix H is computed by solving the resulting linear system of equations,
for n ≥ 4.

If the data are not exact, and more than 4 points are used, the rank of A will be 9 and
a least-squares solution is sought.

The least-squares solution for vec(HT ) is the singular vector corresponding to the small-
est singular value of A.

This is another embodiment of the DLT algorithm.



4.5.5 Estimating the Epipole

The epipole can be located [61] given the homography HΠ between two views and two
off-plane conjugate pairs m0

` ↔m0
r and m1

` ↔m1
r .

e

Hm

Hm

m
m

l

l

1

0

0

1

r

r

r

Following simple geometric consideration, the epipole is computed as the intersection
between the line containing HΠm0

`,m
0
r and the line containing HΠm1

`,m
1
r:

er ' (HΠm0
` ×m0

r)× (HΠm1
` ×m1

r) (69)

In the projective plane, the line determined by two points is given by their cross product,
as well as the point determined by two lines.



4.5.6 Estimating the Parallax

We are required to compute the magnitude of the parallax γ for a point m` given its
corresponding point mr, the homography HΠ between the two views and the epipole.
To this end we rewrite (65) as:

γer =
ζr
ζ`

mr −HΠm` (70)

and, given that points er, mr and HΠm` are collinear, we solve for γ using:

1

γ
=

(er ×mr) · (mr ×HΠm`)

||mr ×HΠm`||2
(71)

Please note that the epipole and the homography can be computed from image mesures
only up to an unknown scale factor. It follows that the magnitude of the parallax as
well is known only up to a scale factor.



4.5.7 Parallax, depth and disparity

Disparity

Consider two identical cameras separated by a translation along a direction perpendicular
to principal axis (w.l.o.g. assume X axis). This is the so called “normal case” for stereo
(see also Sec.8.2).

Since the focal planes coincide then ζi = ζr and the epipole is at infinity: er =[
bf 0 0

]>
, where f is the focal lenght (cfr. Eq. 6), b is the magnitude of the traslation

(in X).

Moreover, since Ki = Kr then m` = m′` hence Eq. (29) simplifies to:[
bf/ζr 0 0

]T
= mr −m` (72)

The difference of the coordinates of conjugate points have only one non-zero component
(horizontal, w.l.o.g.), and this scalar value is called binocular disparity. It is proportional
to the reciprocal of the depth.

Disparity is defined only in the normal case.



Parallax vs depth

Compare equation (71) with (30). If m′` = HΠm` the two equations are the same and
1/γ = ζr .

Inspecting the definition m′` = Pr1:3
P−1
`1:3

m` one can recognize that Pr1:3
P−1
`1:3

= H∞, so
this case corresponds to the special choice of the plane at infinity as the refence plane.

Parallax vs disparity

In addition to fixing HΠ = H∞, let us consider the normal case. Equation (70) can be
simplfied (like we did for Eq. (29)), yielding:

γ
[
1 0 0

]T
= mr −m` (73)

By comparison with Eq. (72) and by the definition of disparity, we conclude that the in
the normal case parallax (w.r.t. H∞) is equal to the disparity.



4.5.8 Applications

Mosaics.

Image mosaicing is the automatic alignment (or registration) of multiple images into
larger aggregates [59]. There are two types of mosaics. In both cases, it turns out that
images are related by homographies, as we discussed previously.

Planar mosaic: result from the registration of different views of a planar scene.

Panoramic mosaic result from the registration of views taken by a camera ro-
tating around its centre (typ. panning). In some cases, in order to cope
with large rotations (> 180 deg), the images are converted to cylindrical
coordinates.



Fig. 10. Planar mosaic with components location shown as white outlines.



Fig. 11. Selected frames from the “Arena” sequence (top) and panoramic mosaic (bottom). Components

location shown as white outlines.



Orthogonal Rectification.

The map between a world plane and its perspective image is an homography. The
world-plane to image-plane homography is fully defined by four points of which we
know the relative position in the world plane. Once this homography is determined,
the image can be back projected (warped) onto the world plane. This is equivalent to
synthesize an image as taken from a fronto-parallel view of the plane. This is known as
orthogonal rectification [40] of a perspective image.

Fig. 12. A perspective image and a ortho-rectified image of the floor plane



How is this possible?

It is useful to think of an image as the intersection of the image plane with the bundle
of rays between points in 3-D space and the centre of projection. We are moving the
image plane while leaving fixed the bundle of rays.

 C

Fig. 13. An image is the intersection of a plane with the bundle of rays between points in 3-D space

and the centre of projection. Any two such images (with the same centre of projection) are related by a

planar projective transformation



5 Multiple View Geometry

In this section we study the relationship that links three or more views of the same 3-D
scene, known in the three-view case as trifocal geometry.

This geometry could be described in terms of fundamental matrices linking pairs of
cameras, but a more compact and elegant description is provided by a suitable trilinear
form, in the same way as the epipolar (bifocal) geometry is described by a bilinear form.

We also discover that three views are all we need, in the sense that additional views do
not allow us to compute anything we could not already compute (Section 5.3).

This section is based on [28, 54]. The epipolar constraints on three views were studied
in [11].



5.1 Trifocal Geometry

Denoting the cameras by 1, 2, 3, there are now three fundamental matrices, F1,2, F1,3,
F2,3, and six epipoles, ei,j, as in Figure 14.
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Fig. 14. Trifocal geometry.



The plane containing the three centres of projection is called the trifocal plane. It
intersects each image plane along a line which contains the two epipoles.

The three fundamental matrices describe completely the trifocal geometry [11].

Writing Eq. (50) for each camera pair (taking the centre of the third camera as the
point M) results in three epipolar constraints:

F3,1e3,2 ' e1,3 × e1,2 F1,2e1,3 ' e2,1 × e2,3 F2,3e2,1 ' e3,2 × e3,1 (74)

Three fundamental matrices include 21 free parameters, less the 3 constraints above;
the trifocal geometry is therefore determined by 18 parameters.

This description of the trifocal geometry fails when the three cameras are collinear, and
the trifocal plane reduces to a line.



Point Transfer

If the trifocal geometry is known, given two conjugate points m1 and m2 in view 1 and
2 respectively, the position of the conjugate point m3 in view 3 is completely determined
(Figure 15).

This allows for point transfer or prediction. Indeed, m3 belongs simultaneously to the
epipolar line of m1 and to the epipolar line of m2, hence:

m3 ' F1,3m1 × F2,3m2 (75)

13F

F
23

1 2 3

Fig. 15. Point transfer using epipolar constraints between three views.



View synthesis [38, 2, 4], exploit the trifocal geometry to generate novel (synthetic)
images starting from two reference views. A related topic is image-based rendering
[39, 67, 34].

Epipolar transfer fails when the three rays are coplanar, because the epipolar lines are
coincident. This happens:

• if the 3-D point is on the trifocal plane;

• if the three cameras centres are collinear (independently of the position of 3-D
point).

These deficiencies motivate the introduction of an independent trifocal constraint.

In addition, by generalizing the case of two views, one might conjecture that the trifocal
geometry should be represented by a trilinear form in the coordinates of three conjugate
points.



5.2 The Trifocal Constraint

Consider a point M in space projecting to m1, m2 and m3 in three cameras

P1 = [I|0], P2 = [A2|e2,1], and P3 = [A3|e3,1]. (76)

Let us write the epipolar line of m1 in the other two views (using Eq. (28)):

ζ2m2 = e2,1 + ζ1A2m1 (77)

ζ3m3 = e3,1 + ζ1A3m1. (78)

where ζi varies in R and correspond to the depth of the 3D point with respect to view
i.

Consider a line through m2, represented by s2; we have sT2 m2 = 0, that substituted in
(77) gives:

0 = sT2 e2,1 + ζ1s
T
2A2m1 (79)

Likewise, for a line through m3 represented by s3 we can write:

0 = sT3 e3,1 + ζ1s
T
3A3m1 (80)



After eliminating ζ1 from Equation (79) and (80) we obtain:

0 = (sT2 e2,1)(sT3A3m1)− (sT3 e3,1)(sT2A2m1) (81)

and after some re-writing:

0 = sT2
(
e2,1m

T
1A

T
3 − A2m1e

T
3,1

)
s3 (82)

This is the trifocal constraint, that links (via a trilinear form) m1, s2 (any line through
m2) and s3 (any line through m3).

Geometrically, the trifocal constraint imposes that the ray of m1 intersect the 3-D line
L that projects onto s2 in the second image and s3 in the third image.

Please note that given two (arbitrary) lines in two images, they can be always seen as
the image of a 3-D line L, because two planes always define a line, in projective space5.

The trifocal constraint represents the trifocal geometry (nearly) without singularities.
It only fails is when the cameras are collinear and the 3-D point is on the same line.

5this is why there is no such thing as the epipolar constraint between lines.
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Fig. 16. Two arbitrary lines s2 and s3 through corresponding points m2 and m3 in the second and third

image respectively, define a 3-D line L that must intersect the ray of m1.



Using the properties of the Kronecker product, the trifocal constraint (Eq. (82)) can
be written as:

0 = (sT3 ⊗ sT2 ) vec
(
e2,1m

T
1A

T
3 − A2m1e

T
3,1

)
= (sT3 ⊗ sT2 ) ((A3 ⊗ e2,1) vec(m1)− (e3,1 ⊗ A2) vec(m1))

= (sT3 ⊗ sT2 ) ((A3 ⊗ e2,1)− (e3,1 ⊗ A2)) m1)

= (sT3 ⊗ sT2 )Tm1 (83)

where T is the 9× 3 trifocal matrix [16] defined by

T = (A3 ⊗ e2,1)− (e3,1 ⊗ A2) (84)

The matrix T encodes the trifocal geometry. Its 27 entries are the coefficient of the
trilinear form.

An equivalent formulation of the trifocal constraint that generalizes the expression of a
bilinear form (Cfr. pg. 54) is obtained by applying once again the property vec(AXB) =
(BT ⊗ A) vec(X):

(mT
1 ⊗ sT3 ⊗ sT2 ) vec(T ) = 0. (85)



5.2.1 Trifocal Constraint for Points.

• In Eq. (82), s2 is any line through m2, and s3 is any line through m3.

• Each row of [m2]× (resp. [m3]×) represents a line through m2 (resp. m3), because
[m2]×m2 = 0.

Hence we can write a total of nine constraints similar to Eq. (82), only four of which
are independent (two for each point):

[m2]×
(
e2,1m

T
1A

T
3 − A2m1e

T
3,1

)
[m3]× = 03×3. (86)

Hence, the trifocal constraints for three points writes:

([m3]× ⊗ [m2]×)Tm1 = 0. (87)



An equivalent formulation of the trifocal constraint is derived if we look at the vector
Tm1 in Eq. (83) as the vectorization of a suitable matrix. This is easy to write thanks
to the vector transposition6:

0 = (sT3 ⊗ sT2 )Tm1 = (sT3 ⊗ sT2 ) vec(Tm1)(3) = sT2 (Tm1)(3)s3 (88)

where (Tm1)(3) is a 3× 3 matrix such that vec(Tm1)(3) = Tm1.

By the same token as before, one can stack three equations like Eq. (88):(
sT2 (Tm1)(3)

)
[m3]× = 0 (89)

This implies that the transpose of the leftmost term in parentheses (which is a 3-D
vector) belongs to the kernel of [m3]×, which is equal to m3 (up to a scale factor) by
construction. Hence

m3 ' (Tm1)(3)Ts2 (90)

This is the point transfer equation: if m1 and m2 are conjugate points in the first and
second view respectively, the position of the conjugate point m3 in the third view is
computed by means of the trifocal matrix.

6The vector transposition operator A(p)generalizes the transpose of a matrix A by operating on vectors of p entries at a time.



5.2.2 Trifocal Constraint for Lines.

Consider a line L in space projecting to s1, s2 and s3 in the three cameras. The trifocal
constraint must hold for any point m1 contained in the line s1:

(sT3 ⊗ sT2 )Tm1 = 0 ∀m1 : sT1 m1 = 0 (91)

hence
sT1 = (sT3 ⊗ sT2 )T (92)

This is the trifocal constraint for lines, which also allows direct line transfer: if s3 and
s2 are two lines in the third and second view respectively, the image s1 in the first view
of the line in space determined by s2 and s3 is obtained by means of the trifocal matrix.



5.2.3 Estimating the Trifocal Matrix

Equation (87) is equivalent to:

(mT
1 ⊗ [m3]× ⊗ [m2]×) vec(T ) = 0 (93)

This equation can be used to recover T (likewise we did for F ).

The coefficient matrix is a 9× 27 matrix; its rank is four, being the Kronecker product
of a vector by a rank-2 matrix by a rank-2 matrix.

Therefore, every triplet {m1, m2, m3} of corresponding points gives four linear inde-
pendent equations. Seven triplets determine the 27 entries of T .



5.2.4 Homography from the Trifocal Matrix

A line s2 in the second view defines (by back-projection) a 3-D plane, which induces a
homography H between the first and the third view.

Hence, s3 = HTs1 since s1 and s3 are both projection of the same line, that belongs
to the plane 7.

On the other hand, Eq. (92) is equivalent to

s1 = (I3×3 ⊗ sT2 )T (3)s3.

Hence, the homography H can be expressed in terms of the trifocal matrix as:

HT = (I3×3 ⊗ sT2 )T (3)

7The reader can verify that if H is the homography induced by a plane between two views, such that conjugate points are related by m2 = Hm1, conjugate lines are
related by s2 = HT s1.



5.2.5 Relationship with the Trifocal Tensor.

The Kronecker notation and the tensorial notation are deeply related, as both represents
multilinear forms. To draw this relationship in the case of the trifocal geometry, let us
expand the trifocal matrix into its columns T = [t1|t2|t3] and m1 into its components
m1 = [u, v, w]T . Then, thanks to the linearity of the vector transposition:

(Tm1)(3) = ([t1|t2|t3]m1)(3) = (ut1 + vt2 + wt3)(3) = ut
(3)
1 + vt

(3)
2 + wt

(3)
3 (94)

This implies that (Tm1)(3) can be seen as the linear combination of the matrices

t
(3)
1 , t

(3)
2 , t

(3)
3 with the components of m1 as coefficients. Therefore, the action of the

trilinear form Eq. (88) is to first combine matrices t
(3)
1 , t

(3)
2 , t

(3)
3 according to m1, then

combine the columns of the resulting matrix according to s3 and finally to combine the
elements of the resulting vector according to s2, to obtain a scalar.

The 3 × 3 × 3 array T obtained by stacking the three 3 × 3 matrices t
(3)
1 , t

(3)
2 , t

(3)
3 is

the trifocal tensor.
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Fig. 17. Action of a trilinear form f(a,b,c) represented by a tensor.



5.3 Multifocal Constraints

We outline here an alternative and elegant way to derive all the meaningful multi-linear
constraints on m views, based on determinants, described in [27]. Consider one image
point viewed by m cameras:

ζimi = PiM i = 1 . . .m (95)

By stacking all these equations we obtain:
P1 m1 0 . . . 0
P2 0 m2 . . . 0
... ... ... . . . ...
Pm 0 0 . . . mm


︸ ︷︷ ︸

L


M
−ζ1

−ζ2
...
−ζm

 =


0
0
...
0

 (96)

This implies that the 3m × (m + 4) matrix L is rank-deficient, i.e., rankL < m + 4.
In other words, all the (m + 4)× (m + 4) minors of L are equal to 0.



The minors that does not contain at least one row
from each camera are identically zero, since they con-
tain a zero column.
If a minor contains only one row from some view,
the image coordinate corresponding to this row can
be factored out (using Laplace expansion along the
corresponding column).
Hence, at least one row has to be taken from each
view to obtain a meaningful constraint, plus another
row from each camera to prevent the constraint to
be trivially factorized.
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3m

0

4+m

0
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Since there are m views, after taking one row from each camera, the remaining four
rows can be chosen as follows:

1. Two rows from one view and two rows from another view.

2. Two rows from one view, one row from another view and one row from a third view.

3. One row from each of four different views.



If m = 2 choosing two rows from one view and two rows from another view gives
a bilinear two-view constraint, expressed by the bifocal tensor i.e., the fundamental
matrix.

If m = 3, choosing two rows from one view, one row from another view and one row
from a third view gives a trilinear three-view constraint, expressed by the trifocal tensor.

If m = 4, choosing one row from each of four different views gives a quadrilinear
four-view constraint, expressed by the quadrifocal tensor.

If m > 4, there is no way to avoid that the minors contain only one row from some
views. Hence, constraints involving more than 4 cameras can be factorized as product
of the two-, three-, or four-views constraints and image point coordinates8.

Please note that Eq. (96) can also be used to triangulate one point M in multiple
views, by solving for [M,−ζ1,−ζ2, · · · ,−ζm]T the homogeneous linear system.

8This indicates that no significant constraints can be written for more than four views. Actually, it can be proven that also the quadrifocal constraints are not
independent [43].



5.4 Reconstruction

As in the case of two views it is possible to reconstruct “structure” (scene points)
and “motion” (camera matrices, encoding position and attitude) up to a unknown
transformation of P3, whose nature depends on what is known about the scene and the
cameras.

If the interior parameters of the cameras are known, we can obtain a Euclidean recon-
struction, that differs from the true reconstruction by a similarity transformation. This
is composed by a rigid displacement (due to the arbitrary choice of the world reference
frame) plus a a uniform change of scale (due to the well-known depth-speed ambiguity).

In the weakly calibrated case, i.e., when point correspondences are the only information
available, a projective reconstruction can be obtained.

In both cases, the solution is not a straightforward generalization of the two view case,
as the problem of global consistency comes into play (i.e., how to relate each other the
local reconstructions that can be obtained from view pairs).



5.4.1 Euclidean Reconstruction

Let us consider for simplicity the case of three views, which generalizes straightforward
to m > 3 views.

If one applies the method of Section 4.3.2 to view pairs 1-2, 1-3 and 2-3 one obtains
three displacements (R12, t̂12), (R13, t̂13) and (R23, t̂23) known up a scale factor, as the
norm of translation cannot be recovered, (the symbolˆ indicates a unit vector).

The “true” displacements must satisfy the following compositional rule

t13 = R23t12 + t23 (97)

which can be rewritten as
t̂13 = µ1R23t̂12 + µ2t̂23 (98)

where µ1 = ||t12||/||t13|| and µ2 = ||t23||/||t13|| are unknown.



However, Eq. (97) constraints t̂13, R23t̂12 and t̂23 to be coplanar, hence the ratios µ1, µ2

can be recovered:
||t12||
||t13||

= µ1 =
(t̂13 × t̂23)T (R23t̂12 × t̂23)

||R23t̂12 × t̂23||2
(99)

And similarly for µ2.

In this way three consistent camera matrices can be instantiated.

Note that only ratios of translation norm can be computed, hence the global scale factor
remains undetermined.

The recovery of consistent translations norm can be extended to m > 3 views by
concatenating equations like (99) for overlapping triplets of views.

In that case, however, “global” methods are available, such as the one due to [1].



5.4.2 Projective Reconstruction

If one applies the method of Section 4.4.3 to consecutive pairs of views, she would
obtain, in general, a set of reconstructions linked to each other by an unknown projective
transformation (because each camera pair defines its own projective frame).

The trifocal geometry could be used to link together consistently triplets of views. In
Section 4.4.3 we saw how a camera pair can be extracted from the fundamental matrix.
Likewise, a triplet of consistent cameras can extracted from the trifocal matrix (or
tensor). This procedure generalizes only up to four cameras.

When many images are available, an elegant method for multi-image reconstruction is
described in [58], based on the same idea of the factorization method [60]. It is of little
practical use, though, because it assumes that all the point are visible in all the views.



Consider m cameras P1 . . . Pm looking at n 3-D points M1 . . .Mn. The usual projec-
tion equation

ζjim
j
i = PiM

j i = 1 . . .m, j = 1 . . . n. (100)

can be written in matrix form:


ζ1

1m1
1 ζ2

1m2
1 . . . ζ

n
1 mn

1

ζ1
2m1

2 ζ2
2m2

2 . . . ζ
n
2 mn

2
... ... . . . ...

ζ1
mm1

m ζ
2
mm2

m . . . ζ
n
mmn

m


︸ ︷︷ ︸

scaled measurements W

=


P1

P2
...
Pm


︸ ︷︷ ︸

P

[
M1,M2, . . .Mn

]︸ ︷︷ ︸
structure M

. (101)

In this formula the mj
i are known, but all the other quantities are unknown, including

the projective depths ζji . Equation (101) tells us that W can be factored into the
product of a 3m × 4 matrix P and a 4 × n matrix M . This also means that W has
rank four.



If we assume for a moment that the projective depths ζji are known, then matrix W is
known too and we can compute its singular value decomposition:

W = UDV T . (102)

In the noise-free case, D = diag(σ1, σ2, σ3, σ4, 0, . . . 0), thus, only the first 4 columns
of U (V ) contribute to this matrix product. Let U3m×4 (Vn×4) the matrix of the first
4 columns of U (V ). Then:

W = U3m×4 diag(σ1, σ2, σ3, σ4)V T
n×4. (103)

The sought reconstruction is obtained by setting:

P = U3m×4 diag(σ1, σ2, σ3, σ4) and M = V T
n×4 (104)

This reconstruction is unique up to a (unknown) projective transformation. Indeed,
for any non singular projective transformation T , PT and T−1M is an equally valid
factorization of the data into projective motion and structure.

Consistently, the choice to subsume diag(σ1, σ2, σ3, σ4) in P is arbitrary.

In presence of noise, σ5 will not be zero. By forcing D = diag(σ1, σ2, σ3, σ4, 0, . . . 0)



one computes the solution that minimizes the following error:

||W − PM ||2F =
∑
i,j

||ζjim
j
i − PiM

j||2

where || · ||F is the Frobenius norm.

As the depth ζji are unknown, we are left with the problem of estimating them.

An iterative solution is to alternate estimating ζji (given P and M) with estimating P
and M (givenζji ).

If P and M are known, estimating ζji is a linear problem. Indeed, for a given point j
the projection equation writes:

ζj1m
j
1

ζj2m
j
2

...
ζjmmj

m

 =


mj

1 0 . . . 0

0 mj
2 . . . 0

... ... . . . ...
0 0 . . . mj

m


︸ ︷︷ ︸

Qj


ζj1
ζj2
...
ζjm


︸ ︷︷ ︸
ζj

= PM j (105)



Starting from an initial guess for ζji (typically ζji = 1), the following iterative procedure9

is used:

1. Normalize W such that ||W |||F = 1;

2. Factorize W and obtain an estimate of P and M ;

3. If ||W − PM ||2F is sufficiently small then stop;

4. Solve for ζj in Qjζj = PM j, for all j = 1 . . . n;

5. Update W .

6. Goto 1.

Step 1 is necessary to avoid trivial solutions (e.g. ζji = 0).

This technique is fast, requires no initialization, and gives good results in practice,
although there is no guarantee that the iterative process will converge to a valid solution.
A discussion on convergence of this class of methods can be found in [48]

9Whilst this procedure captures the main idea of Sturm and Triggs, it is not exactly the algorithm proposed in [58]. To start with, the original algorithm [58] was not
iterative and used the epipolar constraint (Eq.50) to fix the ratio of the projective depths of one point in successive images. It was [62] who made the scheme iterative.
Moreover in [58] the normalization of W is performed by normalizing rows and columns of W . The Frobenius norm was used by [47]. A similar scheme was also proposed
by [26].



6 Autocalibration

The aim of autocalibration is to compute the interior parameters, starting from weakly
calibrated cameras.

More in general, the task is to recover metric properties of camera and/or scene, i.e.,
to compute a Euclidean reconstruction.

There are two strategies:

1. Solve directly for the interior parameters.

2. First obtain a projective reconstruction and then transform it to a Euclidean recon-
struction.

The reader is referred to [13] for a review of autocalibration, and to [45, 63, 30, 49, 46,
20] for classical and recent work on the subject.



6.1 Counting Argument

Consider m cameras. The difference between the d.o.f. of the multifocal geometry
(e.g. 7 for two views) and the d.o.f. of the rigid displacements (e.g. 5 for two views)
is the number of independent constraints available for the computation of the interior
parameters (e.g. 2 for two views).

The multifocal geometry of m cameras (represented by the m-focal tensor) has 11m−15
d.o.f. Proof: a set of m cameras have 11m d.o.f., but they determine the m-focal
geometry up to a collineation of P3, which has 15 d.o.f. The net sum is 11m−15 d.o.f.

On the other hand, the rigid displacements in m views are described by 6m− 7 param-
eters: 3(m− 1) for rotations, 2(m− 1) for translations, and m− 2 ratios of translation
norms.

Thus, m weakly calibrated views give 5m − 8 constraints available for computing the
interior parameters.



Let us suppose that mk parameters are known and mc parameters are constant.

The first view introduces 5 −mk unknowns. Every view but the first introduces 5 −
mk −mc unknowns.

Therefore, the unknown interior parameters can be computed provided that

5m− 8 ≥ (m− 1)(5−mk −mc) + 5−mk. (106)

For example, if the interior parameters are constant, three views are sufficient to recover
them.

If one parameter (usually the skew) is known and the other parameters are varying, at
least eight views are needed.



6.2 Huang-Faugeras’ Constraint

If we consider two views, two independent constraints are available for the computation
of the interior parameters from the fundamental matrix.

Indeed, F has 7 d.o.f, whereas E, which encode the rigid displacement, has only 5
d.o.f. There must be two additional constraint that E must satisfy, with respect to F .

In particular, these constraints stem from the equality of two singular values of the
essential matrix (Theorem 4.1) which can be decomposed in two independent polynomial
equations.

Let Fij be the (known) fundamental matrix relating views i and j, and let Ki and Kj

be the respective (unknown) interior parameter matrices.

The idea of [46] is that the matrix

Eij = KT
i FijKj, (107)

satisfies the constraints of Theorem 4.1 (a.k.a. Huang-Faugeras’ constraints) only if the
interior parameters are correct.



Hence, the cost function to be minimized is

C(Ki, i = 1 . . . n) =

n∑
i=1

n∑
j>i

wij
1σij − 2σij
1σij + 2σij

, (108)

where 1σij >
2σij are the non zero singular values of Eij and wij are normalized weight

factors (linked to the reliability of the fundamental matrix estimate).

The previous counting argument shows that, in the general case of n views, the n(n−
1)/2 two-view constraints that can be derived are not independent, nevertheless they
can be used as they over-determine the solution.

A non-linear least squares solution is obtained with an iterative algorithm (e.g. Gauss-
Newton) that uses analytical derivatives of the cost function.

A starting guess is needed, but this cost function is less affected than others by lo-
cal minima problems. A globally convergent algorithm based on this cost function is
described in [14].



6.3 Absolute Quadric Constraint

We have seen that a projective reconstruction can be computed starting from points
correspondences only (weak calibration), without any knowledge of the camera matrices.

Projective reconstruction differs from Euclidean by an unknown projective transforma-
tion in the 3-D projective space, which can be seen as a suitable change of basis.

Starting from a projective reconstruction the problem is computing the transformation
that “straighten” it, i.e., that upgrades it to an Euclidean reconstruction.



Let us assume that a projective reconstruction is available, that is a sequence Pi of
m + 1 camera matrices and a set Mj of n + 1 3-D points such that:

mj
i ' PiM

j i = 0 . . .m, j = 0 . . . n. (109)

Without loss of generality, we can assume that camera matrices writes:

P0 = [I | 0]; Pi = [Ai | ei] for i = 1 . . .m (110)

The set of camera matrices can always be transformed to the above canonical form by
post-multiplying each Pi by the matrix [P0; 0 0 0 1]−1:

We are looking for the a 4 × 4 non-singular matrix T that upgrades the projective
reconstruction to Euclidean:

mj
i ' PiT︸︷︷︸

PE
i

T−1Mj︸ ︷︷ ︸
structure

, (111)

PE
i = PiT is the Euclidean camera.



We can choose the first Euclidean-calibrated camera to be PE
0 = K0[I | 0], thereby

fixing arbitrarily the world reference frame:

PE
0 = K0[I | 0] PE

i = Ki[Ri | ti] for i = 1 . . .m. (112)

With this choice, it is easy to see that PE
0 = P0T implies that the projectivity T

performing the Euclidean upgrade has the following structure:

T =

[
K0 0
rT s

]
(113)

where rT is a 3-D vector and s is a scale factor, which we will arbitrarily set to 1 (the
Euclidean reconstruction is up to a scale factor).

Under this parameterization T is clearly non singular, and it depends on eight parame-
ters.



Substituting (113) in PE
i ' PiT gives

PE
i = [KiRi | Kiti] ' PiT = [AiK0 + eir

T | ei] for i > 0 (114)

and, considering only the leftmost 3× 3 submatrix, yield:

KiRi ' AiK0 + eir
T = Pi

[
K0

rT

]
(115)

Rotation can be eliminated using RRT = I , leaving:

KiK
T
i ' Pi

[
K0K

T
0 K0r

rTKT
0 rTr

]
P T
i (116)

Note that (116) contains five equations, because the matrices of both members are
symmetric, and the homogeneity reduces the number of equations by one.

This is the basic equation for autocalibration, called absolute quadric constraint [63],
relating the unknowns Ki (i = 0 . . .m) and r to the available data Pi (obtained from
weakly calibrated images). The name comes from its geometrical interpretation, which
will be discussed in the next section (optional).



6.3.1 Geometric Interpretation

Image of the Absolute Conic

In the beginning we introduced the absolute conic Ω, whose equation (in a Euclidean
frame) is: x2

1 + x2
2 + x2

3 = 0 = x4.

We also pointed out that Ω is invariant under similarity transformation, hence deeply
linked with the Euclidean stratum.

We will prove now that the image of the absolute conic depends on the interior param-
eters only, i.e., it is unaffected by camera position and angular attitude.

The points in the plane at infinity have the form M = (M̃T , 0)T , hence

m ' K[R | t](M̃T , 0)T = KRM̃. (117)

This shows that the image of points at infinity does not depend on camera position.



The absolute conic (which lies in the plane at infinity) has equation M̃TM̃ = 0,
therefore its image has equation:

mT (K−TK−1)m = 0. (118)

which does not depend on the camera attitude either.

The conic ω = (KKT )−1 is the image of the absolute conic.

Basic facts

Under perspective projection P the outline of the quadric Q is the conic C given by:

C∗ ' PQ∗P T (119)

where C∗ is the dual conic and Q∗ is the dual quadric.

An expression with Q and C may be derived, but it is quite complicated. C∗ (resp.
Q∗) is the adjoint matrix of C (resp. Q). If C is non singular, then C∗ = C−1.



The dual absolute quadric

The absolute conic may be regarded as a special quadric (a disk quadric), therefore its
dual is a quadric, the dual absolute quadric, denoted by Ω∗. Its representation in the
Eucliean frame is:

Ω∗ = diag(1, 1, 1, 0). (120)

As we already know, the image of the absolute conic under projection PE is given by
ω = (KKT )−1, that is :

ω∗ = (KKT ) ' PEΩ∗PET (121)

This property is independent on the choice of the projective basis. What changes is the
representation of the dual absolute quadric, which is mapped to

Ω∗ = Tdiag(1, 1, 1, 0)T T . (122)

under the collineation T .



Substituting T from Eq. (113) into the latter gives:

Ω∗ =

[
K0K

T
0 K0r

rTKT
0 rTr

]
(123)

Recalling that ω∗i = KiK
T
i , then Eq. (116) is equivalent to

ω∗i ' PiΩ
∗P T

i (124)



6.3.2 Solution Strategies

Autocalibration requires to solve Eq. (124), with respect to Ω∗ (and ω∗i ).

Once Ω∗ is known, the collineation T that upgrades cameras from projective to Eu-
clidean is obtained by decomposing Ω∗ as in Eq. (122).

Ω∗ might be parameterized as in Eq. (123) with 8 d.o.f. or parameterized as a generic
4 × 4 symmetric matrix (10 d.o.f.). The latter is an over-parameterization, as Ω∗ is
also singular and defined up to a scale factor (which gives again 8 d.o.f.).

Solving Eq. (124) entails getting rid of the unknown scale factor contained in the '
symbol.Several strategies have been proposed:

• Introduce the scale factor explicitly as an additional unknown [29]:

ω∗i − λiPiΩ∗P T
i = 0 (125)

This gives 6 equations but introduces one additional unknown (the net sum is 5).



• Eliminate it by using the same idea of the cross product for 3-D vectors [63].

vech(ω∗i ) ' vech(PiΩ
∗P T

i ) ⇐⇒ rank [vech(ω∗i )| vech(PiΩ
∗P T

i )]︸ ︷︷ ︸
B

= 1

where vech is the column-wise vectorization with the upper portion excluded, as
matrices in Eq. (124) are symmetric.

This is tantamount to say that every 2×2 minor of B is zero. There are 15 different

order-2 minors of a 6× 2 matrix, but only 5 equations are independent. ©13

• Normalize both side of the equation [49]:

ω∗i
||ω∗i ||F

− PiΩ
∗P T

i

||PiΩ∗P T
i ||F

= 0 (126)

In any case, a non-linear least-squares problem has to be solved. Available numerical
techniques (based on the Gauss-Newton method) are iterative, and requires an estimate
of the solution to start.

This can be obtained by doing an educated guess about skew, principal point and aspect
ratio, and solve the linear problem that results.



Linear Solution

If some of the interior parameters are known, one can perform a partial normalization
of the coordinates, such that the corresponding elements of ω∗i vanish [50]. Linear
equations on Ω∗ are generated from zero-entries of ω∗i (because this eliminates the
scale factor):

ω∗i (k, `) = 0 ⇒ pTi,kΩ
∗pi,` = 0

where pTi,k is the k-th row of Pi.

If the principal point is known, ω∗i (1, 3) = 0 = ω∗i (2, 3) and this gives two linear
constraints. If, in addition, skew is zero we have ω∗i (1, 2) = 0. Known aspect ratio r
provides a further constraint: rω∗i (1, 1) = ω∗i (2, 2).

Likewise, linear constraints on Ω∗ can be obtained from the equality of elements in the
the upper (or lower) triangular part of ω∗i (because ω∗i is symmetric).

In order to be able to solve linearly for Ω∗, at least 10 linear equations must be stacked
up, to form a homogeneous linear system, which can be solved as usual (via SVD).
Singularity of Ω∗ can be enforced a-posteriori by forcing the smallest singular value to
zero.



Constant Interior Parameters

If all the cameras has the same interior parameters, so Ki = K, then Eq. (116) becomes

KKT ' Pi

[
KKT Kr
rTKT rTr

]
P T
i (127)

This equation is equivalent to the Kruppa constraints [29].

Since each camera matrix, apart from the first one, gives five equations in the eight
unknowns, a unique solution is obtained when at least three views are available.

The resulting system of equations is solved with a non-linear least-squares technique
(e.g. Gauss-Newton).



6.4 Stratification

The problem of computing the upgrade from projective to Euclidean can be stratified
[42, 9] into different representations: depending on the amount of information and the
constraints available, it can be analyzed at a projective, affine, or Euclidean level.

First we will show how to compute the plane at infinity – which accounts for the difficulty
of autocalibration – from a estimate of the interior parameters of at least two cameras.

The procedure is then leveraged to build an autocalibration algorithm which works by
enumerating through the inherently bounded space of interior camera parameters in
order to find the best rectifying projectivity.

This method is, in a sense, the dual of the second step of the stratified autocalibration
presented in [9] in which the interior parameters are recovered given the plane at infinity.



6.4.1 Estimation of the Plane at Infinity

In this section we will show how to compute the plane at infinity given two perspective
projection matrices and their interior parameters10.

In Sec. 6.3 we saw that given two projective cameras

P0 = [I | 0] P1 = [A1 | e1] (128)

and their interior parameters matrices K0 and K1 respectively, the projectivity of P3

performing the Euclidean upgrade writes:

T =

[
K0 0
r> λ

]
(129)

where r is a vector which determines the location of the plane at infinity and λ is a
scale factor.

10This problem has been dealt with for the first time in [5] where it has been turned into a linear least squares system. This closed form solution has been derived in
[19].



As we know from (115), the Euclidean versions of the second camera matrix is:

P E
1 = K1 [R1|t1] ' P1T =

[
A1K0 + e1r

>|λe1

]
. (130)

The rotation R1 can therefore be equated to the following:

R1 ' K−1
1

(
A1K0 + e1r

>) = K−1
1 A1K0 + K−1

1 e1︸ ︷︷ ︸
t1

r> (131)

in which it is expressed as the sum of a 3 by 3 matrix and a rank 1 term.

Using the constraints on orthogonality between rows or columns of a rotation matrix,
one can solve for r finding the value that makes the right hand side of (131) equal up
to a scale to a rotation.

The solution can be obtained in closed form by noting that there always exists a rotation
matrix R∗ such as: R∗t1 = [‖t1‖ 0 0]> . Left multiplying it to (131) yields:

R∗R1 ' R∗ K−1
1 A1K0︸ ︷︷ ︸
W

+ [‖t1‖ 0 0]> r> (132)



Calling the right hand side first term W and its rows w>i , we arrive at the following:

R∗ R1 =

w1
> + ‖t1‖r>

w2
>

w3
>

 /‖w3‖ (133)

in which the last two rows are independent from the value of r and the correct scale
has been recovered normalizing to unit norm each side of the equation.

Since the rows of R∗ R1 are orthonormal, we can recover the first one taking the cross
product of the other two. Vector r is therefore equal to:

r = (w1 ×w3/‖w3‖ −w0) /‖t1‖ (134)

The upgrading collineation T can be computed using (129); the term λ can be arbitrarily
chosen, as it will just influence the overall scale.

When the calibration parameters are known only approximately the, right hand side of
(133) is no more a rotation matrix . However, (134) will still yield the value of r that
will produce an approximate Euclidean reconstruction.



6.4.2 Estimation of the Interior Parameters

Assume a projective reconstruction
{
Pi; M

j
}
i = 0 . . . n; j = 0 . . .m is given.

This autocalibration technique is based on two stages:

1. Given a guess on the interior parameters of two cameras K0 and K1 compute a
consistent upgrading collineation. This yields an estimate of all cameras but the
first.

2. Score the interior parameters of these m cameras based on the plausibility of skew,
aspect ratio and principal point.

The space of the interior parameters of the two cameras is enumerated and the best
solution is eventually refined via non-linear least squares.

In order to sample the space of calibration parameters we can safely assume, as cus-
tomary, null skew, unit aspect ratio and principal point in the centre of the image; this
leaves the focal lengths f0 and f1 as free parameters.



To score each value (f0, f1), we consider the aspect ratio, skew and principal point
location of the resulting transformed camera matrices and aggregate their respective
value into a single cost function:

{f0, f1} = arg min
f0,f1

m∑
`=1

C2(K`) (135)

where K` is the interior parameters matrix of the `-th camera after the Euclidean
upgrade determined by (f0, f1), and

C(K) =

skew︷ ︸︸ ︷
wsk|k1,2|+

aspect ratio︷ ︸︸ ︷
war|k1,1 − k2,2|+

principal point︷ ︸︸ ︷
wuo|k1,3| + wvo|k2,3| (136)

where ki,j denotes the entry (i, j) of K and w are suitable weights, as defined in [50].

The first term of (136) takes into account the skew, which is expected to be 0, the
second one penalizes cameras with aspect ratio different from 1 and the last two weigh
down cameras where the principal point is away from the image centre.



Fig. 18. Cost functions. The two rows refer to cost functions relative to two different cameras. From

left to right are shown the profiles of aspect ratio, skew, principal point u0 and v0 coordinates and their

aggregated value as function of the focal lengths of the reference cameras. Cooler colors correspond to

lower values of the cost function. A circle marks the correct solution.

Finally, the solution selected is refined by non-linear minimization of Eq. (135); since it
is usually very close to a minima, just a few iterations of a Levemberg-Marquardt solver
are needed for convergence.



7 Dealing with Measured Data

Measured data (i.e., usually 2D or 3D point positions) are subject to errors.

In this section we will approach estimation problems from a more practical point of view,
discussing how the presence of errors in the data affects our estimates and describe the
countermeasures that must be taken to obtain a good estimate.



7.1 Pre-conditioning

In presence of noise (or errors) on input data, the accuracy of the solution of a lin-
ear system depends crucially on the condition number of the system. The lower the
condition number, the less the input error gets amplified (the system is more stable).

As [22] pointed out, it is crucial for linear algorithms (as the DLT algorithm) that input
data is properly pre-conditioned, by a suitable coordinate change (origin and scale):
points are translated so that their centroid is at the origin and are scaled so that their
average distance from the origin is

√
2.

This improves the condition number of the linear system that is being solved.

Apart from improved accuracy, this procedure also provides invariance under similarity
transformations in the image plane.



7.2 Algebraic vs Geometric Error

Usually, to counteract the effect of noise, we use more equations than necessary and
solve with least-squares.

What is actually being minimized by least squares?

In a typical null-space problem formulationAx = 0 (like the DLT algorithm) the quantity
that is being minimized is the square of the residual ||Ax||.

In general, if ||Ax|| can be regarded as a distance between the geometrical entities
involved (points, lines, planes, etc..), than what is being minimized is a geometric
error, otherwise (when the error lacks a good geometrical interpretation) it is called an
algebraic error.

All the linear algorithm (DLT and others) we have seen so far minimize an algebraic
error. Actually, there is no justification in minimizing an algebraic error apart from the
ease of implementation, as it results in a linear problem.



Usually, the minimization of a geometric error is a non-linear problem, that admit only
iterative solutions and requires a starting point.

So, why should we prefer to minimize a geometric error? Because:

• The quantity being minimized has a meaning

• The solution is more stable

• The solution is invariant under Euclidean transforms

Often linear solution based on algebraic residuals are used as a starting point for a
non-linear minimization of a geometric cost function, which “gives the solution a final
polish” [21].



7.2.1 Geometric Error for Resection

The goal is to estimate the camera matrix, given a number of correspondences (mj,Mj) j =
1 . . . n

The geometric error associated to a camera estimate P̂ is the distance between the
measured image point mj and the re-projected point P̂iM

j:

min
P̂

∑
j

d(P̂Mj,mj)2 (137)

where d() is the Euclidean distance between the homogeneous points.

The DLT solution is used as a starting point for the iterative minimization (e.g. Gauss-
Newton)



7.2.2 Geometric Error for Triangulation

The goal is to estimate the 3-D coordinates of a point M, given its projection mi and
the camera matrix Pi for every view i = 1 . . .m.

The geometric error associated to a point estimate M̂ in the i-th view is the distance
between the measured image point mi and the re-projected point PiM̂:

min
M̂

∑
i

d(PiM̂,mi)
2 (138)

where d() is the Euclidean distance between the homogeneous points.

The linear solution is used as a starting point for the iterative minimization (e.g. Gauss-
Newton).



7.2.3 Geometric Error for F

The goal is to estimate F given a a number of point correspondences mi
` ↔mi

r.

The geometric error associated to an estimate F̂ is given by the distance of conjugate
points from conjugate lines (note the symmetry):

min
F̂

∑
j

d(F̂mj
`,m

j
r)

2 + d(F̂ Tmj
r,m

j
`)

2 (139)

where d() here is the Euclidean distance between a line and a point (in homogeneous
coordinates).

The eight-point solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).

Note that F must be suitably parameterized, as it has only seven d.o.f. ©11



7.2.4 Geometric Error for H

The goal is to estimate H given a a number of point correspondences mi
` ↔mi

r.

The geometric error associated to an estimate Ĥ is given by the symmetric distance
between a point and its transformed conjugate:

min
Ĥ

∑
j

d(Ĥmj
`,m

j
r)

2 + d(Ĥ−1mj
r,m

j
`)

2 (140)

where d() is the Euclidean distance between the homogeneous points. This also called
the symmetric transfer error.

The linear solution is used as a starting point for the iterative minimization (e.g. Gauss-
Newton).



7.2.5 Bundle Adjustment (reconstruction)

If measurements are noisy, the projection equation will not be satisfied exactly by the
reconstructed camera matrices and structure.

We wish to minimize the image distance between the re-projected point P̂iM̂
j and

measured image points mj
i for every view in which the 3-D point appears:

min
P̂i,M̂j

∑
i,j

d(P̂iM̂
j,mj

i )
2 (141)

where d() is the Euclidean distance between the homogeneous points.

If the reconstruction is projective P̂i is parameterized with its 11 d.o.f. whereas if the
reconstruction is Euclidean, one should use P̂i = K̂i[R̂i|t̂i] where the rotation has to
be suitably parameterized with 3 d.o.f.



As m and n increase, this becomes a very large minimization problem.

However the Jacobian of the residual has a specific structure that can be exploited to
gain efficiency.

Primary structure: on the row corresponding to mj
i , only the two elements correspond-

ing to camera P̂i and to point M̂j are nonzero.

Secondary structure: not all points are seen in all views (data-dependent).

See [64] for a review and a more detailed discussion on bundle adjustment.



7.3 Robust Estimation

Up to this point, we have assumed that the only source of error affecting correspon-
dences is in the measurements of points position. This is a small-scale noise that gets
averaged out with least-squares.

In practice, we can be presented with mismatched points, which are outliers to the noise
distribution (i.e., rogue measurements following a different, unmodelled, distribution).

These outliers can severely disturb least-squares estimation (even a single outlier can
totally offset the least-squares estimation, as illustrated in Fig. 19.)
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Fig. 19. A single outlier can severely offset the least-squares estimate (red line), whereas the robust

estimate (green line) is unaffected.

The goal of robust estimation is to be insensitive to outliers (or at least to reduce
sensitivity).



7.3.1 M-estimators

Least squares:

min
θ

∑
i

(ri/σi)
2 (142)

where θ are the regression coefficient (what is being estimated) and ri is the residual. M-
estimators are based on the idea of replacing the squared residuals by another function
of the residual, yielding

min
θ

∑
i

ρ(ri/σi) (143)

ρ is a symmetric function with a unique minimum at zero that grows sub-quadratically,
called loss function.

Differentiating with respect to θ yields:∑
i

1

σi
ρ′(ri/σi)

dri
dθ

= 0 (144)

The M-estimate is obtained by solving this system of non-linear equations.



7.3.2 RANSAC

Given a model that requires a minimum of p data points to instantiate its free parameters
θ, and a set of data points S containing outliers:

1. Randomly select a subset of p points of S and instantiate the model from this subset

2. Determine the set Si of data points that are within an error tolerance t of the model.
Si is the consensus set of the sample.

3. If the size of Si is greater than a threshold T , re-estimate the model (possibly using
least-squares) using Si (the set of inliers) and terminate.

4. If the size of Si is less than T , repeat from step 1.

5. Terminate after N trials and choose the largest consensus set found so far.



Three parameters need to be specified: t, T and N .

Both T and N are linked to the (unknown) fraction of outliers ε.

N should be large enough to have a high probability of selecting at least one sample
containing all inliers. The probability to randomly select p inliers in N trials is:

P = 1− (1− (1− ε)p)N (145)

By requiring that P must be near 1, N can be solved for given values of p and ε.

T should be equal to the expected number of inliers, which is given (in fraction) by
(1− ε).

At each iteration, the largest consensus set found so fare gives a lower bound on the
fraction of inliers, or, equivalently, an upper bound on the number of outliers. This can
be used to adaptively adjust the number of trials N .

t is determined empirically, but in some cases it can be related to the probability that
a point under the threshold is actually an inlier [21].



As pointed out in [57], RANSAC can be viewed as a particular M-estimator.

The objective function that RANSAC maximizes is the number of data points having
absolute residuals smaller that a predefined value t. This may be seen a minimizing a
binary loss function that is zero for small (absolute) residuals, and 1 for large absolute
residuals, with a discontinuity at t.

t ri

Fig. 20. RANSAC loss function

By virtue of the prespecified inlier band, RANSAC can fit a model to data corrupted by
substantially more than half outliers11.

11However, if more than 50% of the data are ouliers they may happen to be arranged in such a way as to produce a smaller total residual than the true inliers.



7.3.3 LMedS

Another popular robust estimator is the Least Median of Squares. It is defined by:

min
θ

mediri (146)

It can tolerate up to 50% of outliers, as up to half of the data point can be arbitrarily
far from the “true” estimate without changing the objective function value.

Since the median is not differentiable, a random sampling strategy similar to RANSAC
is adopted. Instead of using the consensus, each sample of size p is scored by the
median of the residuals of all the data points. The model with the least median (lowest
score) is chosen.

A final weighted least-squares fitting is used.

With respect to RANSAC, LMedS can tolerate “only” 50% of outliers, but requires no
setting of thresholds.



8 In-the-field issues

In this section first we will discuss two methods that are very usefull in real-life appli-
cations: calibration and rectification.

First we will enrich the pinhole model with non-linear distortions due to lenses and we
will illustrate a workable calibration algorithm that requires a simple planar object.

Finally, we will describe epipolar rectification, a transformation of image pairs such that
conjugate epipolar lines become collinear and parallel to one of the image axes, usually
the horizontal one. In such a way, the correspondence search is reduced to a 1D search
along the trivially identified scanline.



8.1 Workable Calibration

Camera calibration (or resection) as described so far, requires a calibration object that
consists typically of two or three planes orthogonal to each other. This might be difficult
to obtain, without access to a machine tool.

Zhang [68] introduced a calibration technique that requires the camera to observe
a planar pattern (much easier to obtain) at a few (at least three) different angular
attitudes.

Fig. 21. Images of a planar calibration pattern. The points used for calibration are the corners of the

black squares.



Instead of requiring one image of many planes, this method requires many images of
one plane. Either the camera or the planar pattern can be moved by hand.

We will also introduce here a more realistic camera model that takes into account
non-linear effects produced by lenses.

In each view, we assume that correspondences between image points and 3-D points
on the planar pattern have been established.



8.1.1 Estimating Interior Parameters

Following the development of Sec. 4.5 we know that for a camera P = K[R|t] the
homography between a world plane at z = 0 and the image is

H ' K[r1, r2, t] (147)

where ri are the column of R.

Suppose that H is computed from correspondences between four or more known world
points and their images, then some constraints can be obtained on the interior param-
eters, thanks to the fact that the columns of R are orthonormal.

Writing H = [h1,h2,h3], from the previous equation we derive:

r1 = λK−1h1 and r2 = λK−1h2 (148)

where λ is an unknown scale factor.



The orthogonality rT1 r2 = 0 gives

λ2hT1 (KKT )−1h2 = 0 (149)

or, equivalently (remember that ω = (KKT )−1)

hT1ωh2 = 0 (150)

Likewise, the condition on the norm rT1 r1 = rT2 r2 gives

hT1ωh1 = hT2ωh2 (151)

Introducing the Kronecker product as usual, we rewrite these two equations as:

(hT1 ⊗ hT2 ) vecω = 0 (152)(
(hT1 ⊗ hT1 )− (hT2 ⊗ hT2 )

)
vecω = 0 (153)



As ω is a 3×3 symmetric matrix, its unique elements (the unknowns) are only six. This
fact can be neatly taken into account using the vech operator. The above equations
are equivalent to 12:

(hT2 ⊗ hT1 )D3 vech(ω) = 0 (154)(
(hT1 ⊗ hT1 )− (hT2 ⊗ hT2 )

)
D3 vech(ω) = 0 (155)

From a set of n images, we obtain a 2n × 6 coefficient matrix A by stacking up two
equations for each image. The solution is the 1-dimensional right null-space of A.

At least five equations are needed (21
2 images). In practice, for a good calibration, one

should use around 12 views).

12The duplication matrix Dn is the unique n2 × n(n+ 1)/2 matrix which, transforms vech(A) into vec(A): Dn vech(A) = vec(A).



8.1.2 Estimating Exterior Parameters

K is obtained from the Cholesky factorization of ω, then R and t are recovered from:

[r1|r2|t] =
1

||K−1h1||
K−1[h1|h2|h3] r3 = r1 × r2 (156)

Because of noise, the matrix R is not guaranteed to be orthogonal, hence we need to
recover the closest orthogonal matrix.

Let R = QS be the polar decomposition of R. Then Q is the closest possible orthogonal
matrix to R in Frobenius norm.



In this way we have obtained the camera matrix P by minimizing an algebraic distance
which is not geometrically meaningful.

It is advisable to refine it with a (non-linear) minimization of a geometric error:

min
P̂i

n∑
i=1

m∑
j=1

d(P̂iM
j,mj

i )
2 (157)

where P̂i = K̂[R̂i|t̂i] and the rotation has to be suitably parameterized with three
parameters (see Rodrigues formula).

The linear solution is used as a starting point for the iterative minimization (e.g. Gauss-
Newton).



8.1.3 Radial Distortion

A realistic model for a photocamera or a videocam-
era must take into account non-linear distortions in-
troduced by the lenses, especially when dealing with
short focal lengths or low cost devices (e.g. web-
cams, disposable cameras).

The more relevant effect is the radial distortion, which is modelled as a non-linear
transformation from the ideal (undistorted) pixel coordinates (u, v) to the observed
(distorted) pixel coordinates (û, v̂):{

û = (u− u0)(1 + k1r
2
d) + u0

v̂ = (v − v0)(1 + k1r
2
d) + v0

. (158)

where r2
d =

(
(u−u0)
au

)2

+
(

(v−v0)
av

)2

and (u0, v0) are the coordinates of the image centre.



Estimating k1

Let us assume that the pinhole model is calibrated. The point m = (u, v) projected
according to the pinhole model (undistorted) do not coincide with the measured points
m̂ = (û, v̂) because of the radial distortion.

We wish to recover k1 from Eq. (158). Each point gives two equation:
(u− u0)

((
(u− u0)

au

)2

+

(
(v − v0)

av

)2
)
k1 = û− u

(v − u0)

((
(u− u0)

au

)2

+

(
(v − v0)

av

)2
)
k1 = v̂ − v

(159)

hence a least squares solution for k1 is readily obtained from n > 1 points.



When calibrating a camera we are required to simultaneously estimate both the pinhole
model’s parameters and the radial distortion coefficient.

The pinhole calibration we have described so far assumed no radial distortion, and the
radial distortion calibration assumed a calibrated pinhole camera.

The solution (a very common one in similar cases) is to alternate between the two
estimation until convergence.

Namely: start assuming k = 0, calibrate the pinhole model, then use that model to
compute radial distortion. Once k1 is estimated, refine the pinhole model by solving
Eq. (157) with the radial distortion in the projection, and continue until the image error
is small enough.



8.2 Epipolar Rectification

Given a pair of stereo images, epipolar rectification (or simply rectification) determines
a transformation of each image plane such that epipolar lines become collinear and
parallel to one of the image axes.

The important advantage of rectification is that computing stereo correspondences is
made simpler, because search is done along the (e.g.) horizontal lines of the rectified
images.

The rectified images can be thought of as acquired by two new virtual cameras, obtained
by rotating the actual cameras (and possibly modifying the interior parameters) so as
to achieve the “normal” case , corresponding to two identical cameras separated by a
translation along a direction perpendicular to principal axis (e.g. the X axis).

We assume here that the stereo pair is calibrated, i.e., the interior parameters, mutual
position and angular attitude of the cameras are known. This assumption is not strictly
necessary [24, 41, 33], but leads to a simpler technique and less distorted images.



Specifying Virtual Cameras.

Given the actual camera matrices Por and Po`, the idea behind rectification is to define
two new virtual cameras Pnr and Pn` obtained by rotating the actual ones around
their centres so that focal planes becomes coplanar, thereby containing the baseline
(Figure 22). This ensures that epipoles are at infinity, hence epipolar lines are parallel.

To have horizontal epipolar lines, the baseline must be parallel to the x-axis of both
virtual cameras. In addition, to have a proper rectification, conjugate points must have
the same vertical coordinate.

In summary: positions (i.e, centres of projection) of the virtual cameras are the same as
the actual cameras, whereas the angular attitude of both virtual cameras differs from
the actual ones by suitable rotations; interior parameters are the same for both cameras.

Therefore, the two resulting virtual cameras will differ only in their centres of projection,
and they can be thought as a single camera translated along the x-axis of its reference
system.
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Fig. 22. Epipolar geometry before and after rectification.



Using Eq. (10) and Eq. (12), we can write the virtual cameras matrices as:

Pn` = K[R | −R C̃`], Pnr = K[R | −R C̃r]. (160)

In order to define them, we need to assign K,R, C̃`, C̃r

The centres of projection C` and Cr are the same as the actual cameras. The interior
parameters matrix K can be chosen arbitrarily. The matrix R, which gives the angular
attitude of both cameras will be specified by means of its row vectors:

R =

rT1
rT2
rT3

 (161)

that are the x, y, and z-axes, respectively, of the virtual camera reference frame,
expressed in world coordinates.



According to the previous comments, we take:

(i) The x-axis parallel to the baseline: r1 = (C̃r − C̃`)/||C̃r − C̃`||
(ii) The y-axis orthogonal to x (mandatory) and to an arbitrary unit vector k: r2 =

k× r1

(iii) The z-axis orthogonal to xy (mandatory) : r3 = r1 × r2

In point 2, k fixes the position of the y-axis in the plane orthogonal to x. In order to
ensure that the virtual cameras look in the same direction as the actual ones, k is set
equal to the direction of the principal axis of one of the two actual cameras.

We assumed that both virtual cameras have the same interior parameters. Actually,
the horizontal components of the image centre (v0) can be different, and this degree of
freedom might be exploited to “centre” the rectified images in the viewport by applying
a suitable horizontal translation.



The Rectifying Transformation.

In order to rectify the images, we need to compute the transformation mapping the
image plane of Po onto the image plane of Pn.

According to the equation of the ray, if M projects to mo in the actual image and to
mn in the rectified image, we have:{

M̃ = C̃+ζoP
−1
o1:3

mo

M̃ = C̃+ζnP
−1
n1:3

mn
(162)

hence

mn =
ζo
ζn
Pn1:3

P−1
o1:3︸ ︷︷ ︸

H

mo (163)

The rectifying transformation is a linear transformation of the projective plane (a
collineation) given by the 3× 3 matrix H.

It is understood that this has to be applied to the left and right images.



Reconstruction of 3-D points by triangulation can be performed from the rectified images
directly, using Pnr and Pn`.

Fig. 23. Original and rectified stereo pair.

More details on the rectification algorithm can be found in [15].



9 Further Readings

General books on (Geometric) Computer Vision are: [8, 65, 10, 21].

Acknowledgements. The material in this tutorial comes from multiple sources, and
it is difficult to trace all of them. However, I would like to mention at least [28, 35].
Several students and co-authors contributed with figures or text: Federica Arrigoni,
Michela Farenzena, Riccardo Gherardi, Spela Ivekovic, Roberto Marzotto, Alessandro
Negrente, Sara Ceglie, Roberto Toldo, Alberto Valinetti.
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[34] F. Isgrò, E. Trucco, P. Kauff, and O. Schreer. 3-D image processing in the future of immersive media. IEEE
Transactions on Circuits and Systems for Video Technology, 14(3):288–303, 2004.

[35] S. Ivekovic, A. Fusiello, and E. Trucco. Fundamentals of multiple view geometry. In O. Schreer, P. Kauff, and
T. Sikora, editors, 3D Videocommunication. Algorithms, concepts and real-time systems in human centered com-
munication, chapter 6. John Wiley & Sons, 2005. ISBN: 0-470-02271-X.

[36] K. Kanatani. Geometric Computation for Machine Vision. Oxford University Press, 1993.

[37] Karl Kraus. Photogrammetry - Geometry from Images and Laser Scans - 2nd edition. Walter de Gruyter, Berlin,
2007.

[38] S. Laveau and O. Faugeras. 3-D scene representation as a collection of images and foundamental matrices. Technical
Report 2205, INRIA, Institut National de Recherche en Informatique et an Automatique, February 1994.

[39] Jed Lengyel. The convergence of graphics and vision. IEEE Computer, 31(7):46–53, July 1998.

[40] D. Liebowitz and A. Zisserman. Metric rectification for perspective images of planes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 482–488, 1998.

[41] C. Loop and Z. Zhang. Computing rectifying homographies for stereo vision. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages I:125–131, Fort Collins, CO, June 23-25 1999.
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Survey on mathematical prerequisites

Homogeneous coordinates
Projective space
Orthogonal matrices
Null space (kernel)
Matrix rank
Determinant, Laplace expansion
Cross product
Triple product
Frobenius norm
Cholesky decomposition
QR decomposition
Eigenvalues and eigenvectors
Singular Value decomposition
Kronecker product
Multilinear forms


