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1 Introduction

This chapter introduces the basic geometric concepts of multiple-view computer
vision. The focus is on geometric models of perspective cameras, and the constraints
and properties such models generate when multiple cameras observe the same 3D
scene.

Geometric vision is an important and well-studied part of computer vision. A wealth
of useful results has been achieved in the last 15 years and has been reported in
comprehensive monographies, e.g., [4, 11, 6], a sign of maturity for a research
subject.

It is worth reminding the reader that geometry is an important but not the only
important aspect of computer vision, and in particular of multi-view vision. The
information brought by each image pixel is twofold: its position and its colour (or
brightness, for a monochrome image). Ultimately, each computer vision system
must start with brightness values, and, to smaller or greater depth, link such values
to the 3D world.

2

Fig. 1. Example of reconstruction from the five images shown in the top row.
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2 Elements of Geometry

The ambient space is modellled as a projective 3-D space P3, obtained by completing
the affine space X3 with a projective plane, known as plane at infinity Π∞. In this
ideal plane lie the intersections of the planes parallel in X3.

The projective coordinates of a point in P3 are 4-tuples defined up to a scale factor.
We write

M " (x, y, z, t) (1)

where " indicates equality to within a multiplicative factor.

Π∞ is defined by its equation t = 0.

The points of the affine space are those of P3 which do not belong to Π∞. Their
projective coordinates are thus of the form (x, y, z, 1), where (x, y, z) are the usual
affine coordinates.
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The linear tranformations of a projective space into itself are called collineations of
homographies. Any collineation of P3 is represented by a generic 4 × 4 invertible
matrix.

Affine transformations of X3 are the subgroup of collineations of P3 that preserves
the plane at infinity.

Similarity transformations are the subgroup of affine transformations of X3 that
leave invariant a very special curve, the absolute conic, which is in the plane at
infinity and whose equation is:

x2 + y2 + z2 = 0 (2)
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The space is therefore stratified into more and more specialized structures:

• projective

• affine (knowing the plane at infinity)

• euclidean (knowing the absolute conic)

The stratification reflects the amount of knowledge that we possess about the scene
and the sensor.
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3 Pin-hole Camera Geometry

The pin-hole camera is described by its optical centre C (also known as camera
projection centre) and the image plane.

The distance of the image plane from C is the focal length f .

The line from the camera centre perpendicular to the image plane is called the
principal axis or optical axis of the camera.

The plane parallel to the image plane containing the optical centre is called the
principal plane or focal plane of the camera.

The relationship between the 3D coordinates of a scene point and the coordinates
of its projection onto the image plane is described by the central or perspective
projection.
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Fig. 2. Pin-hole camera geometry. The left figure illustrates the projection of the point M on the
image plane by drawing the line through the camera centre C and the point to be projected. The
right figure illustrates the same situation in the YZ plane, showing the similar triangles used to
compute the position of the projected point m in the image plane.
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A 3D point is projected onto the image plane with the line containing the point and
the optical centre (see Figure 2).

Let the centre of projection be the origin of a Euclidean coordinate system wherein
the z-axis is the principal axis.

By similar triangles it is readily seen that the 3D point (x, y, z)T is mapped to the
point (fx/z, fy/z, f)T on the image plane.
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3.1 The camera projection matrix

If the world and image points are represented by homogeneous vectors, then per-
spective projection can be expressed in terms of matrix multiplication as fx

fy
z

 =

 f 0 0 0
0 f 0 0
0 0 1 0




x
y
z
1

 (3)

The matrix describing the mapping is called the camera projection matrix P .

Equation (3) can be written simply as:

zm = PM (4)

where M = (x, y, z, 1)T are the homogeneous coordinates of the 3D point and
m = (fx/z, fy/z, 1)T are the homogeneous coordinates of the image point.

The projection matrix P in Equation (3) represents the simplest possible case, as
it only contains information about the focal distance f .
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General camera: bottom up approach

The above formulation assumes a special choice of world coordinate system and
image coordinate system. It can be generalized by introducing suitable changes of
the coordinates systems.

Changing coordinates in space is equivalent to multiplying the matrix P to the right
by a 4× 4 matrix:

G =

[
R t
0 1

]
(5)

G is composed by a rotation matrix R and a translation vector t. It describes the
position and orientation of the camera with respect to an external (world) coordinate
system. It depends on six parameters, called external parameters.
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Changing coordinates in the image plane is equivalent to multiplying the matrix P
to the left by a 3× 3 matrix:

K =

 f/sx f/sx cot θ ox

0 f/sy oy

0 0 1

 (6)

K is the camera calibration matrix; it encodes the transformation from image
coordinates to pixel coordinates in the image plane.

It depends on the so-called intrinsic parameters:

• focal distance f (in mm),

• image centre coordinates ox, oy (in pixel),

• width (sx) and height (sy) of the pixel footprint on the camera photosensor (in
mm),

• angle θ between the axes (usually π/2).

The ratio sy/sx is the aspect ratio (usually close to 1).
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Thus the camera matrix, in general, is the product of three matrices:

P = K[I|0]G = K[R|t] (7)

In general, the projection equation writes:

ζm = PM (8)

where ζ is the distance of M from the focal plane of the camera (this will be shown
after).

Note that, except for a very special choice of the world reference frame, this “depth”
does not coincide with the third coordinate of M.
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General camera: top down approach

If P describes a camera, also λP for any 0 %= λ ∈ R describes the same camera,
since these give the same image point for each scene point.

In this case we can also write:
m " PM (9)

where " means “equal up to a scale factor.”

In general, the camera projection matrix is a 3 × 4 full-rank matrix and, being
homogeneous, it has 11 degrees of freedom.

Using QR factorization, it can be shown that any 3× 4 full rank matrix P can be
factorised as:

P = λK[R|t], (10)

(λ is defined because K(3, 3) = 1).
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3.2 Camera anatomy

Projection centre

The camera projection centre C is the only point for which the projection is not
defined, i.e.:

PC = P

(
C̃
1

)
= 0 (11)

where C̃ is a three-vector containing the affine (non-homogeneous) coordinates of
the optical centre.

After solving for C̃ we obtain:

C̃ = −P−1
3×3p4 (12)

where the matrix P is represented by the block form: P = [P3×3|p4] (P3×3 is the
matrix composed by the first three rows and first three columns of P , and p4 is the
fourth column of P ).
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A few words about normalization

If λ = 1 in Eq. (10), the matrix P is said to be normalized.

If (and only if) the matrix is normalized, then ζ in the projection equation (8) is the
distance of M from the focal plane of the camera (usually referred to as depth).

We observe that:

ζm = PM = PM− PC = P (M−C) = P3×3(M̃− C̃).

In particular, the third component is ζ = pT
3 (M̃ − C̃), where pT

3 is the third row
of P3×3.

If write R in terms of its rows and multiply in Eq. (7) we see that pT
3 is the third

row of R, which correspond to the versor of the principal axis.

Hence, the previous equations says that ζ is the projection of the vector (M̃− C̃)
onto the principal axix, i.e., the depth of M.
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In general (when the camera is not normalized), ζ contains an arbitrary scale factor.
Can we recover this scale factor from a generic camera matrix P without factorizing
it like in Eq. (10)?

We only need to observe that if P is given by Eq. (10), pT
3 is the third row of R

multiplied by the scale factor λ. Hence, λ = ||p3||.
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Optical ray

The projection can be geometrically modelled by a ray through the optical centre
and the point in space that is being projected onto the image plane (see Fig. 2).

The optical ray of an image point m = (u, v, 1)T is the locus of points in space
that projects onto m.

It can be described as a parametric line passing through the camera projection
centre C and a special point (at infinity) that projects onto m:

M =

( −P−1
3×3p4

1

)
+ ζ

(
P−1

3×3m
0

)
, ζ ∈ R. (13)

Please note that, provided that P is normalized, the parameter ζ in the equation
of the optical ray correspond to the depth of the point M.
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3.2.1 Image of the absolute conic

We will prove now that the image of the absolute conic depends on the intrinsic
parameters only (it is unaffected by camera position and orientation).

The points in the plane at infinity have the form M = [M̃, 0]T , hence

m = K[R | t][M̃0]T = KRM̃T . (14)

The image of points on the plane at infinity does not depend on camera position
(it is unaffected by camera translation).

The absolute conic (which is in the plane at infinity) has equation M̃TM̃ = 0,
therefore its projection has equation:

mT (K−TK−1)m = 0. (15)

The conic ω = (KK−T )−1 is the image of the absolute conic.
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The angle (a metrical property) between two rays is determined by the image of
the absolute conic.

Let us consider a camera P = [K|0], hence m = KM̃. Let θ be the angle
bewtween the rays trough M1 and M1, then

cos θ =
M̃T

1 M̃2

||M̃1||||M̃2||
=

mT
1 ωm2√

mT
1 ωm1

√
mT

2 ωm2

!

2

1

2

1

m

C

Z

X

Y

M

M

m
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3.3 Camera calibration (or resection)

A number of point correspondences mi ↔Mi is given, and we are required to find
a camera matrix P such that

mi " PMi for all i. (16)

The equation can be rewritten in terms of the cross product as

mi × PMi = 0. (17)

This form will enable a simple a simple linear solution for P to be derived. Using
the properties of the Kronecker product (⊗) and the vec operator, we derive:

mi × PMi = 0 ⇐⇒ [mi]×PMi = 0 ⇐⇒ vec([mi]×PMi) = 0 ⇐⇒
⇐⇒ (MT

i ⊗ [mi]×) vec P = 0 ⇐⇒ ([mi]× ⊗MT
i ) vec PT = 0

(18)

After expanding the coefficient matrix, we obtain 0T −MT
i vMT

i

MT
i 0T −uMT

i

−vMT
i uMT

i 0T

 vec PT = 0 (19)
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Although there are three equations, only two of them are linearly independent: we
can write the third row (e.g.) as a linear combination of the first two.

From a set of n point correspondences, we obtain a 2n × 12 coefficient matrix A
by stacking up two equations for each correspondence. The projection matrix P is
computed by solving the resulting linear system of equations, for n ≥ 6.

In general A will have rank 11 (provided that the points are not all coplanar) and
the solution is the 1-dimensional right null-space of A.

If the data are not exact (noise is generally present) the rank of A will be 12 and
a least-squares solution is sought.

The least-squares solution for vec PT is the singular vector corresponding to the
smallest singular value of A.

This is called the Direct Linear Transform (DLT) algorithm [11].
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4 Two-View Geometry

The two-view geometry is the intrinsic geometry of two different perspective views
of the same 3D scene (see Figure 3). It is usually referred to as epipolar geometry.

The two perspective views may be acquired simultaneously, for example in a stereo
rig, or sequentially, for example by a moving camera. From the geometric viewpoint,
the two situations are equivalent, but notice that the scene might change between
successive snapshots.

Most 3D scene points must be visible in both views simultaneously. This is not
true in case of occlusions, i.e., points visible only in one camera. Any unoccluded
3D scene point M = (x, y, z, 1)T is projected to the left and right view as m% =
(u%, v%, 1)T and mr = (ur, vr, 1)T , respectively (see Figure 3).

Image points m% and mr are called corresponding points (or conjugate points) as
they represent projections of the same 3D scene point M.

The knowledge of image correspondences enables scene reconstruction from images.
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Fig. 3. Two perspective views of the same 3D scene. m% and mr are corresponding points, as they
are the projection od the same 3D point, M.
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Algebraically, each perspective view has an associated 3×4 camera projection matrix
P which represents the mapping between the 3D world and a 2D image. We will
refer to the camera projection matrix of the left view as P% and of the right view as
Pr. The 3D point M is then imaged as (20) in the left view, and (21) in the right
view:

ζ%m% = P%M (20)

ζrmr = PrM. (21)

Geometrically, the position of the image point m% in the left image plane I% can be
found by drawing the optical ray through the left camera projection centre C% and
the scene point M. The ray intersects the left image plane I% at m%. Similarly, the
optical ray connecting Cr and M intersects the right image plane Ir at mr. The
relationship between image points m% and mr is given by the epipolar geometry,
described in Section 4.1.
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4.1 Epipolar Geometry

The epipolar geometry describes the geometric relationship between two perspective
views of the same 3D scene.

The key finding, discussed below, is that corresponding image points must lie on
particular image lines, which can be computed without information on the calibra-
tion of the cameras.

This implies that, given a point in one image, one can search the corresponding
point in the other along a line and not in a 2D region, a significant reduction in
complexity.
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Fig. 4. The epipolar geometry and epipolar constraint.
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Any 3D point M and the camera projection centres C% and Cr define a plane that
is called epipolar plane.

The projections of the point M, image points m% and mr, also lie in the epipolar
plane since they lie on the rays connecting the corresponding camera projection
centre and point M.

The conjugate epipolar lines, l% and lr, are the intersections of the epipolar plane
with the image planes. The line connecting the camera projection centres (C%,Cr)
is called the baseline.

The baseline intersects each image plane in a point called epipole.

By construction, the left epipole e% is the image of the right camera projection
centre Cr in the left image plane. Similarly, the right epipole er is the image of the
left camera projection centre C% in the right image plane.

All epipolar lines in the left image go through e% and all epipolar lines in the right
image go through er.
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The epipolar constraint. An epipolar plane is completely defined by the camera
projection centres and one image point.

Therefore, given a point m%, one can determine the epipolar line in the right image
on which the corresponding point, mr, must lie.

The equation of the epipolar line can be derived from the equation describing the
optical ray. As we mentioned before, the right epipolar line corresponding to m%

geometrically represents the projection (Equation (8)) of the optical ray through
m% (Equation (13)) onto the right image plane:

ζrmr = PrM = Pr

( −P−1
3×3,%p4,%

1

)
︸ ︷︷ ︸

er

+ ζ%Pr

(
P−1

3×3,%m%

0

)
(22)
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If we now simplify the above equation we obtain the description of the right epipolar
line:

ζrmr = er + ζ%P3×3,rP
−1
3×3,lm% (23)

This is the equation of a line through the right epipole er and the image point
m′

% = P3×3,rP
−1
3×3,lm% which represents the projection onto the right image plane

of the point at infinity of the optical ray of m%.

The equation for the left epipolar line is obtained in a similar way.
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Fig. 5. Left and right images with epipolar lines.
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The epipolar geometry can be described analytically in several ways, depending on
the amount of the a priori knowledge about the stereo system. We can identify
three general cases.

If both intrinsic and extrinsic camera parameters are known, we can describe the
epipolar geometry in terms of the projection matrices (Equation (23)).

If only the intrinsic parameters are known, we work in normalised coordinates and
the epipolar geometry is described by the essential matrix.

If neither intrinsic nor extrinsic parameters are known the epipolar geometry is
described by the fundamental matrix.
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4.1.1 The Essential Matrix E

If the intrinsic parameters are known, we can switch to normalised coordinates:
m ← K−1m (please note that this change of notation will hold throughout this
section).

Consider a pair of normalised cameras. Without loss of generality, we can fix the
world reference frame onto the first camera, hence:

P% = [I|0] and Pr = [R|t]. (24)

With this choice, the unknown extrinsic parameters have been made explicit.

If we substitute these two particular instances of the camera projection matrices in
Equation (23), we get

ζrmr = t + ζ%Rm%; (25)

in other words, the point mr lies on the line through the points t and Rm%. In
homogeneous coordinates, this can be written as follows:

mT
r t× (Rm%) = 0, (26)

as the homogeneous line through two points is expressed as their cross product.
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Similarly, a dot product of a point and a line is zero if the point lies on the line.

The cross product of two vectors can be written as a product of a skew-symmetric
matrix and a vector. Equation (26) can therefore be equivalently written as

mT
r [t]×Rm% = 0, (27)

where [t]× is the skew-symmetric matrix of the vector t. If we multiply the matrices
in the above equation, we obtain a single matrix which describes the relationship
between the corresponding image points m% and mr in normalised coordinates.
This matrix is called the essential matrix E:

E ! [t]×R, (28)

and the relationship between two corresponding image points in normalised coordi-
nates is expressed by the defining equation for the essential matrix:

mT
r Em% = 0. (29)

E encodes only information on the extrinsic camera parameters. Its rank is two,
since det[t]× = 0. The essential matrix is a homogeneous quantity. It has only five
degrees of freedom: a 3D rotation and a 3D translation direction.
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4.1.2 The Fundamental Matrix F

The fundamental matrix can be derived in a similar way to the essential matrix. All
camera parameters are assumed unknown; we write therefore a general version of
Equation (24):

P% = K%[I|0] and Pr = Kr[R|t]. (30)

Inserting these two projection matrices into Equation (23), we get

ζrmr = er + ζ%KrRK−1
% m% with er = Krt, (31)

which states that point mr lies on the line through er and KrRK−1
% m%. As in the

case of the essential matrix, this can be written in homogeneous coordinates as:

mT
r [er]×KrRK−1

% m% = 0. (32)

The matrix
F = [er]×KrRK−1

% (33)

is the fundamental matrix F , giving the relationship between the corresponding
image points in pixel coordinates.
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The defining equation for the fundamental matrix is therefore

mT
r Fm% = 0. (34)

F is the algebraic representation of the epipolar geometry. It is a 3 × 3, rank-two
homogeneous matrix. It has only seven degrees of freedom since it is defined up to
a scale and its determinant is zero. Notice that F is completely defined by pixel
correspondences only (the intrinsic parameters are not needed).

For any point m% in the left image, the corresponding epipolar line lr in the right
image can be expressed as

lr = Fm%. (35)

Similarly, the epipolar line l% in the left image for the point mr in the right image
can be expressed as

l% = FTmr. (36)
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The left epipole e% is the right null-vector of the fundamental matrix and the right
epipole is the left null-vector of the fundamental matrix:

Fe% = 0 (37)

eT
r F = 0 (38)

One can see from the derivation that the essential and fundamental matrices are
related through the camera calibration matrices K% and Kr:

F = K−T
r EK−1

% . (39)

Consider a camera pair. Using the fact that if F maps points in the left image to
epipolar lines in the right image, then FT maps points in the right image to epipolar
lines in the left image, Equation (31) gives:

ζrF
Tmr = ζ%(e% ×m%). (40)

This is another way of writing the epipolar constraint: the epipolar line of mr

(FTmr) is the line containing its corresponding point (m%) and the epipole in the
left image (e%).
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4.1.3 Estimating F: the eight-point algorithm

If a number of point correspondences mi
% ↔mi

r is given, we can use Equation (34)
to compute the unknown matrix F .

We would like to convert Equation (34) from its bilinear form to a form that matches
the null space problem, as in the DLT algorithm. To this end we introduce the vec
operator:

mT
r Fm% = 0 ⇐⇒ vec(mT

r Fm%) = 0 ⇐⇒ (mT
r ⊗mT

% ) vec F = 0. (41)

Each point correspondence gives rise to one linear equation in the unknown entries
of F . From a set of n point correspondences, we obtain a n× 9 coefficient matrix
A by stacking up one equation for each correspondence. The fundamental matrix
F is computed by solving the resulting linear system of equations, for n ≥ 8.

In general A will have rank 8 and the solution is the 1-dimensional right null-space
of A.

38

If the data are not exact (noise is generally present) the rank of A will be 9 and a
least-squares solution is sought.

The least-squares solution for vec F is the singular vector corresponding to the
smallest singular value of A.

This method does not explicitly enforce F to be singular, so it must be done a
posteriori.

Replace F by F
′
such that det F

′
= 0, by forcing to zero the least singular value.

It can be shown that F
′
is the closest singular matrix to F in Frobenius norm.

Geometrically, the singularity constraint ensures that the epipolar lines meet in a
common epipole.

This simple algorithm provides good results in many situations and can be used to
initialise a variety of more accurate, iterative algorithms. Details of these can be
found in [37, 41, 11].
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4.2 Triangulation

Given the camera matrices P% and Pr, let m% and mr be two corresponding points
satisfying the epipolar constraint mT

r Fm% = 0. It follows that mr lies on the
epipolar line Fm% and so the two rays back-projected from image points m% and
mr lie in a common epipolar plane. Since they lie in the same plane, they will
intersect at some point. This point is the reconstructed 3D scene point M.

Analytically, the reconstructed 3D point M can be found by solving for parameter
ζ% and ζr inEquation (23). Let us rewrite it as:

m′
% = − 1

ζ%
er +

ζr

ζ%
mr (42)

The unknowns are ζr and ζ%. Both encode the position of M in space, as ζr is the
depth of M wrt the right camera and ζ% is the depth of M wrt the left camera.
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The three points mr, er and m′
% are known and are collinear, so we can solve for

ζ% using the following closed form expressions [29]:

1

ζ%
=

(m′
% ×mr) · (mr × er)

||mr × er||2 , (43)

The reconstructed point M can then be calculated by inserting the value ζ into
Equation (13).

In reality, camera parameters and image locations are known only approximately.
The back-projected rays therefore do not actually intersect in space. It can be
shown, however, that the above formula, solve Eq. (42) in a least squares sense
[23].

Triangulation is addressed in more details in [2, 13, 11, 39].
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4.3 Rectification

Given a pair of stereo images, epipolar rectification (or simply rectification) deter-
mines a transformation of each image plane such that pairs of conjugate epipolar
lines become collinear and parallel to one of the image axes (usually the horizontal
one).

The rectified images can be thought of as acquired by a virtual stereo pair, obtained
by rotating the original cameras and possibly modifying the intrinsic parameters.

The important advantage of rectification is that computing stereo correspondences
is made simpler, because search is done along the horizontal lines of the rectified
images.

We assume here that the stereo pair is calibrated, i.e., the cameras’ internal param-
eters, mutual position and orientation are known. This assumption is not strictly
necessary [15, 25, 21], but leads to a simple technique.
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Specifying virtual cameras.

Given the actual camera matrices Por and Po%, the idea behind rectification is to
define two new virtual cameras Pnr and Pn% obtained by rotating the actual ones
around their optical centers until focal planes becomes coplanar, thereby containing
the baseline (Figure 6). This ensures that epipoles are at infinity, hence epipolar
lines are parallel.

To have horizontal epipolar lines, the baseline must be parallel to the x-axis of both
virtual cameras. In addition, to have a proper rectification, conjugate points must
have the same vertical coordinate.

In summary: positions (i.e, optical centers) of the virtual cameras are the same as
the actual cameras, whereas the orientation of both virtual cameras differs from
the actual ones by suitable rotations; intrinsic parameters are the same for both
cameras.

Therefore, the two resulting virtual cameras will differ only in their optical centers,
and they can be thought as a single camera translated along the x-axis of its
reference system.
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Fig. 6. Epipolar geometry before and after rectification.
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Using Eq. (10) and Eq. (12), we can write the virtual cameras matrices as:

Pn% = K[R |−R C̃%], Pnr = K[R |−R C̃r]. (44)

In order to define them we need to assign K,R, C̃%, C̃r

The optical centers C% and Cr are the same as the actual cameras. The intrinsic
parameters matrix K can be chosen arbitrarily. The matrix R, which gives the
orientation of both cameras will be specified by means of its row vectors:

R =

rT
1

rT
2

rT
3

 (45)

that are the x, y, and z-axes, respectively, of the virtual camera reference frame,
expressed in world coordinates.
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According to the previous comments, we take:

(i) The x-axis parallel to the baseline: r1 = (C̃r − C̃%)/||C̃r − C̃%||
(ii) The y-axis orthogonal to x (mandatory) and to an arbitrary unit vector k:

r2 = k× r1

(iii) The z-axis orthogonal to xy (mandatory) : r3 = r1 × r2

In point 2, k fixes the position of the y-axis in the plane orthogonal to x. In order
to ensure that the virtual cameras look in the same direction as the actual ones, k
is set equal to the direction of the optical axis of one of the two actual cameras.

We assumed that both virtual cameras have the same intrinsic parameters. Actually,
the horizontal component of the image center can be different, and this degree of
freedom might be exploited to “center” the rectified images in the viewport by
applying a suitable horizontal translation.

46

The rectifying transformation. In order to rectify, say, the left image, we
need to compute the transformation mapping the image plane of Po% onto the image
plane of Pn%.

According to the equation of the optical ray, for any 3D point M that projects
to mo% in the actual image and to mn% in the rectified image, there exist two
parameters ζo and ζn such that:{

M̃ = C̃% + ζoP
−1
3×3,o%mo%

M̃ = C̃% + ζnP
−1
3×3,n%mn%

(46)

hence

mn% =
ζo

ζn
P3×3,n%P

−1
3×3,o%mo% (47)

The transformation sought is a linear transformation of the projective plane (called
collineaton) given by the 3× 3 matrix H% = P3×3,n%P

−1
3×3,o%.

Note that the scale factor ζo
ζn

can be neglected, as the transformation H% is defined
up to a scale factor (being homogeneous). The same result applies to the right
image.
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It is useful to think of an image as the intersection of the image plane with the
cone of rays between points in 3D space and the optical centre. We are moving the
image plane while leaving fixed the cone of rays.

C

Reconstruction of 3D points by triangulation can be performed from the rectified
images directly, using Pnr and Pn%.

More details on the rectification algorithm can be found in [10], from which this
section has been adapted.
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Left image

Rectified left image

Right image

Rectified right image

Fig. 7. Original and rectified stereo pair.
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4.4 Planes and collineations

When observing a plane, we obtain an interesting specialization of the epipolar
geometry of two views.

First, let us establish that the map between a world plane and its perspective image
is a collineation of P2. The easiest way to see it, is to choose the world coordinate
system such that the plane of the points have zero z coordinate:

Expanding gives:

ζ

 u
v
1

 =

P1,1 P1,2 P1,3 P1,4

P2,1 P2,2 P2,3 P2,4

P3,1 P3,2 P3,3 P3,4




x
y
0
1

 =

P1,1 P1,2 P1,4

P2,1 P2,2 P2,4

P3,1 P3,2 P3,4

 x
y
1

 . (48)

Points are mapped from the world plane to the image plane with a 3×3 non-singular
matrix, which represents a collineation of P2.

50

z

x

y

C

m

M

!

Fig. 8. The map between a world plane Π and a perspective image is a collineation.
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Next, we prove that: images of points on a plane are related to corresponding image
points in a second view by a collineation (or homography) of P2.

Let us consider two cameras and a plane Π: we have two collineations. Composing
the inverse of the left collineation with the right one defines a collineations from
the image plane of the left camera to the image plane of the right camera.

The plane Π induces a collineation HΠ between the views, which transfer points
from one view to the other:

mr " HΠm% if M ∈ Π. (49)

where HΠ is a 3× 3 non-singular matrix.
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Even though a collination of P2 depends upon eight parameters, there is no con-
traddiction with the fact that a plane depends upon three parameters. Indeed, the
collineation induced by a plane must be compatible with the epipolar geometry, i.e.:

(HΠm%)
TFm% = 0 (50)

for all points m. This implies that the matrix HT
ΠF is antisymmetric:

HT
ΠF + FTHΠ = 0 (51)

and this imposes six homogeneous costraints on HΠ.

A collineation H that satisfies Eq. (51) is said to be compatible with F .

A collineation H is compatible with F if and only if

F = [er]×H (52)

From this follows that – provided that Π does not contain Cr –

HΠe% = er (53)
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4.4.1 Homography induced by a plane

If the 3D point M lies on a plane Π with equation nTM̃ = d, Eq. (31) can be
specialized, obtaining (after elaborating):

ζr

ζ%
mr = Kr

(
R +

t nT

d

)
K−1

% m%. (54)

Therefore, the collineation induced by Π is given by:

HΠ = Kr

(
R +

t nT

d

)
K−1

% (55)

This is a three-parameter family of collineations, parametrized by n/d.
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4.4.2 Infinite homography

The infinite homography H∞ is the collineation induced by the plane at infinity; it
maps vanishing points to vanishing points.

It can be derived by letting d→∞ in (54), thereby obtaining:

H∞ = KrRK−1
% (56)

The infinity homograhy does not depend on the translation between views.

Note that H∞ can be obtained if t = 0 in Eq. (31), which corresponds to a rotation
about the camera centre. Thus H∞ not only relates points at infinity when the
camera describes a general motion, but it also relates image points of any depth if
the camera rotates about its centre.
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4.4.3 Plane induced parallax

In general, when points are not on the plane, the homography induced by a plane
generates a virtual parallax. This gives rise to an alternative representation of the
epipolar geometry and scene structure [32].

First let us note that Eq. (31), which we write:

ζr

ζ%
mr = H∞m% +

1

ζ%
er, (57)

can be seen as composed by a transfer of point according to the infinity homography

(H∞m%) plus a parallax correction term (
1

ζ%
er).
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We want to generalize this equation to any plane. To this end we substitute

H∞ = HΠ −Kr

(
t nT

d

)
K−1

% (58)

into Eq. (57), obtaining
ζr

ζ%
mr = HΠm% + γer (59)

with γ =

(
a

d ζ%

)
, where a is the distance of M to the plane Π.

When M is on the 3D plane Π, then mr " HΠm%. Otherwise there is a residual
displacement, called parallax, which is proportional to γ and oriented along the
epipolar line.

The magnitude parallax depends only on the left view and the plane. It does not
depend on the parameters of the right view.

From from Eq. (59) we derive mT
r (er ×HΠm%) = 0, hence

F = [er]×HΠ (60)
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Fig. 9. Plane induced parallax.
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Fig. 10. Left and right images. The leftmost image is a superposition of the warped left image and
the right image. The reference plane exactly coincide. However, points off the plane (such as the
bottle) do not coincide.
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4.4.4 Estimating H

A number of point correspondences mi
r ↔mi

% is given, and we are required to find
an homography matrix H such that

mi
r " Hmi

% for all i (61)

The equation (we drop the index i for simplicity) can be rewritten in terms of the
cross product as

mr ×Hm% = 0 (62)

As we did before, we exploit the properties of the Kronecker product and the vec
operator to transform this into a null-space problem and then derive a linear solution.

mr ×Hm% = 0 ⇐⇒ [mr]×Hm% = 0 ⇐⇒ vec([mr]×Hm%) = 0

⇐⇒ (mT
% ⊗ [mr]×) vec H = 0 ⇐⇒ ([mr]× ⊗mT

% ) vec HT = 0
(63)

After expanding the coefficient matrix, we obtain 0T −mT
% vmT

%

mT
% 0T −umT

%

−vmT
% umT

% 0T

 vec HT = 0 (64)
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Although there are three equations, only two of them are linearly independent: we
can write the third row (e.g.) as a linear combination of the first two.

From a set of n point correspondences, we obtain a 2n × 9 coefficient matrix A
by stacking up two equations for each correspondence. The projection matrix H is
computed by solving the resulting linear system of equations, for n ≥ 4.

In general A will have rank 8 and the solution is the 1-dimensional right null-space
of A.

If the data are not exact (noise is generally present) the rank of A will be 9 and a
least-squares solution is sought.

The least-squares solution for vec HT is the singular vector corresponding to the
smallest singular value of A.

This is another incarnation of the DLT algorithm.
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4.4.5 Estimating the epipole

The epipole can be located [36] given the homography HΠ between two views and
two off-plane conjugate pairs m0

% ↔m0
r and m1

% ↔m1
r .

e

Hm

Hm

m

mr

l

l

0

0

1

r

1

r

Following simple geometric consideration, the epipole is computed as the intersec-
tion between the line containing HΠm0

%,m
0
r and the line containing HΠm1

%,m
1
r:

er " (HΠm0
% ×m0

r)× (HΠm1
% ×m1

r) (65)

In the projective plane, the line determined by two points is given by their cross
product, as well as the point determined by two lines.
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4.4.6 Estimating the parallax

We are required to compute the magnitude of the parallax γ for a point m% given
its corresponding point mr, the homography HΠ between the two views and the
epipole. To this end we rewrite (59) as:

HΠm% = −γer +
ζr

ζ%
mr (66)

and, given that points er, mr and HΠm% are collinear, we solve for γ using:

γ =
(HΠm% ×mr)T (mr × er)

||mr × er||2 (67)

Please note that the epipole and the homography can be computed from images
only up to an unknown scale factor. It follows that the magnitude of the parallax
as well is known only up to a scale factor.
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4.4.7 Applications

Mosaics. Image mosaicing is the automatic alignment (or registration) of mul-
tiple images into larger aggregates [34]. There are two types of mosaics. In both
cases, it turns out that images are related by homographies, as we discussed previ-
ously.

Planar mosaic: result from the registration of different views of a planar
scene.

Panoramic mosaic result from the registration of views taken by a camera
rotating around its optical centre (typ. panning). In some cases, in order
to cope with large rotations (> 180 deg), the images are converted to
cylindrical coordinates.
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Fig. 11. Planar mosaic with components location shown as white outlines.
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Fig. 12. Selected frames from “Arena” sequence (top) and panoramic mosaic (bottom). Components
location shown as white outlines.
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Orthogonal rectification. The map between a world plane and its perspective
image is an homography. The world-plane to image-plane homography is fully
defined by four points of which we know the relative position in the world plane.
Once this homography is determined, the image can be back projected (warped)
onto the world plane. This is equivalent to synthesize an image as taken from a
fronto-parallel view of the plane. This is known as orthogonal rectification [24] of
a perspective image.

Fig. 13. A perspective image and a ortho-rectified image of the floor plane
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4.5 3D Reconstruction

What can be reconstructed depends on what is known about the scene and the
stereo system. We can identify three cases.

(i) If both the intrinsic and extrinsic camera parameters are known, we can solve
the reconstruction problem unambiguously by triangulation.

(ii) If only the intrinsic parameters are known, we can estimate the extrinsic param-
eters and solve the reconstruction problem up to an unknown scale factor. In
other words, R can be estimated completely, and t up to a scale factor.

(iii) If neither intrinsic nor extrinsic parameters are known, i.e., the only information
available are pixel correspondences, we can still solve the reconstruction problem
but only up to an unknown, global projective transformation of the world.
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4.5.1 Reconstruction up to a Similarity

If only intrinsics are known (plus point correspondences between images), the epipo-
lar geometry is described by the essential matrix (Section 4.1.1). We will see that,
starting from the essential matrix, only a reconstruction up to a similarity transfor-
mation (rigid+ uniform scale) can be achieved. Such a reconstruction is referred
to as “Euclidean”.

Unlike the fundamental matrix, the only property of which is to have rank two, the
essential matrix is characterised by the following theorem [20].

Theorem 4.1 A real 3 × 3 matrix E can be factorised as product of a nonzero
skew-symmetric matrix and a rotation matrix if and only if E has two identical
singular values and a zero singular value.

The theorem has a constructive proof (see [12]) that describes how E can be fac-
torised into rotation and translation using its Singular Value Decomposition (SVD).
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The rotation R and translation t are then used to instantiate a camera pair as
in Equation (24), and this camera pair is subsequently used to reconstruct the
structure of the scene by triangulation.

The rigid displacement ambiguity arises from the arbitrary choice of the world refer-
ence frame, whereas the scale ambiguity derives from the fact that t can be scaled
arbitrarily in Equation (28) and one would get the same essential matrix (E is
defined up to a scale factor).

Therefore translation can be recovered from E only up to an unknown scale fac-
tor which is inherited by the reconstruction. This is also known as depth-speed
ambiguity.
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4.5.2 Reconstruction up to a Projective Transformation

Suppose that a set of image correspondences mi
% ↔ mi

r are given. It is assumed
that these correspondences come from a set of 3D points Mi, which are unknown.
Similarly, the position, orientation and calibration of the cameras are not known.
This situation is usually referred to as weak calibration, and we will see that the
scene may be reconstructed up to a projective ambiguity, which may be reduced if
additional information is supplied on the cameras or the scene.

The reconstruction task is to find the camera matrices P% and Pr, as well as the
3D points Mi such that

mi
% = P%M

i and mi
r = PrM

i, ∀i (68)

In particular, if T is any 4× 4 invertible matrix, representing a projective transfor-
mation of the 3D space, then replacing points Mi by TMi and matrices P% and
Pr by P%T−1 and PrT−1 does not change the image points. This shows that, if
nothing is known but the image points, the points Mi and the cameras can be
determined, at best, only up to a projective transformation.
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The procedure for reconstruction follows the previous one. Given the weak cali-
bration assumption, the fundamental matrix can be computed (using the algorithm
described in Section 4.1.2), and from a (non-unique) factorization of F of the form

F = [er]×A (69)

two camera matrices P% and Pr:

P% = [I|0] and Pr = [A|er], (70)

can be created in such a way that they yield the fundamental matrix F , as can
be easily verified. The position in space of the points Mi is then obtained by
triangulation.

The only difference with the previous case is that F does not admit a unique
factorization, whence the projective ambiguity follows.

Indeed, for any A satisfying Equation (69), also A+erxT for any vector x, satisfies
Equation (69).
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One matrix A satisfying Equation (69) can be obtained as A = −[er]×F (this is
called the epipolar projection matrix [26]).

More in general, any homography induced by a plane can be taken as the A matrix
(cfr. Eq. (52)).
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5 Multiple View Geometry

In this section we study the relationship that links three or more views of the same
3D scene, known in the three-view case as trifocal geometry.

This geometry can be described in terms of fundamental matrices linking pairs of
cameras, but in the three-view case a more compact and elegant description is
provided by a special algebraic operator, the trifocal tensor.

We also discover that four views are all we need, in the sense that additional views
do not allow us to compute anything we could not already comput (Section 5.4).
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5.1 Trifocal geometry

Denoting the cameras by 1, 2, 3, there are now three fundamental matrices, F1,2,
F1,3, F2,3, and six epipoles, ei,j, as in Figure 14. The three fundamental matrices
describe completely the trifocal geometry [8].

The plane containing the three optical centres is called the trifocal plane. It inter-
sects each image plane along a line which contains the two epipoles.

Writing Eq. (40) for each camera pair (taking the centre of the third camera as the
point M) results in three epipolar constraints:

F3,1e3,2 " e1,3 × e1,2 F1,2e1,3 " e2,1 × e2,3 F2,3e2,1 " e3,2 × e3,1 (71)

Three fundamental matrices include 21 free parameters, less the 3 constraints above;
the trifocal geometry is therefore determined by 18 parameters.

This description of the trifocal geometry fails when the three cameras are collinear,
and the trifocal plane reduces to a line.
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Fig. 14. Trifocal geometry.
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If the trifocal geometry is known, given two conjugate points m1 and m2 in view 1
and 2 respectively, the position of the conjugate point m3 in view 3 is completely
determined (Figure 15).

This allows for point transfer or prediction. Indeed, m3 belongs simultaneously to
the epipolar line of m1 and to the epipolar line of m2, hence:

m3 " F1,3m1 × F2,3m2 (72)

Epipolar transfer fails for 3D points on the trifocal plane, as the epipolar lines are
coincident. Even worse, if the three cameras are collinear, the transfer is not possible
for any point.

These deficiencies motivate the introduction of the trifocal tensor. We follow here
the formulation iven in [30].
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Fig. 15. Point transfer using epipolar constraints between three views.
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5.2 The trifocal tensor

Recalling Equation (70), consider the following three cameras:

P1 = [I|0], P2 = [A|e2,1], and P3 = [B|e3,1]. (73)

Consider a point M in space projecting to m1, m2 and m3 in the three cameras.
Let us write the epipolar line of m1 in the other two views (using Equation (23)):

ζ2m2 = e2,1 + ζ1Am1 (74)

ζ3m3 = e3,1 + ζ1Bm1. (75)

Consider a line through m2, represented by s; we have sTm2 = 0, that substituted
in (74) gives:

0 = sTe2,1 + ζ1s
TAm1 (76)

Since a point is determined by two lines, we can write a similar independent con-
straint for a second line l through m2:

0 = lTe2,1 + ζ1l
TAm1 (77)
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To write the last two equations in a more compact way we introduce a 2× 3 matrix

S =

[
sT

lT

]
, (78)

and switch to tensor notation, where S becomes sµ
j , and Equations (76) and (77)

become:
0 = sµ

j e
j
2,1 + ζ1p

i
1s

µ
j a

j
i (79)

By the same token, we can represent two lines through m3 in tensor notation by
means of 2× 3 matrix rρ

k, obtaining:

0 = rρ
ke

k
3,1 + ζ1p

i
1r

ρ
kb

k
i (80)

After eliminating ζ1 from Equation (79) and (80) we obtain

(sµ
j e

j
2,1)(p

i
1r

ρ
kb

k
i ) = (rρ

ke
k
3,1)(p

i
1s

µ
j a

j
i ) (81)

and after some re-writing:
pi

1s
µ
j r

ρ
kT jk

i = 0, (82)

where
T jk

i ! ej
2,1b

k
i − ek

3,1a
j
i (83)
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is a 3×3×3 homogeneous tensor, called the trifocal tensor. The tensorial equation
(82) represents four trilinear equations, since µ = 1, 2 and ρ = 1, 2 are free indices.

This relationship involves the trifocal tensor and the three conjugate points, as sµ
j

and rρ
k define m2 and m3 respectively. To make the coordinates of m2 and m3

appear explicitly, let us choose the two lines parallel to the coordinate axes, thereby
obtaining:

sµ
j =

[−1 0 u2

0 −1 v2

]
and rρ

k =

[−1 0 u3

0 −1 v3

]
. (84)

After substituting the above expressions for sµ
j and rρ

k, Equation (82) becomes:

u3T 13
i pi

1 − u3u2T 33
i pi

1 + u2T 31
i pi

1 − T 11
i pi

1 = 0

v3T 13
i pi

1 − v3u2T 33
i pi

1 + u2T 32
i pi

1 − T 12
i pi

1 = 0

u3T 23
i pi

1 − u3v2T 33
i pi

1 + v2T 31
i pi

1 − T 21
i pi

1 = 0

v3T 23
i pi

1 − v3v2T 33
i pi

1 + v2T 32
i pi

1 − T 22
i pi

1 = 0

(85)

Every triplet (m1, m2, m3) of corresponding points gives four linear independent
equations, hence seven triplets determine the trifocal tensor.
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Notice that the trifocal tensor represents the trifocal geometry without singularities:
it can be safely used for point transfer in any situation. A transferred point, m3,
can be computed from Equation (85) or, in closed form, as:

pk
3 = pi

1sjT jk
i (86)

where sj represents a line through m2. In a similar way, the trifocal tensor can be
used to transfer lines:

qi = sjrkT jk
i (87)

where sj and rk represent two matching lines in the first two views, and qi is the
transferred line in the third view.
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5.3 Reconstruction

As in the case of two views, what can be reconstructed depends on what is known
about the scene and the cameras. In general, if the internal parameters of the
cameras are known, we can obtain a Euclidean reconstruction, that differs from
the true reconstruction by a similarity transformation. This is composed by a rigid
displacement (due to the arbitrary choice of the world reference frame) plus a a
uniform change of scale (due to the well-known depth-speed ambiguity). In the
weakly calibrated case, i.e., when point correspondences are the only information
available, a projective reconstruction can be obtained.

The reconstruction in the multiple-views case, however, poses some additional prob-
lems.
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5.3.1 Euclidean Reconstruction

Let us consider for simplicity the case of three views, which generalizes straightfor-
ward to N views.

If one applies the method of Section 4.5.1 to view pairs 1-2, 1-3 and 2-3 one obtains
three displacements (R12, t̂12), (R13, t̂13) and (R23, t̂23) known up a scale factor, as
the norm of translation cannot be recovered, owing to the depth-sped ambiguity
(the symbolˆ indicates a unit-norm vector).

The “true” displacements must satisfy the following compositional rule

t13 = R23t12 + t23 (88)

which can be rewritten as

t̂13 = µ1R23t̂12 + µ2t̂23 (89)

where µ1 = ||t12||/||t13|| and µ2 = ||t23||/||t13|| are unknown.
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However Eq. (88) constraints t̂13, R23t̂12 and t̂23 to be coplanar, hence the ratios
µ1, µ2 can be recovered :

||t12||
||t13|| = µ1 =

(t̂13 × t̂23) · (R23t̂12 × t̂23)

||R23t̂12 × t̂23||2
(90)

And similarly for µ2.

In this way three consistent camera matrices can be instantiated.

Note that only ratios of translation norm can be computed, hence the global scale
factor remains undetermined.
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5.3.2 Projective Reconstruction

As in the case of two cameras, given only point correspondences, it is possible to
reconstruct scene structure and camera matrices up to a global unknown projective
transform.

The reconstruction from N views, however, cannot be obtained by simply applying
the method of Section 4.5.2 to pairs of views. One would obtain, in general, a
set of projective reconstructions linked to each other by an unknown projective
transformation (i.e., each camera pair defines its own projective frame).

An elegant method for multi-image reconstruction was described in [33], based on
the idea of factorization method [35] idea.
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Consider m cameras P1 . . . Pm looking at n 3D points M1 . . .Mn. The usual
projection equation

ζj
i m

j
i = PiM

j i = 1 . . .m, j = 1 . . . n. (91)

can be written in matrix form:
ζ1
1m

1
1, ζ2

1m
2
1, . . . ζn

1 m
n
1

ζ1
2m

1
2, ζ2

2m
2
2, . . . ζn

2 m
n
2

... ... . . . ...
ζ1
mm1

m, ζ2
mm2

m, . . . ζn
mmn

m


︸ ︷︷ ︸

measurements W

=


P1,
P2,
...

Pm


︸ ︷︷ ︸

P

[
M1, M2, . . . Mn

]︸ ︷︷ ︸
structure S

. (92)

In this formula the mj
i are known, but all the other quantities are unknown, including

the projective depths ζj
i . Equation (92) tells us that W can be factored into the

product of a 3m× 4 matrix P and a 4× n matrix S. This also means that W has
rank four.

If we assume for a moment that the projective depths ζj
i are known, then matrix

M is known too and we can compute its singular value decomposition:

W = UDV. (93)
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In the noise-free case, D = diag(σ1,σ2,σ3,σ4, 0, . . . 0), thus, only the first 4
columns (rows) of U (V ) contribute to this matrix product. Let U ′ (V ′) the
matrix of the first 4 columns (rows) of U (V ). Then:

W = U ′ diag(σ1,σ2,σ3,σ4) V ′. (94)

The sought reconstruction is obtained by setting:

P = U ′ diag(σ1,σ2,σ3,σ4) and S = V ′

For any non singular projective transformation T , TP and T−1S is an equally valid
factorization of the data into projective motion and structure.

As expected, the reconstruction is up to an unknown projective transformation.

A consequence of this is that the choice of attaching the diagonal matrix to U ′ is
arbitrary. It could be attached to V ′ or even factorized in two matrices.
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As the ζi,j are unknown, we are left with the problem of estimating them. The
original algorithm [33] uses the epipolar constraint (Eq.40) to fix the ratio of the
projective depths of one point in successive images.

In [17] the projective depths are estimated in an iterative fashion. First let us note
that for a fixed camera i the projection equation writes:[

m1
i , m2

i , . . . mn
i

]
Zi = PiS (95)

where Zi = diag(ζi,1, ζi,2, . . . ζi,n). The following iterative procedure is used:

1. Set ζi,j = 1;

2. Factorize W and obtain an estimate of P and S;

3. If σ5 is sufficiently small then stop;

4. Use W,P and S to estimate Zi from Equation (95);

5. Goto 2.

It can be proven that the quantity that is being minimized is σ5.
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This technique is fast, requires no initialization, and gives good results in practice,
although there is no guarantee that the iterative process will converge.

A provably convergent iterative method have been presented in [27].
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5.4 Multifocal constraints

We outline here an alternative and elegant way to derive all the meaningfull multi-
linear constraints, based on determinants, described in [16]. Consider one image
point viewed by m cameras:

ζimi = PiM i = 1 . . . m (96)

By stacking all these equations we obtain:
P1 m1 0 . . . 0
P2 0 m2 . . . 0
... ... ... ... ...

Pm 0 0 . . . mm




M
−ζ1

−ζ2
...
−ζm

 =


0
0
...
0

 (97)

This implies that the 3m× (m + 4) matrix (let us call it L) is rank-deficient, i.e.,
rank L < m + 4. In other words, all the (m + 4)× (m + 4) minors of L are equal
to 0.
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It has been proven that there are three different types of such minors that translates
into meaningful multi-view constraints, depending on the number of rows taken from
each view. Since one row has to be taken from each view and the remaining four
can be distributed freely, one can choose:

1. Two rows from one view and two rows from another view. This gives a bilinear
two-view constraint, expressed by the bifocal tensor i.e., the fundamental matrix.

2. Two rows from one view, one row from another view and one row from a third
view. This gives a trilinear three-view constraint, expressed by the trifocal tensor.

3. One row from each of four different views. This gives a quadrilinear four-view
constraint, expressed by the quadrifocal tensor.

All the other type of minors can be factorised as product of the two-, three-, or
four-views constraints and point coordinates in the other images. This indicates
that no interesting constraints can be written for more than four views.
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