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1 Introduction

This notes introduces the basic geometric concepts of multiple-view computer vi-
sion. The focus is on geometric models of perspective cameras, and the constraints
and properties such models generate when multiple cameras observe the same 3-D
scene.

Geometric vision is an important and well-studied part of computer vision. A wealth
of useful results has been achieved in the last 15 years and has been reported in
comprehensive monographies, e.g., [5, 9, 6], a sign of maturity for a research subject.

It is worth reminding the reader that geometry is an important but not the only
important aspect of computer vision, and in particular of multi-view vision. The
information brought by each image pixel is twofold: its position and its colour (or
brightness, for a monochrome image). Ultimately, each computer vision system
must start with brightness values, and, to smaller or greater depth, link such values
to the 3-D world.
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Fig. 1. Example of reconstruction from images. Original images (top row) and reconstructed model

(bottom row).
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2 Projective Geometry

The physical space is the Euclidean 3-D space E3, a real 3-dimensional affine space
endowed with the inner product.

Our ambient space is the projective 3-D space P3, obtained by completing E3

with a projective plane, known as plane at infinity Π∞. In this ideal plane lie the
intersections of the planes parallel in E3.

The projective (or homogeneous) coordinates of a point in P3 are 4-tuples defined
up to a scale factor. We write

M ' (x, y, z, t) (1)

where ' indicates equality to within a multiplicative factor.

The affine points are those of P3 which do not belong to Π∞. Their projective
coordinates are of the form (x, y, z, 1), where (x, y, z) are the usual Cartesian
coordinates.

Π∞ is defined by its equation t = 0.
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The linear transformations of a projective space into itself are called collineations
or homographies. Any collineation of P3 is represented by a generic 4× 4 invertible
matrix.

Affine transformations are the subgroup of collineations of P3 that preserves the
plane at infinity (i.e., parallelism).

Similarity transformations are the subgroup of affine transformations that leave
invariant a very special curve, the absolute conic, which is in the plane at infinity
and whose equation is:

x2 + y2 + z2 = 0 = t (2)

Similarity transformations preserves the angles.
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The space is therefore stratified into more and more specialized structures:

• projective

• affine (knowing the plane at infinity)

• Euclidean (knowing the absolute conic)

The stratification reflects the amount of knowledge that we possess about the scene
and the sensor.
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3 Pin-hole Camera Geometry

The pin-hole camera is described by its optical centre C (also known as camera
projection centre) and the image plane.

The distance of the image plane from C is the focal length f .

The plane parallel to the image plane containing the optical centre is called the
principal plane or focal plane of the camera.

A 3-D point is projected onto the image plane with the line containing the point
and the optical centre (see Figure 2).

10



Fig. 2. Pin-hole camera geometry. The left figure illustrates the projection of the point M on the

image plane by drawing the line through the camera centre C and the point to be projected. The

right figure illustrates the same situation in the YZ plane, showing the similar triangles used to

compute the position of the projected point m in the image plane.
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3.1 The camera projection matrix

If the world and image points are represented by homogeneous vectors, then per-
spective projection can be expressed in terms of matrix multiplication as

ζm = PM (3)

where

•M = (x, y, z, 1)T are the homogeneous coordinates of the 3-D point,

• m = (u, v, 1)T are the homogeneous pixel coordinates of the image point,

• ζ is the distance of M from the focal plane of the camera and

• P is the matrix describing the mapping, called the camera projection matrix.

The camera matrix is the product of two matrices

P = K[I|0]G = K[R|t] (4)
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Extrinsic parameters

G =

[
R t
0 1

]
(5)

G is composed by a rotation matrix R and a translation vector t. It describes the
position and orientation of the camera with respect to an external (world) coordinate
system. It depends on six parameters, called extrinsic parameters.

The rows of R are unit vectors that, together with the optical centre, define the
camera reference frame, expressed in world coordinates.

13



Intrinsic parameters

K =




f/sx f/sx cot θ ox

0 f/sy oy

0 0 1


 (6)

K is the camera calibration matrix; it encodes the transformation in the image
plane from the so-called normalized camera coordinates to pixel coordinates.

It depends on intrinsic parameters:

• focal distance f (in mm),

• principal point (or image centre) coordinates ox, oy (in pixel),

• width (sx) and height (sy) of the pixel footprint on the camera photosensor (in
mm),

• angle θ between the axes (usually π/2).

The ratio sy/sx is the aspect ratio (usually close to 1).
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General camera

If P describes a camera, also λP for any 0 6= λ ∈ R describes the same camera,
since these give the same image point for each scene point.

In this case we can also write:
m ' PM (7)

where ' means “equal up to a scale factor.”

In general, the camera projection matrix is a 3 × 4 full-rank matrix and, being
homogeneous, it has 11 degrees of freedom.

Using QR factorization, it can be shown that any 3× 4 full rank matrix P can be
factorised as:

P = λK[R|t], (8)

(λ is recovered from K(3, 3) = 1).
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3.2 Camera anatomy

Projection centre

The camera projection centre C is the only point for which the projection is not
defined, i.e.:

PC = P

(
C̃
1

)
= 0 (9)

where C̃ is a 3-D vector containing the Cartesian (non-homogeneous) coordinates
of the optical centre.

After solving for C̃ we obtain:

C̃ = −P−1
1:3 P4 (10)

where the matrix P is represented by the block form: P = [P1:3|P4] (the subscript
denotes a range of columns).
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Depth of a point

We observe that:

ζm = PM = PM− PC = P (M−C) = P1:3(M̃− C̃). (11)

In particular, plugging Eq. (8), the third component of this equation is

ζ = λrT
3 (M̃− C̃)

where rT
3 is the third row of the rotation matrix R, which correspond to the versor

of the principal axis.

If λ = 1, ζ is the projection of the vector (M̃− C̃) onto the principal axis, i.e., the
depth of M.
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Optical ray

The projection can be geometrically modelled by a ray through the optical centre
and the point in space that is being projected onto the image plane (see Fig. 2).

The optical ray of an image point m is the locus of points in space that projects
onto m.

It can be described as a parametric line passing through the camera projection
centre C and a special point (at infinity) that projects onto m:

M =

( −P−1
1:3 P4

1

)
+ ζ

(
P−1

1:3 m
0

)
, ζ ∈ R. (12)

The parameter ζ in Eq. (12) represent the the depth of the point M only if P has

been scaled so that λ = 1 in Eq. (8). ©01
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3.2.1 Image of the absolute conic

We will prove now that the image of the absolute conic depends on the intrinsic
parameters only (it is unaffected by camera position and orientation).

The points in the plane at infinity have the form M = (M̃T , 0)T , hence

m ' K[R | t](M̃T , 0)T = KRM̃. (13)

The image of points on the plane at infinity does not depend on camera position
(it is unaffected by camera translation).

The absolute conic (which is in the plane at infinity) has equation M̃TM̃ = 0,
therefore its projection has equation:

mT (K−TK−1)m = 0. (14)

The conic ω = (KKT )−1 is the image of the absolute conic.
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The angle (a metrical property) between two rays is determined by the image of

the absolute conic. ©02

Let us consider a camera P = [K|0], then m = 1
zKM̃. Let θ be the angle between

the rays trough M1 and M1, then

cos θ =
M̃T

1 M̃2

||M̃1||||M̃2||
=

mT
1 ωm2√

mT
1 ωm1

√
mT

2 ωm2

(15)

θ

2

1

2

1

m

C

Z

X

Y

M

M

m
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3.3 Camera calibration (or resection)

A number of point correspondences mi ↔Mi is given, and we are required to find
a camera matrix P such that

mi ' PMi for all i. (16)

The equation can be rewritten in terms of the cross product as

mi × PMi = 0. (17)

This form will enable a simple a simple linear solution for P to be derived. Using
the properties of the Kronecker product (⊗) and the vec operator [23], we derive:

mi × PMi = 0 ⇐⇒ [mi]×PMi = 0 ⇐⇒ vec([mi]×PMi) = 0 ⇐⇒
⇐⇒ (MT

i ⊗ [mi]×) vec P = 0 ⇐⇒ ([mi]× ⊗MT
i ) vec P T = 0

After expanding the coefficient matrix, we obtain


0T −MT
i viM

T
i

MT
i 0T −uiM

T
i

−viM
T
i uiM

T
i 0T


 vec P T = 0 (18)
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Although there are three equations, only two of them are linearly independent: we
can write the third row (e.g.) as a linear combination of the first two.

From a set of n point correspondences, we obtain a 2n × 12 coefficient matrix A
by stacking up two equations for each correspondence.

In general A will have rank 11 (provided that the points are not all coplanar) and
the solution is the 1-dimensional right null-space of A.

The projection matrix P is computed by solving the resulting linear system of
equations, for n ≥ 6.

If the data are not exact (noise is generally present) the rank of A will be 12 and
a least-squares solution is sought.

The least-squares solution for vec(P T ) is the singular vector corresponding to the
smallest singular value of A.

This is called the Direct Linear Transform (DLT) algorithm [9].
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4 Two-View Geometry

The two-view geometry is the intrinsic geometry of two different perspective views
of the same 3-D scene (see Figure 3). It is usually referred to as epipolar geometry.

The two perspective views may be acquired simultaneously, for example in a stereo
rig, or sequentially, for example by a moving camera. From the geometric view-
point, the two situations are equivalent, provided that that the scene do not change
between successive snapshots.

Most 3-D scene points must be visible in both views simultaneously. This is not
true in case of occlusions, i.e., points visible only in one camera. Any unoccluded
3-D scene point M = (x, y, z, 1)T is projected to the left and right view as m` =
(u`, v`, 1)T and mr = (ur, vr, 1)T , respectively (see Figure 3).

Image points m` and mr are called corresponding points (or conjugate points) as
they represent projections of the same 3-D scene point M.

The knowledge of image correspondences enables scene reconstruction from images.
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The concept of correspondence is a cornerstone of multiple-view vision. In this notes
we assume known correspondences, and explore their use in geometric algorithms.
Techniques for computing dense correspondences are surveyed in [29, 4].

Fig. 3. Two perspective views of the same 3-D scene. m` and mr are corresponding points, as they

are the projection of the same 3-D point, M.
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We will refer to the camera projection matrix of the left view as P` and of the right
view as Pr. The 3-D point M is then imaged as (19) in the left view, and (20) in
the right view:

ζ`m` = P`M (19)

ζrmr = PrM. (20)

Geometrically, the position of the image point m` in the left image plane I` can be
found by drawing the optical ray through the left camera projection centre C` and
the scene point M. The ray intersects the left image plane I` at m`.

Similarly, the optical ray connecting Cr and M intersects the right image plane Ir

at mr.

The relationship between image points m` and mr is given by the epipolar geometry,
described in Section 4.1.
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4.1 Epipolar Geometry

The epipolar geometry describes the geometric relationship between two perspective
views of the same 3-D scene.

The key finding, discussed below, is that corresponding image points must lie on
particular image lines, which can be computed without information on the calibra-
tion of the cameras.

This implies that, given a point in one image, one can search the corresponding
point in the other along a line and not in a 2-D region, a significant reduction in
complexity.

26



Fig. 4. The epipolar geometry and epipolar constraint.
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Any 3-D point M and the camera projection centres C` and Cr define a plane that
is called epipolar plane.

The projections of the point M, image points m` and mr, also lie in the epipolar
plane since they lie on the rays connecting the corresponding camera projection
centre and point M.

The conjugate epipolar lines, l` and lr, are the intersections of the epipolar plane
with the image planes. The line connecting the camera projection centres (C`,Cr)
is called the baseline.

The baseline intersects each image plane in a point called epipole.

By construction, the left epipole e` is the image of the right camera projection
centre Cr in the left image plane. Similarly, the right epipole er is the image of the
left camera projection centre C` in the right image plane.

All epipolar lines in the left image go through e` and all epipolar lines in the right
image go through er.
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The epipolar constraint.

An epipolar plane is completely defined by the camera projection centres and one
image point.

Therefore, given a point m`, one can determine the epipolar line in the right image
on which the corresponding point, mr, must lie.

The equation of the epipolar line can be derived from the equation describing the
optical ray. As we mentioned before, the right epipolar line corresponding to m`

geometrically represents the projection (Equation (3)) of the optical ray through
m` (Equation (12)) onto the right image plane:

ζrmr = PrM = Pr

( −P−1
`1:3

P`4
1

)

︸ ︷︷ ︸
er

+ ζ`Pr

(
P−1

`1:3
m`

0

)
(21)
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If we now simplify the above equation we obtain the description of the right epipolar
line:

ζrmr = er + ζ`Pr1:3
P−1

`1:3
m`︸ ︷︷ ︸

m′`

(22)

This is the equation of a line through the right epipole er and the image point m′`
which represents the projection onto the right image plane of the point at infinity
of the optical ray of m`.

The equation for the left epipolar line is obtained in a similar way.
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Fig. 5. Left and right images with epipolar lines.
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The epipolar geometry can be described analytically in several ways, depending on
the amount of the a priori knowledge about the stereo system. We can identify
three general cases.

If both intrinsic and extrinsic camera parameters are known, we can describe the
epipolar geometry in terms of the projection matrices (Equation (22)).

If only the intrinsic parameters are known, we work in normalized camera coordinates
and the epipolar geometry is described by the essential matrix.

If neither intrinsic nor extrinsic parameters are known the epipolar geometry is
described by the fundamental matrix.
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4.1.1 The Essential Matrix E

As the intrinsic parameters are known, we can switch to normalized camera coordi-
nates: m← K−1m (please note that this change of notation will hold throughout
this section).

Consider a pair of cameras P` and Pr. Without loss of generality, we can fix the
world reference frame onto the first camera, hence:

P` = [I|0] and Pr = [R|t]. (23)

With this choice, the unknown extrinsic parameters have been made explicit.

If we substitute these two particular instances of the camera projection matrices in
Equation (22), we get

ζrmr = t + ζ`Rm`; (24)

in other words, the point mr lies on the line through the points t and Rm`. In

homogeneous coordinates, this can be written as follows: ©14

mT
r (t×Rm`) = 0, (25)

as the homogeneous line through two points is expressed as their cross product.
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Similarly, a dot product of a point and a line is zero if the point lies on the line.

The cross product of two vectors can be written as a product of a skew-symmetric
matrix and a vector. Equation (25) can therefore be equivalently written as

mT
r [t]×Rm` = 0, (26)

where [t]× is the skew-symmetric matrix of the vector t. Let us define the essential
matrix E:

E , [t]×R. (27)

In summary, the relationship between the corresponding image points m` and mr

in normalized camera coordinates is the bilinear form:

mT
r Em` = 0. (28)

E encodes only information on the extrinsic camera parameters. It is singular, since
det[t]× = 0. The essential matrix is a homogeneous quantity. It has only five
degrees of freedom: a 3-D rotation and a 3-D translation direction.
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4.1.2 The Fundamental Matrix F

The fundamental matrix can be derived in a similar way to the essential matrix. All
camera parameters are assumed unknown; we write therefore a general version of
Equation (23):

P` = K`[I|0] and Pr = Kr[R|t]. (29)

Inserting these two projection matrices into Equation (22), we get

ζrmr = er + ζ`KrRK−1
` m` with er = Krt, (30)

which states that point mr lies on the line through er and KrRK−1
` m`. As in the

case of the essential matrix, this can be written in homogeneous coordinates as:

mT
r [er]×KrRK−1

` m` = 0. (31)

The matrix
F = [er]×KrRK−1

` (32)

is the fundamental matrix F , giving the relationship between the corresponding
image points in pixel coordinates.
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Therefore, the bilinear form that links corresponding points writes:

mT
r Fm` = 0. (33)

F is the algebraic representation of the epipolar geometry in the least information
case. It is a 3 × 3, rank-two homogeneous matrix. It has only seven degrees of
freedom since it is defined up to a scale and its determinant is zero. Notice that
F is completely defined by pixel correspondences only (the intrinsic parameters are
not needed).

For any point m` in the left image, the corresponding epipolar line lr in the right
image can be expressed as

lr = Fm`. (34)

Similarly, the epipolar line l` in the left image for the point mr in the right image
can be expressed as

l` = F Tmr. (35)

36



The left epipole e` is the right null-vector of the fundamental matrix and the right
epipole is the left null-vector of the fundamental matrix:

Fe` = 0 (36)

eT
r F = 0 (37)

One can see from the derivation that the essential and fundamental matrices are
related through the camera calibration matrices K` and Kr:

F = K−T
r EK−1

` . (38)

Consider a camera pair. Using the fact that if F maps points in the left image to
epipolar lines in the right image, then F T maps points in the right image to epipolar

lines in the left image, Equation (30) gives: ©10

ζrF
Tmr = ζ`(e` ×m`). (39)

This is another way of writing the epipolar constraint: the epipolar line of mr

(F Tmr) is the line containing its corresponding point (m`) and the epipole in the
left image (e`).
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4.1.3 Estimating F: the eight-point algorithm

If a number of point correspondences mi
` ↔mi

r is given, we can use Equation (33)
to compute the unknown matrix F .

We need to convert Equation (33) from its bilinear form to a form that matches
the null-space problem. To this end we use again the vec operator, as in the DLT
algorithm:

mT
r Fm` = 0 ⇐⇒ vec(mT

r Fm`) = 0 ⇐⇒ (mT
r ⊗mT

` ) vec(F ) = 0.

Each point correspondence gives rise to one linear equation in the unknown entries
of F . From a set of n point correspondences, we obtain a n× 9 coefficient matrix
A by stacking up one equation for each correspondence.

In general A will have rank 8 and the solution is the 1-dimensional right null-space
of A.
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The fundamental matrix F is computed by solving the resulting linear system of
equations, for n ≥ 8.

If the data are not exact and more than 8 points are used, the rank of A will be 9
and a least-squares solution is sought.

The least-squares solution for vec(F ) is the singular vector corresponding to the
smallest singular value of A.

This method does not explicitly enforce F to be singular, so it must be done a
posteriori.

Replace F by F
′
such that det F

′
= 0, by forcing to zero the least singular value.

It can be shown that F
′
is the closest singular matrix to F in Frobenius norm.

Geometrically, the singularity constraint ensures that the epipolar lines meet in a
common epipole.
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4.2 Triangulation

Given the camera matrices P` and Pr, let m` and mr be two corresponding points
satisfying the epipolar constraint mT

r Fm` = 0. It follows that mr lies on the
epipolar line Fm` and so the two rays back-projected from image points m` and
mr lie in a common epipolar plane. Since they lie in the same plane, they will
intersect at some point. This point is the reconstructed 3-D scene point M.

Analytically, the reconstructed 3-D point M can be found by solving for parameter
ζ` or ζr in Eq. (22). Let us rewrite it as:

er = ζrmr − ζ`m
′
` (40)

The depth ζr and ζ` are unknown. Both encode the position of M in space, as ζr is
the depth of M wrt the right camera and ζ` is the depth of M wrt the left camera.
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The three points mr, er and m′` are known and are collinear, so we can solve for
ζr using the following closed form expressions [28]:

ζr =
(er ×m′`) · (mr ×m′`)
||mr ×m′`||2

(41)

The reconstructed point M can then be calculated by inserting the value ζ into
Equation (12).

In reality, camera parameters and image locations are known only approximately.
The back-projected rays therefore do not actually intersect in space. It can be
shown, however, that Formula (41) solve Eq. (40) in a least squares sense [18].

Triangulation can be also cast as a null-space problem, starting from the general

projection equation (3).©12

Triangulation is addressed in more details in [2, 11, 9, 36].
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4.3 3-D Reconstruction

What can be reconstructed depends on what is known about the scene and the
stereo system. We can identify three cases.

(i) If both the intrinsic and extrinsic camera parameters are known, we can solve
the reconstruction problem unambiguously by triangulation.

(ii) If only the intrinsic parameters are known, we can estimate the extrinsic param-
eters and solve the reconstruction problem up to an unknown scale factor. In
other words, R can be estimated completely, and t up to a scale factor.

(iii) If neither intrinsic nor extrinsic parameters are known, i.e., the only information
available are pixel correspondences, we can still solve the reconstruction problem
but only up to an unknown, global projective transformation of the world.
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4.3.1 Reconstruction up to a Similarity

If only intrinsics are known (plus point correspondences between images), the epipo-
lar geometry is described by the essential matrix (Section 4.1.1). We will see that,
starting from the essential matrix, only a reconstruction up to a similarity transfor-
mation (rigid+ uniform scale) can be achieved. Such a reconstruction is referred
to as “Euclidean”.

Unlike the fundamental matrix, the only property of which is to have rank two, the
essential matrix is characterised by the following theorem [15].

Theorem 4.1 A real 3 × 3 matrix E can be factorised as product of a nonzero
skew-symmetric matrix and a rotation matrix if and only if E has two identical
singular values and a zero singular value.

The theorem has a constructive proof (see [15]) that describes how E can be fac-
torised into rotation and translation using its Singular Value Decomposition (SVD).
©07
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The rotation R and translation t are then used to instantiate a camera pair as
in Equation (23), and this camera pair is subsequently used to reconstruct the
structure of the scene by triangulation.

The rigid displacement ambiguity arises from the arbitrary choice of the world refer-
ence frame, whereas the scale ambiguity derives from the fact that t can be scaled
arbitrarily in Equation (27) and one would get the same essential matrix (E is
defined up to a scale factor).

Therefore translation can be recovered from E only up to an unknown scale fac-
tor which is inherited by the reconstruction. This is also known as depth-speed

ambiguity. ©15
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4.3.2 Reconstruction up to a Projective Transformation

Suppose that a set of image correspondences mi
` ↔ mi

r are given. It is assumed
that these correspondences come from a set of 3-D points Mi, which are unknown.
Similarly, the position, orientation and calibration of the cameras are not known.
This situation is usually referred to as weak calibration, and we will see that the
scene may be reconstructed up to a projective ambiguity, which may be reduced if
additional information is supplied on the cameras or the scene.

The reconstruction task is to find the camera matrices P` and Pr, as well as the
3-D points Mi such that

mi
` = P`M

i and mi
r = PrM

i, ∀i (42)

If T is any 4 × 4 invertible matrix, representing a collineation of P3, then replac-
ing points Mi by TMi and matrices P` and Pr by P`T

−1 and PrT
−1 does not

change the image points mi
`. This shows that, if nothing is known but the image

points, the structure Mi and the cameras can be determined only up to a projective
transformation.
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The procedure for reconstruction follows the previous one. Given the weak cali-
bration assumption, the fundamental matrix can be computed (using the algorithm
described in Section 4.1.2), and from a (non-unique) factorization of F of the form

F = [er]×A (43)

two camera matrices P` and Pr:

P` = [I|0] and Pr = [A|er], (44)

can be created in such a way that they yield the fundamental matrix F , as can
be easily verified. The position in space of the points Mi is then obtained by
triangulation.
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The matrix A in the factorization of F can be set to A = −[er]×F (this is called

the epipolar projection matrix [21]). ©08

Unlike the essential matrix, F does not admit a unique factorization, whence the
projective ambiguity follows.

Indeed, for any A satisfying Equation (43), also A+erx
T for any vector x, satisfies

Equation (43).
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5 Multiple View Geometry

In this section we study the relationship that links three or more views of the same
3-D scene, known in the three-view case as trifocal geometry.

This geometry could be described in terms of fundamental matrices linking pairs
of cameras, but a more compact and elegant description is provided by a suitable
trilinear form, in the same way as the epipolar (bifocal) geometry is described by a
bilinear form.

We also discover that three views are all we need, in the sense that additional views
do not allow us to compute anything we could not already compute (Section 5.4).
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5.1 Trifocal geometry

Denoting the cameras by 1, 2, 3, there are now three fundamental matrices, F1,2,
F1,3, F2,3, and six epipoles, ei,j, as in Figure 6. The three fundamental matrices
describe completely the trifocal geometry [7].

The plane containing the three optical centres is called the trifocal plane. It inter-
sects each image plane along a line which contains the two epipoles.

Writing Eq. (39) for each camera pair (taking the centre of the third camera as the
point M) results in three epipolar constraints:

F3,1e3,2 ' e1,3 × e1,2 F1,2e1,3 ' e2,1 × e2,3 F2,3e2,1 ' e3,2 × e3,1 (45)

Three fundamental matrices include 21 free parameters, less the 3 constraints above;
the trifocal geometry is therefore determined by 18 parameters.

This description of the trifocal geometry fails when the three cameras are collinear,
and the trifocal plane reduces to a line.
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Fig. 6. Trifocal geometry.
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Point transfer

If the trifocal geometry is known, given two conjugate points m1 and m2 in view 1
and 2 respectively, the position of the conjugate point m3 in view 3 is completely
determined (Figure 7).

This allows for point transfer or prediction. Indeed, m3 belongs simultaneously to
the epipolar line of m1 and to the epipolar line of m2, hence:

m3 ' F1,3m1 × F2,3m2 (46)

13F

F
23

1 2 3

Fig. 7. Point transfer using epipolar constraints between three views.
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View synthesis [19, 1, 3], exploit the trifocal geometry to generate novel (synthetic)
images starting from two reference views. A related topic is image-based rendering
[20, 37, 16].

Epipolar transfer fails when the three optical rays are coplanar, because the epipolar
lines are coincident. This happens:

• if the 3-D point is on the trifocal plane;

• if the three cameras centres are collinear (independently of the position of 3-D
point).

These deficiencies motivate the introduction of an independent trifocal constraint.

In addition, by generalizing the case of two views, one might conjecture that the
trifocal geometry should be represented by a trilinear form in the coordinates of
three conjugate points.
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5.2 The trifocal constraint

Consider a point M in space projecting to m1, m2 and m3 in three cameras

P1 = [I|0], P2 = [A2|e2,1], and P3 = [A3|e3,1]. (47)

Let us write the epipolar line of m1 in the other two views (using Equation (22)):

ζ2m2 = e2,1 + ζ1A2m1 (48)

ζ3m3 = e3,1 + ζ1A3m1. (49)

Consider a line through m2, represented by s2; we have sT
2 m2 = 0, that substituted

in (48) gives:
0 = sT

2 e2,1 + ζ1s
T
2 A2m1 (50)

Likewise, for a line through m3 represented by s3 we can write:

0 = sT
3 e3,1 + ζ1s

T
3 A3m1 (51)
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After eliminating ζ1 from Equation (50) and (51) we obtain:

0 = (sT
2 e2,1)(s

T
3 A3m1)− (sT

3 e3,1)(s
T
2 A2m1) (52)

and after some re-writing:

0 = sT
2

(
e2,1m

T
1 AT

3 − A2m1e
T
3,1

)
s3 (53)

This is the fundamental trifocal constraint, that links (via a trilinear form) m1, s2

(any line through m2) and s3 (any line through m3).

Geometrically, the trifocal constraint imposes that the optical rays of m1 intersect
the 3-D line L that projects onto s2 in the second image and s3 in the third image.

Please note that given two (arbitrary) lines in two images, they can be always seen
as the image of a 3-D line L, because two planes always define a line, in projective
space (this is why there is no such thing as the epipolar constraint between lines.)

The trifocal constraint represents the trifocal geometry (nearly) without singular-
ities. It only fails is when the cameras are collinear and the 3-D point is on the
same line.
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Fig. 8. Two arbitrary lines s2 and s3 through corresponding points m2 and m3 in the second and

third image respectively, define a 3-D line L that must intersect the optical ray of m1.
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Using the properties of the Kronecker product (Cfr. pg. 38), the fundamental trifocal
constraint (Eq. (53)) can be written as:

0 = (sT
3 ⊗ sT

2 )Tm1 = (mT
1 ⊗ sT

3 ⊗ sT
2 ) vec(T ) = sT

2 (Tm1)
(3)s3 (54)

where T is the 9× 3 matrix defined by

T = (A3 ⊗ e2,1)− (e3,1 ⊗ A2)

and (Tm1)
(3) is a 3×3 matrix such that vec(Tm1)

(3) = Tm1. The vector transpo-
sition operator A(p)generalizes the transpose of a matrix A by operating on vectors
of p entries at a time (see [25]).

The matrix T represents the trilinear form, in the sense that contains its 27 coeffi-
cient. It also encodes the trifocal geometry, hence we1 call it the trifocal matrix.

Each of the three equations (54) is an equivalent formulation of the fundamental
trifocal constraint.

1This is an alternative approach to trifocal geometry, so please be aware that there is no such thing as the trifocal matrix in the literature.
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5.2.1 Trifocal constraints for points.

Since a point is determined by two lines, we can write a similar independent con-
straint for a second line. Such two lines determining a point m are represented by
any two rows of [m]×. To keep notation compact let us consider the whole matrix
[m]×. The trifocal constraints for three points writes:

[m2]×(Tm1)
(3)[m3]× = 03×3. (55)

This is a matrix equation which gives 9 scalar equations, only four of which are
independent. Equivalently

(mT
1 ⊗ [m3]× ⊗ [m2]×) vec(T ) = 0 (56)

This equation can be used to recover T (likewise we did for F ). The coefficient
matrix is a 9×27 matrix of rank 4 (the rank of the Kronecker product is the product
of the ranks), therefore every triplet {m1, m2, m3} of corresponding points gives
four linear independent equations. Seven triplets determine the 27 entries of T .
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Point transfer.

Let sT
2 be a row of [m2]×, then

(
sT
2 (Tm1)

(3)
)

[m3]× = 0 (57)

This implies that the transpose of the leftmost term in parentheses (which is a 3-D
vector) belongs to the kernel of [m3]×, which is equal to m3 (up to a scale factor)
by construction. Hence

m3 ' (Tm1)
(3)Ts2 (58)

This is the point transfer equation: if m1 and m2 are conjugate points in the first
and second view respectively, the position of the conjugate point m3 in the third
view is computed by means of the trifocal matrix.
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5.2.2 Trifocal constraint for lines.

Consider a line L in space projecting to s1, s2 and s3 in the three cameras. The
fundamental trifocal constraint must hold for any point m1 contained in the line
s1:

(sT
3 ⊗ sT

2 )Tm1 = 0 ∀m1 : sT
1 m1 = 0

hence
sT
1 = (sT

3 ⊗ sT
2 )T (59)

This is the trifocal constraint for lines, which also allows directly line transfer.

59



5.3 Reconstruction

As in the case of two views, what can be reconstructed depends on what is known
about the scene and the cameras.

If the intrinsic parameters of the cameras are known, we can obtain a Euclidean
reconstruction, that differs from the true reconstruction by a similarity transforma-
tion. This is composed by a rigid displacement (due to the arbitrary choice of the
world reference frame) plus a a uniform change of scale (due to the well-known
depth-speed ambiguity).

In the weakly calibrated case, i.e., when point correspondences are the only infor-
mation available, a projective reconstruction can be obtained.

In both cases, the solution is not a straightforward generalization of the two view
case, as the problem of global consistency comes into play (i.e., how to relate each
other the local reconstructions that can be obtained from view pairs).
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5.3.1 Euclidean Reconstruction

Let us consider for simplicity the case of three views, which generalizes straightfor-
ward to N views.

If one applies the method of Section 4.3.1 to view pairs 1-2, 1-3 and 2-3 one obtains
three displacements (R12, t̂12), (R13, t̂13) and (R23, t̂23) known up a scale factor, as
the norm of translation cannot be recovered, (the symbolˆ indicates a unit vector).

The “true” displacements must satisfy the following compositional rule

t13 = R23t12 + t23 (60)

which can be rewritten as

t̂13 = µ1R23t̂12 + µ2t̂23 (61)

where µ1 = ||t12||/||t13|| and µ2 = ||t23||/||t13|| are unknown.
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However, Eq. (60) constraints t̂13, R23t̂12 and t̂23 to be coplanar, hence the ratios
µ1, µ2 can be recovered:

||t12||
||t13|| = µ1 =

(t̂13 × t̂23) · (R23t̂12 × t̂23)

||R23t̂12 × t̂23||2
(62)

And similarly for µ2.

In this way three consistent camera matrices can be instantiated.

Note that only ratios of translation norm can be computed, hence the global scale
factor remains undetermined.
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5.3.2 Projective Reconstruction

If one applies the method of Section 4.3.2 to consecutive pairs of views, she would
obtain, in general, a set of reconstructions linked to each other by an unknown pro-
jective transformation (because each camera pair defines its own projective frame).

The trifocal geometry could be used to link together consistently triplets of views.
In Section 4.3.2 we saw how a camera pair can be extracted from the fundamental
matrix. Likewise, a triplet of consistent cameras can extracted from the trifocal
matrix (or tensor). The procedure is more tricky, though.

An elegant method for multi-image reconstruction was described in [32], based on
the same idea of the factorization method [33].
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Consider m cameras P1 . . . Pm looking at n 3-D points M1 . . .Mn. The usual
projection equation

ζj
i m

j
i = PiM

j i = 1 . . .m, j = 1 . . . n. (63)

can be written in matrix form:


ζ1
1m

1
1 ζ2

1m
2
1 . . . ζn

1 m
n
1

ζ1
2m

1
2 ζ2

2m
2
2 . . . ζn

2 m
n
2

... ... . . . ...
ζ1
mm1

m ζ2
mm2

m . . . ζn
mmn

m




︸ ︷︷ ︸
scaled measurements W

=




P1

P2
...

Pm




︸ ︷︷ ︸
P

[
M1, M2, . . . Mn

]
︸ ︷︷ ︸

structure M

. (64)

In this formula the mj
i are known, but all the other quantities are unknown, including

the projective depths ζj
i . Equation (64) tells us that W can be factored into the

product of a 3m × 4 matrix P and a 4 × n matrix M . This also means that W
has rank four.
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If we assume for a moment that the projective depths ζj
i are known, then matrix

W is known too and we can compute its singular value decomposition:

W = UDV T . (65)

In the noise-free case, D = diag(σ1, σ2, σ3, σ4, 0, . . . 0), thus, only the first 4
columns of U (V ) contribute to this matrix product. Let U3m×4 (Vn×4) the matrix
of the first 4 columns of U (V ). Then:

W = U3m×4 diag(σ1, σ2, σ3, σ4) V T
n×4. (66)

The sought reconstruction is obtained by setting:

P = U3m×4 diag(σ1, σ2, σ3, σ4) and M = V T
n×4 (67)

This reconstruction is unique up to a (unknown) projective transformation. Indeed,
for any non singular projective transformation T , TP and T−1M is an equally valid
factorization of the data into projective motion and structure.

Consistently, the choice to subsume diag(σ1, σ2, σ3, σ4) in P is arbitrary.
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In presence of noise, σ5 will not be zero. By forcing D = diag(σ1, σ2, σ3, σ4, 0, . . . 0)
one computes the solution that minimizes the following error:

||W − PM ||2F =
∑
i,j

||ζj
i m

j
i − PiM

j||2

where || · ||F is the Frobenius norm.

As the depth ζj
i are unknown, we are left with the problem of estimating them.

An iterative solution is to alternate estimating ζj
i (given P and M) with estimating

P and M (givenζj
i ).

If P and M are known, estimating ζj
i is a linear problem. Indeed, for a given point

j the projection equation writes:


ζj
1m

j
1

ζj
2m

j
2

...
ζj
mmj

m


 =




mj
1 0 . . . 0

0 mj
2 . . . 0

... ... . . . ...
0 0 . . . mj

m




︸ ︷︷ ︸
Qj




ζj
1

ζj
2
...

ζj
m




︸ ︷︷ ︸
ζj

= PM j (68)
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Starting from an initial guess for ζj
i (typically ζj

i = 1), the following iterative
procedure2 is used:

1. Normalize W such that ||W |||F = 1;

2. Factorize W and obtain an estimate of P and M ;

3. If ||W − PM ||2F is sufficiently small then stop;

4. Solve for ζj in Qjζj = PM j, for all j = 1 . . . n;

5. Update W .

6. Goto 1.

Step 1 is necessary to avoid trivial solutions (e.g. ζj
i = 0).

This technique is fast, requires no initialization, and gives good results in practice,
although there is no guarantee that the iterative process will converge. A provably
convergent iterative method has been presented in [24].

2Whilst this procedure captures the main idea of Sturm and Triggs, it is not exactly the algorithm proposed in [32]. To start with, the original algorithm [32]
was not iterative and used the epipolar constraint (Eq.39) to fix the ratio of the projective depths of one point in successive images. It was [34] who made the
scheme iterative. Moreover in [32] the normalization of W is performed by normalizing rows and columns of W . The Frobenius norm was used by [27]. A similar
scheme was also proposed by [12].
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5.4 Multifocal constraints

We outline here an alternative and elegant way to derive all the meaningful multi-
linear constraints on N views, based on determinants, described in [13]. Consider
one image point viewed by m cameras:

ζimi = PiM i = 1 . . . m (69)

By stacking all these equations we obtain:




P1 m1 0 . . . 0
P2 0 m2 . . . 0
... ... ... . . . ...

Pm 0 0 . . . mm




︸ ︷︷ ︸
L




M
−ζ1

−ζ2
...
−ζm




=




0
0
...
0


 (70)

This implies that the 3m×(m+4) matrix L is rank-deficient, i.e., rank L < m+4.
In other words, all the (m + 4)× (m + 4) minors of L are equal to 0.

There are three different types of such minors that translates into meaningful multi-
view constraints, depending on the number of rows taken from each view.
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The minors that does not contain at least one row
from each camera are identically zero, since they
contain a zero column.
Hence, one row has to be taken from each view.
Since there are m views, the remaining four rows
can be chosen as follows:

0
0
0

0
0
0

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

0
0
0

0
0
0

0
0
0

0
0
0

*
*
*

0
0
0

3m

0

4+m

0
0
0
0
0

1. Two rows from one view and two rows from another view. This gives a bilinear
two-view constraint, expressed by the bifocal tensor i.e., the fundamental matrix.

2. Two rows from one view, one row from another view and one row from a third
view. This gives a trilinear three-view constraint, expressed by the trifocal tensor.

3. One row from each of four different views. This gives a quadrilinear four-view
constraint, expressed by the quadrifocal tensor.
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If m > 4, the minors will contain only one row from some views, and the image
coordinate corresponding to this row can be factored out (using Laplace expansion).

In general, constraints involving more than 4 cameras can be factorised as product
of the two-, three-, or four-views constraints and image point coordinates.

This indicates that no interesting constraints can be written for more than four
views3.

3Actually, it can be proven that also the quadrifocal constraints are not independent [22].
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6 Dealing with noise and mismatches

In this section we will approach estimation problems from a more “practical” point
of view.

First, we will discuss how the presence of noise in the data affects our estimates
and describe the countermeasures that must be taken to obtain a good estimate.

Second, we will discuss the issue of algebraic vs geometric error in estimation.

Finally, we will deal with data corrupted by mismatches, or outliers.
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6.1 Pre-conditioning

In presence of noise (or errors) on input data, the accuracy of the solution of a
linear system depends crucially on the condition number of the system. The lower
the condition number, the less the input error gets amplified (the system is more
stable).

As [10] pointed out, it is crucial for linear algorithms (as the DLT algorithm) that
input data is properly pre-conditioned, by a suitable coordinate change (origin and
scale): points are translated so that their centroid is at the origin and are scaled so
that their average distance from the origin is

√
2.

This improves the condition number of the linear system that is being solved.

Apart from improved accuracy, this procedure also provides invariance under simi-
larity transformations in the image plane.

72



6.2 Algebraic vs geometric error

Measured data (i.e., image or world point positions) is noisy.

Usually, to counteract the effect of noise, we use more equations than necessary
and solve with least-squares.

What is actually being minimized by least squares?

In a typical null-space problem formulation Ax = 0 (like the DLT algorithm) the
quantity that is being minimized is the square of the residual ||Ax||.
In general, if ||Ax|| can be regarded as a distance between the geometrical entities
involved (points, lines, planes, etc..), than what is being minimized is a geometric
error, otherwise (when the error lacks a good geometrical interpretation) it is called
an algebraic error.

All the linear algorithm (DLT and others) we have seen so far minimize an algebraic
error. Actually, there is no justification in minimizing an algebraic error apart from
the ease of implementation, as it results in a linear problem.

73



Usually, the minimization of a geometric error is a non-linear problem, that admit
only iterative solutions and requires a starting point.

So, why should we prefer to minimize a geometric error? Because:

• The quantity being minimized has a meaning

• The solution is more stable

• The solution is invariant under Euclidean transforms

Often linear solution based on algebraic residuals are used as a starting point for a
non-linear minimization of a geometric cost function, which “gives the solution a
final polish” [9].

74



6.2.1 Geometric error for resection

The goal is to estimate the camera matrix, given a number of correspondences
(mj,Mj) j = 1 . . . n

The geometric error associated to a camera estimate P̂ is the distance between the
measured image point mj and the re-projected point P̂iM

j:

min
P̂

∑
j

d(P̂Mj,mj)2 (71)

where d() is the Euclidean distance between the homogeneous points.

The DLT solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton)
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6.2.2 Geometric error for triangulation

The goal is to estimate the 3-D coordinates of a point M, given its projection mi

and the camera matrix Pi for every view i = 1 . . .m.

The geometric error associated to a point estimate M̂ in the i-th view is the distance
between the measured image point mi and the re-projected point PiM̂:

min
M̂

∑
i

d(PiM̂,mi)
2 (72)

where d() is the Euclidean distance between the homogeneous points.

The linear solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).
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6.2.3 Geometric error for F

The goal is to estimate F given a a number of point correspondences mi
` ↔mi

r.

The geometric error associated to an estimate F̂ is given by the distance of conju-
gate points from conjugate lines (note the symmetry):

min
F̂

∑
j

d(F̂mj
`,m

j
r)

2 + d(F̂ Tmj
r,m

j
`)

2 (73)

where d() here is the Euclidean distance between a line and a point (in homogeneous
coordinates).

The eight-point solution is used as a starting point for the iterative minimization
(e.g. Gauss-Newton).

Note that F must be suitably parametrized, as it has only seven d.o.f. ©11
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6.2.4 Bundle adjustment (reconstruction)

If measurements are noisy, the projection equation will not be satisfied exactly by
the camera matrices and structure computed in Sec. 5.3.2.

We wish to minimize the image distance between the re-projected point P̂iM̂
j and

measured image points mj
i for every view in which the 3-D point appears:

min
P̂i,M̂j

∑
i,j

d(P̂iM̂
j,mj

i )
2 (74)

where d() is the Euclidean distance between the homogeneous points.

As m and n increase, this becomes a very large minimization problem.

A solution is to alternate minimizing the re-projection error by varying P̂i with
minimizing the re-projection error by varying M̂j.

See [35] for a review and a more detailed discussion on bundle adjustment.
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6.3 Robust estimation

Up to this point, we have assumed that the only source of error affecting corre-
spondences is in the measurements of point’s position. This is a small-scale noise
that gets averaged out with least-squares.

In practice, we can be presented with mismatched points, which are outliers to
the noise distribution (i.e., rogues measurements following a different, unmodelled,
distribution).

These outliers can severely disturb least-squares estimation (even a single outlier
can totally offset the least-squares estimation, as illustrated in Fig. 9.)
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Fig. 9. A single outlier can severely offset the least-squares estimate (red line), whereas the robust

estimate (blue line) is unaffected.

The goal of robust estimation is to be insensitive to outliers (or at least to reduce
sensitivity).
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6.3.1 M-estimators

Least squares:

min
θ

∑
i

(ri/σi)
2 (75)

where θ are the regression coefficient (what is being estimated) and ri is the residual.
M-estimators are based on the idea of replacing the squared residuals by another
function of the residual, yielding

min
θ

∑
i

ρ(ri/σi) (76)

ρ is a symmetric function with a unique minimum at zero that grows sub-quadratically,
called loss function.

Differentiating with respect to θ yields:
∑

i

1

σi
ρ′(ri/σi)

dri

dθ
= 0 (77)

The M-estimate is obtained by solving this system of non-linear equations.
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6.3.2 RANSAC

Given a model that requires a minimum of p data points to instantiate its free
parameters θ, and a set of data points S containing outliers:

1. Randomly select a subset of p points of S and instantiate the model from this
subset

2. Determine the set Si of data points that are within an error tolerance t of the
model. Si is the consensus set of the sample.

3. If the size of Si is greater than a threshold T , re-estimate the model (possibly
using least-squares) using Si (the set of inliers) and terminate.

4. If the size of Si is less than T , repeat from step 1.

5. Terminate after N trials and choose the largest consensus set found so far.
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Three parameters need to be specified: t, T and N .

Both T and N are linked to the (unknown) fraction of outliers ε.

N should be large enough to have a high probability of selecting at least one sample
containing all inliers. The probability to randomly select p inliers in N trials is:

P = 1− (1− (1− ε)p)N (78)

By requiring that P must be near 1, N can be solved for given values of p and ε.

T should be equal to the expected number of inliers, which is given (in fraction) by
(1− ε).

At each iteration, the largest consensus set found so fare gives a lower bound on
the fraction of inliers, or, equivalently, an upper bound on the number of outliers.
This can be used to adaptively adjust the number of trials N .

t is determined empirically, but in some cases it can be related to the probability
that a point under the threshold is actually an inlier [9].
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As pointed out in [31], RANSAC can be viewed as a particular M-estimator.

The objective function that RANSAC maximizes is the number of data points having
absolute residuals smaller that a predefined value t. This may be seen a minimising
a binary loss function that is zero for small (absolute) residuals, and 1 for large
absolute residuals, with a discontinuity at t.

t ri

Fig. 10. RANSAC loss function

By virtue of the prespecified inlier band, RANSAC can fit a model to data corrupted
by substantially more than half outliers.
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6.3.3 LMedS

Another popular robust estimator is the Least Median of Squares. It is defined by:

min
θ

mediri (79)

It can tolerate up to 50% of outliers, as up to half of the data point can be arbitrarily
far from the “true” estimate without changing the objective function value.

Since the median is not differentiable, a random sampling strategy similar to RANSAC
is adopted. Instead of using the consensus, each sample of size p is scored by the
median of the residuals of all the data points. The model with the least median
(lowest score) is chosen.

A final weighted least-squares fitting is used.

With respect to RANSAC, LMedS can tolerate “only” 50% of outliers, but requires
no setting of thresholds.
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7 Further readings

General books on (Geometric) Computer Vision are: [5, 36, 6, 9].
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