
6 Autocalibration

The aim of autocalibration is to compute the internal parameters, starting from
weakly calibrated cameras.

More in general, the task is to recover metric properties of camera and/or scene,
i.e., to compute a Euclidean reconstruction.

There are two classes of methods:

1. Direct: solve directly for the internal parameters.

2. Stratified: first obtain a projective reconstruction and then transform it to a
Euclidean reconstruction (in some cases an affine reconstruction is obtained in
between).

The reader is referred to [8] for a review of autocalibration, and to [33, 46, 21, 36,
35, 11] for classical and recent work on the subject.
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6.1 Counting argument

Consider m cameras. The difference between the d.o.f. of the multifocal geometry
(e.g. 7 for two views) and the d.o.f. of the rigid displacements (e.g. 5 for two
views) is the number of independent constraints available for the computation of
the intrinsic parameters (e.g. 2 for two views).

The multifocal geometry of m cameras (represented by the m-focal tensor) has
11m− 5 d.o.f. Proof: a set of m cameras have 11m d.o.f., but they determine the
m-focal geometry up to a collineation of P3, which has 15 d.o.f. The net sum is
11m− 5 d.o.f.

On the other hand, the rigid displacements in m views are described by 6m − 7
parameters: 3(m− 1) for rotations, 2(m− 1) for translations, and m− 2 ratios of
translation norms.

Thus, m weakly calibrated views give 5m − 8 constraints available for computing
the intrinsic parameters.
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Let us suppose that mk parameters are known and mc parameters are constant.

The first view introduces 5 − mk unknowns. Every view but the first introduces
5−mk −mc unknowns.

Therefore, the unknown intrinsic parameters can be computed provided that

5m− 8 ≥ (m− 1)(5−mk −mc) + 5−mk. (98)

For example, if the intrinsic parameters are constant, three views are sufficient to
recover them.

If one parameter (usually the skew) is known and the other parameters are varying,
at least eight views are needed.
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6.2 A simple direct method

If we consider two views, two independent constraints are available for the compu-
tation of the intrinsic parameters from the fundamental matrix.

Indeed, F has 7 d.o.f, whereas E, which encode the rigid displacement, has only
5 d.o.f. There must be two additional constraint that E must satisfy, with respect
to F .

In particular, these constraints stem from the equality of two singular values of
the essential matrix (Theorem 4.1) which can be decomposed in two independent
polynomial equations.

Let Fij be the (known) fundamental matrix relating views i and j, and let Ki and
Kj be the respective (unknown) intrinsic parameter matrices.

The idea of [35] is that the matrix

Eij = KT
i FijKj, (99)

satisfies the constraints of Theorem 4.1 only if the intrinsic parameters are correct.
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Hence, the cost function to be minimized is

C(Ki, i = 1 . . . n) =
n∑

i=1

n∑
j>n

wij

1σij − 2σij

1σij + 2σij
, (100)

where 1σij > 2σij are the non zero singular values of Eij and wij are normalized
weight factors (linked to the reliability of the fundamental matrix estimate).

The previous counting argument shows that, in the general case of n views, the
n(n − 1)/2 two-view constraints that can be derived are not independent, never-
theless they can be used as they over-determine the solution.

A non-linear least squares solution is obtained with an iterative algorithm (e.g.
Gauss-Newton) that uses analytical derivatives of the cost function.

A starting guess is needed, but this cost function is less affected than others by
local minima problems. A globally convergent algorithm based on this cost function
is described in [9].
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6.3 Stratification

We have seen that a projective reconstruction can be computed starting from points
correspondences only (weak calibration), without any knowledge of the camera
matrices.

Projective reconstruction differs from Euclidean by an unknown projective trans-
formation in the 3-D projective space, which can be seen as a suitable change of
basis.

Starting from a projective reconstruction the problem is computing the transforma-
tion that “straighten” it, i.e., that upgrades it to an Euclidean reconstruction.

To this purpose the problem is stratified [31, 5] into different representations: de-
pending on the amount of information and the constraints available, it can be
analyzed at a projective, affine, or Euclidean level.
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Let us assume that a projective reconstruction is available, that is a sequence Pi of
m + 1 camera matrices and a set Mj of n + 1 3-D points such that:

mj
i # PiM

j i = 0 . . . m, j = 0 . . . n. (101)

Without loss of generality, we can assume that camera matrices writes:

P0 = [I | 0]; Pi = [Ai | ei] for i = 1 . . .m (102)

We are looking for the a 4 × 4 nonsingular matrix T that upgrades the projective
reconstruction to Euclidean:

mj
i # PiT︸︷︷︸

PE
i

T−1Mj︸ ︷︷ ︸
structure

, (103)

PE
i = PiT is the Euclidean camera,

We can choose the first Euclidean-calibrated camera to be PE
0 = K0[I | 0], thereby

fixing arbitrarily the world reference frame:

PE
0 = K0[I | 0] PE

i = Ki[Ri | ti] for i = 1 . . . m. (104)
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With this choice, it is easy to see that PE
0 = P0T implies

T =

[
K0 0
rT s

]
(105)

where rT is a 3-vector and s is a scale factor, which we will arbitrarily set to 1 (the
Euclidean reconstruction is up to a scale factor).

Under this parameterization T is clearly non singular, and it depends on eight
parameters.

Substituting (105) in PE
i # PiT gives

PE
i = [KiRi | Kiti],# PiT = [AiK0 + eir

T | ei] for i > 0 (106)

and, considering only the leftmost 3× 3 submatrix, gives

KiRi # AiK0 + eir
T = Pi

[
K0

rT

]
(107)

100



Rotation can be eliminated using RRT = I , leaving:

KiK
T
i # Pi

[
K0KT

0 K0r
rTKT

0 rTr

]
PT

i (108)

This is the basic equation for autocalibration, relating the unknowns Ki (i = 0 . . . m)
and r to the available data Pi (obtained from weakly calibrated images).

Note that (117) contains five equations, because the matrices of both members are
symmetric, and the homogeneity reduces the number of equations with one.
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6.3.1 Geometric interpretation

Under camera matrix P the outline of the quadric Q is the conic C given by:

C∗ # PQ∗PT (109)

where C∗ is the dual conic and Q∗ is the dual quadric. An expression with Q and
C may be derived, but it is quite complicated. C∗ (resp. Q∗) is the adjoint matrix
of C (resp. Q). If C is non singular, then C∗ = C−1.

In the beginning we introduced the absolute conic Ω, which is invariant under
similarity transformation, hence deeply linked with the Euclidean stratum.

In a Euclidean frame, its equation is x2
1 + x2

2 + x2
3 = 0 = x4.

The absolute conic may be regarded as a special quadric (a disk quadric), therefore
its dual is a quadric, the dual absolute quadric, denoted by Ω∗. Its representation
is:

Ω∗ = diag(1, 1, 1, 0). (110)
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As we already know, the image of the absolute conic under camera matrix PE is
given by ω = (KKT )−1, that is :

ω∗ = (KKT ) # PEΩ∗PET
(111)

This property is independent on the choice of the projective basis. What changes
is the representation of the dual absolute quadric, which is mapped to

Ω∗ = Tdiag(1, 1, 1, 0)TT . (112)

under the collineation T .

Substituting T from Eq. (105) into the latter gives:

Ω∗ =

[
K0KT

0 K0r
rTKT

0 rTr

]
(113)

Recalling that ω∗
i = KiKT

i , then Eq. (108) is equivalent to

ω∗
i # PiΩ

∗PT
i (114)
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6.3.2 Solution strategies

Autocalibration requires to solve Eq. (114), with respect with Ω∗ (and ω∗
i ).

If Ω∗ is known, the collineation T that upgrades cameras from projective to Eu-
clidean is obtained by decomposing Ω∗ as in Eq. (112), using the eigenvalue de-
composition.

Ω∗ might be parameterized as in Eq. (113) with 8 d.o.f. or parameterized as a
generic 4× 4 symmetric matrix (10 d.o.f.). The latter is an over-parameterization,
as Ω∗ is also singular and defined up to a scale factor (which gives again 8 d.o.f.).

There are several strategies for dealing with the scale factor.

• Introduce the scale factor explicitly as an additional unknown [20]:

ω∗
i − λiPiΩ

∗PT
i = 0 (115)

This gives 6 equations but introduces one additional unknown (the net sum is 5).
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• Eliminate it by using the same idea of the cross product for 3-vectors [46]:

vec ω∗
i # vec(PiΩ

∗PT
i ) ⇐⇒ rank [vec ω∗

i | vec(PiΩ
∗PT

i )] = 1

which is tantamount to say that every 2 × 2 minor of [vec ω∗
i | vec(PiΩ

∗PT
i )]

is zero. As matrices in Eq. (114) are symmetric, only 6 elements need to be
considered in the corresponding vectors. There are 15 different order-2 minors
of a 6× 2 matrix, but only 5 equations are independent.

• Use a matrix norm (namely, Frobenius norm) [36]:

ω∗
i

||ω∗
i ||F

− PiΩ
∗PT

i

||PiΩ
∗PT

i ||F = 0 (116)

In any case, a non-linear least-squares problem has to be solved. Available numerical
techniques (based on the Gauss-Newton method) are iterative, and requires an
estimate of the solution to start.

This can be obtained by doing an educated guess about skew, principal point and
aspect ratio, and solve the linear problem that results.
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Linear solution

If some of the internal parameters are known, this might cause some elements of ω∗
i

to vanish. Linear equations on Ω∗ are generated from zero-entries of ω∗ (because
this eliminates the scale factor):

ω∗
i (k, #) = 0 ⇒ pT

i,kΩ
∗pi,# = 0

where pT
i,k is the k-th row of Pi.

Likewise, linear constraints on Ω∗ can be obtained from the equality of elements in
the the upper (lower) triangular part of ω∗

i (because ω∗
i is symmetric).

In order to be able to solve linearly for Ω∗, at least 10 linear equations must be
stacked up, to form a homogeneous linear system, which can be solved as usual
(via SVD). Singularity of Ω∗ can be enforced a-posteriori by forcing the smallest
singular value to zero.

If the principal point is known, ω∗
i (1, 3) = 0 = ω∗

i (2, 3) and this gives two linear
constraints. If, in addition, skew is zero we have ω∗

i (1, 2) = 0. Known aspect ratio
r provides a further constraint: rω∗

i (1, 1) = ω∗
i (2, 2).
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Constant internal parameters

If all the cameras has the same internal parameters, so Ki = K, then Eq. (108)
becomes

KKT # Pi

[
KKT Kr
rTKT rTr

]
PT

i (117)

The constraints expressed by Eq. (117) are called the Kruppa constraints in [20].

Since each camera matrix, apart from the first one, gives five equations in the eight
unknowns, a unique solution is obtained when at least three views are available.

The resulting system of equations is solved with a non-linear least-squares technique
(e.g. Gauss-Newton).
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7 Getting practical

In this section we will approach estimation problems from a more “practical” point
of view.

First, we will discuss how the presence of errors in the data affects our estimates
and describe the countermeasures that must be taken to obtain a good estimate.

Finally, we introduce non-linear distortions due to lenses into the pinhole model and
we illustrate a practical calibration algorithm that works with a simple planar object.
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7.1 Pre-conditioning

In presence of noise (or errors) on input data, the accuracy of the solution of a
linear system depends crucially on the condition number of the system. The lower
the condition number, the less the input error gets amplified (the system is more
stable).

As [14] pointed out, it is crucial for linear algorithms (as the DLT algorithm) that
input data is properly pre-conditioned, by a suitable coordinate change (origin and
scale): points are translated so that their centroid is at the origin and are scaled so
that their average distance from the origin is

√
2.

This improves the condition number of the linear system that is being solved.

Apart from improved accuracy, this procedure also provides invariance under simi-
larity transformations in the image plane.
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7.2 Algebraic vs geometric error

Measured data (i.e., image or world point positions) is noisy.

Usually, to counteract the effect of noise, we use more equations than necessary
and solve with least-squares.

What is actually being minimized by least squares?

In a typical null-space problem formulation Ax = 0 (like the DLT algorithm) the
quantity that is being minimized is the square of the residual ||Ax||.
In general, if ||Ax|| can be regarded as a distance between the geometrical entities
involved (points, lines, planes, etc..), than what is being minimized is a geometric
error, otherwise (when the error lacks a good geometrical interpretation) it is called
an algebraic error.

All the linear algorithm (DLT and others) we have seen so far minimize an algebraic
error. Actually, there is no justification in minimizing an algebraic error apart from
the ease of implementation, as it results in a linear problem.
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Usually, the minimization of a geometric error is a non-linear problem, that admit
only iterative solutions and requires a starting point.

So, why should we prefer to minimize a geometric error? Because:

• The quantity being minimized has a meaning

• The solution is more stable

• The solution is invariant under Euclidean transforms

Often linear solution based on algebraic residuals are used as a starting point for
a non-linear minimization of a geometric cost function, which gives the solution a
final “polish” [12].
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7.2.1 Geometric error for resection

The goal is to estimate the camera matrix, given a number of correspondences
(mj,Mj) j = 1 . . . n

The geometric error associated to a camera estimate P̂ is the distance between the
measured image point mj and the re-projected point P̂iMj:

min
P̂

∑
j

d(P̂Mj,mj)2 (118)

where d() is the Euclidean distance between the homogeneous points.

The DLT solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton)
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7.2.2 Geometric error for triangulation

The goal is to estimate the 3D coordinates of a point M, given its projection mi

and the camera matrix Pi for every view i = 1 . . .m.

The geometric error associated to a point estimate M̂ in the i-th view is the distance
between the measured image point mi and the re-projected point PiM̂:

min
M̂

∑
i

d(PiM̂,mi)
2 (119)

where d() is the Euclidean distance between the homogeneous points.

The DLT solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).
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7.2.3 Geometric error for F

The goal is to estimate F given a a number of point correspondences mi
# ↔mi

r.

The geometric error associated to an estimate F̂ is given by the distance of conju-
gate points from conjugate lines (note the symmetry):

min
F̂

∑
j

d(F̂mj
#,m

j
r)

2 + d(F̂ Tmj
r,m

j
#)

2 (120)

where d() here is the Euclidean distance between a line and a point (in homogeneous
coordinates).

The eight-point solution is used as a starting point for the iterative minimization
(e.g. Gauss-Newton).

Note that F must be suitably parameterized, as it has only seven d.o.f.
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7.2.4 Geometric error for H

The goal is to estimate H given a a number of point correspondences mi
# ↔mi

r.

The geometric error associated to an estimate Ĥ is given by the symmetric distance
between a point and its transformed conjugate:

min
Ĥ

∑
j

d(Ĥmj
#,m

j
r)

2 + d(Ĥ−1mj
r,m

j
#)

2 (121)

where d() is the Euclidean distance between the homogeneous points. This also
called the symmetric transfer error.

The DLT solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).
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7.2.5 Bundle adjustment (projective reconstruction)

If measurements are noisy, the projection equation will not be satisfied exactly by
the camera matrices and structure computed in Sec. 5.3.2.

We wish to minimize the image distance between the re-projected point P̂iM̂j and
measured image points mj

i for every view in which the 3D point appears:

min
P̂i,M̂j

∑
i,j

d(P̂iM̂
j,mj

i )
2 (122)

where d() is the Euclidean distance between the homogeneous points.

As m and n increase, this becomes a very large minimization problem.

A solution is to alternate minimizing the re-projection error by varying P̂i with
minimizing the re-projection error by varying M̂j.

116



7.2.6 Bundle adjustment (autocalibration)

If a Euclidean reconstruction ha been obtained from autocalibration, bundle ad-
justment can be applied to refine structure and calibration (i.e., Euclidean camera
matrices):

min
P̂i,M̂j

∑
i,j

d(P̂iM̂
j,mj

i )
2 (123)

where P̂i = K̂i[R̂i|t̂i] and the rotation has to be suitably parameterized (e.g. quater-
nions) parameterized with three parameters (see Rodrigues formula).

See [47] for a review and a more detailed discussion on bundle adjustment.
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7.3 Robust estimation

Up to this point, we have assumed that the only source of error affecting corre-
spondences is in the measurements of point’s position. This is a small-scale noise
that gets averaged out with least-squares.

In practice, we can be presented with mismatched points, which are outliers to
the noise distribution (i.e., wrong measurements following a different, unmodelled,
distribution).

These outliers can severely disturb least-squares estimation (even a single outlier
can totally offset the least-squares estimation, as demonstrated in Fig. 16.)
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Fig. 16. A single outlier can severely offset the least-squares estimate (red line), whereas the robust
estimate (blue line) is unaffected.

The goal of robust estimation is to be insensitive to outliers (or at least to reduce
sensitivity).
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7.3.1 M-estimators

Least squares:
min

θ

∑
i

(ri/σi)
2 (124)

where θ are the regression coefficient (what is being estimated) and ri is the residual.
M-estimators are based on the idea of replacing the squared residuals by another
function of the residual, yielding

min
θ

∑
i

ρ(ri/σi) (125)

ρ is a symmetric function with a unique minimum at zero that grows sub-quadratically,
called loss function.

Differentiating with respect to θ yields:∑
i

1

σi
ρ′(ri/σi)

dri

dθ
= 0 (126)

The M-estimate is obtained by solving this system of non-linear equations.
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7.3.2 RANSAC

Given a model that requires a minimum of p data points to instantiate its free
parameters θ, and a set of data points S containing outliers:

1. Randomly select a subset of p points of S and instantiate the model from this
subset

2. Determine the set Si of data points that are within an error tolerance t of the
model. Si is the consensus set of the sample.

3. If the size of Si is greater than a threshold T , re-estimate the model (possibly
using least-squares) using Si (the set of inliers) and terminate.

4. If the size of Si is less than T , repeat from step 1.

5. Terminate after N trials and choose the largest consensus set found so far.
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Three parameters need to be specified: t, T and N .

Both T and N are linked to the (unknown) fraction of outliers ε.

N should be large enough to have a high probability of selecting at least one sample
containing all inliers. The probability to randomly select p inliers in N trials is:

P = 1− (1− (1− ε)p)N (127)

By requiring that P must be near 1, N can be solved for given values of p and ε.

T should be equal to the expected number of inliers, which is given (in fraction) by
(1− ε).

At each iteration, the largest consensus set found so fare gives a lower bound on
the fraction of inliers, or, equivalently, an upper bound on the number of outliers.
This can be used to adaptively adjust the number of trials N .

t is determined empirically, but in some cases it can be related to the probability
that a point under the threshold is actually an inlier [12].
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As pointed out in [41], RANSAC can be viewed as a particular M-estimator.

The objective function that RANSAC maximizes is the number of data points having
absolute residuals smaller that a predefined value t. This may be seen a minimising
a binary loss function that is zero for small (absolute) residuals, and 1 for large
absolute residuals, with a discontinuity at t.

t ri

Fig. 17. RANSAC loss function

By virtue of the prespecified inlier band, RANSAC can fit a model to data corrupted
by substantially more than half outliers.
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7.3.3 LMedS

Another popular robust estimator is the Least Meadian of Squares. It is defined by:

min
θ

mediri (128)

It can tolerate up to 50% of outliers, as up to half of the data point can be arbitrarily
far from the “true” estimate without changing the objective function value.

Since the median is not differentiable, a random sampling strategy similar to RANSAC
is adopted. Instead of using the consensus, each sample of size p is scored by the
median of the residuals of all the data points. The model with the least median
(lowest score) is chosen.

A final weighted least-squares fitting is used.

With respect to RANSAC, LMedS can tolerate “only” 50% of outliers, but requires
no setting of thresholds.
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7.4 Practical calibration

Camera calibration (or resection) as described so far, requires a calibration object
that consists typically of two or three planes orthogonal to each other. This might
be difficult to obtain, without access to a machine tool.

Zhang [50] introduced a calibration technique that requires the camera to observe a
planar pattern (much easier to obtain) at a few (at least three) different orientation.
Either the camera or the planar pattern can be moved by hand.

Instead of requiring one image of many planes, this method requires many images
of one plane.

We will also introduce here a more realistic camera model that takes into account
non-linear effects produced by lenses.
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In each view, we assume that correspondences between image points and 3D points
on the planar pattern have been established.

Fig. 18. Image of a planar calibration pattern. The points used for calibration are the corners of the
black squares.
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7.4.1 Estimating internal parameters

Following the development of Sec. 4.4 we know that for a camera P = K[R|t] the
homography between a world plane at z = 0 and the image is

H # K[r1, r2, t] (129)

where ri are the column of R.

Suppose that H is computed from correspondences bwtween four or more known
world points and their images, then some constraints can be obtained on the intrinsic
parameters, thanks to the fact that the columns of R are orthonormal.

Writing H = [h1,h2,h3], from the previous equation we derive:

r1 = λK−1h1 and r2 = λK−1h2 (130)

where λ is an unknown scale factor.

The orthogonality rT
1 r2 = 0 gives

λ2hT
1 (KKT )−1h2 = 0 (131)
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or, equivalently (remember that ω = (KKT )−1)

hT
1 ωh2 = 0 (132)

Likewise, the condition on the norm rT
1 r1 = rT

2 r2 gives

hT
1 ωh1 = hT

2 ωh2 (133)

Introducing the Kronecker product as usual, we rewrite these two equations as:

(hT
1 ⊗ hT

2 ) vec ω = 0 (134)(
(hT

1 ⊗ hT
1 )− (hT

2 ⊗ hT
2 )

)
vec ω = 0 (135)

A single view of the plane gives two equations in six unknowns, hence a solution
is achievable with n ≥ 3 views (in practice, for a good calibration, one should use
around 12 views).

K is obtained from the Cholesky factorization of ω, then R and t are recovered
from:

[r1, r2, t] =
1

||K−1h1||K
−1[h1,h2,h3] r3 = r1 × r2 (136)
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Because of noise, the matrix R is not guaranteed to be orthogonal, hence we need
to recover the closest orthogonal matrix.

Let R = QS be the polar decomposition of R. Then Q is the closest possible
orthogonal matrix to R in Frobenius norm.

In this way we have obtained the camera matrix P by minimizing an algebraic
distance which is not geometrically meaningful.

It is advisable to refine it with a (non-linear) minimization of a geometric error:

min
P̂i

n∑
i=1

m∑
j=1

d(P̂iM
j,mj

i )
2 (137)

where P̂i = K̂[R̂i|t̂i] and the rotation has to be suitably parameterized with three
parameters (see Rodrigues formula).

The linear solution is used as a starting point for the iterative minimization (e.g.
Gauss-Newton).
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7.4.2 Radial distortion

A realistic model for a photocamera or a videocamera must take into account non-
linear distortions introduced by the lenses, especially when dealing with short focal
lengths or low cost devices (e.g. webcams, disposable cameras).

The more relevant effect is the radial distortion, which is modeled as a non-linear
transformation from ideal (undistorted) coordinates (u, v) to real observable (dis-
torted) coordinates (û, v̂): û = (u− u0)(1 + k1r

2
d) + u0

v̂ = (v − v0)(1 + k1r
2
d) + v0

. (138)

where r2
d =

(
(u−u0)

au

)2
+

(
(v−v0)

av

)2
and (u0, v0) are the coordinates of the image

centre.
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Estimating k1

Let us assume that the pinhole model is calibrated. The point m = (u, v) projected
according to the pinhole model (undistorted) do not coincide with the measured
points m̂ = (û, v̂) because of the radial distortion.

We wish to recover k1 from Eq. (138). Each point gives two equation:
(u− u0)

((
(u− u0)

au

)2

+

(
(v − v0)

av

)2
)

k1 = û− u

(v − u0)

((
(u− u0)

au

)2

+

(
(v − v0)

av

)2
)

k1 = v̂ − v

(139)

hence a least squares solution for k1 is readily obtained from n > 1 points.
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When calibrating a camera we are required to simultaneously estimate both the
pinhole model’s parameters and the radial distortion coefficient.

The pinhole calibration we have described so far assumed no radial distortion, and
the radial distortion calibration assumed a calibrated pinhole camera.

The solution (a very common one in similar cases) is to alternate between the two
estimation until convergence.

Namely: start assuming k = 0, calibrate the pinhole model, then use that model to
compute radial distortion. Once k1 is estimated, refine the pinhole model by solving
Eq. (137) with the radial distorion in the projection, and continue until the image
error is small enough.
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8 Further readings

General books on (Geometric) Computer Vision are: [4, 48, 6, 12].
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