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1 Introduction

The migration of immersive media towards telecommunication application continues
to advance:

• immersive video conferencing

• collaborative virtual environment

• Immersive TV

The development from 2D toward 3D video-communication is a key component for
such applications.

Been able to (dynamically) change the view point of the observer/user is the most
general and challenging scenario of 3D video-communication.

Image Based Rendering tackle this problem: given images of a real scene, synthesize
novel views of the same scene from a virtual camera by processing the real images.
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1.1 Image Based Rendering

One of the central themes in the field of computer graphics is the generation of
images of artificial environments capable to convince the viewer that they are looking
into a real scene (photorealism).

Model-based rendering: The model specify the geometry of scene (usually as
3D mesh) and the surface properties (how a surface interact with light). Images of
the scene are generated by render algorithm such as ray tracing or radiosity.

This works well in synthetic scenes where all elements are well defined.

In the context of video communication all the information that is available consist
of a set of video streams, taken by real cameras from different view points.

One way would be to invert the imaging process and to reconstruct a full 3D scene
model from real images (Computer Vision). Then follow the model-based rendering
pipeline (Computer Graphics).
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It turns out that a full 3D reconstruction is not necessary, and sometimes even not
desired.

Image-Based Rendering: Images of a real scene are taken from various view
points and novel views of the same scene are synthesized from a virtual camera by
processing the real images, without the need of a full three-dimensional reconstruc-
tion.

IBR greatly simplifies the modelling of real scenes as only a number of example
images need to be acquired.

A second advantage of IBR is that the complexity of rendering is decoupled from
the complexity of the scene (number of triangles).

Moreover, photorealism is improved, as novel views are generated by re-sampling
the real images.
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In the following we will

• outline the theory relevant for understanding the imaging process of a 3D scene
onto a camera and the geometrical rationale behind view synthesis.

• Then we will survey the IBR techniques,

• and finally we will concentrate on the problem of computing correspondences
between images, as they are largely used as a geometry proxy in many IBR
methods.
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2 Pin-hole Camera

The pin-hole camera is described by its optical centre C (also known as camera
projection centre) and the image plane.

The distance of the image plane from C is the focal length f .

The plane parallel to the image plane containing the optical centre is called the
principal plane or focal plane of the camera.

A 3-D point is projected onto the image plane with the line containing the point
and the optical centre (see Figure 1).

By similar triangles it is readily seen that the 3-D point (x, y, z)T is mapped to the
point (fx/z, fy/z)T on the image plane.
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Fig. 1. Pin-hole camera geometry. The left figure illustrates the projection of the point M on the

image plane by drawing the line through the camera centre C and the point to be projected. The

right figure illustrates the same situation in the YZ plane, showing the similar triangles used to

compute the position of the projected point m in the image plane.
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2.1 The camera projection matrix

If the world and image points are represented by homogeneous vectors, then per-
spective projection can be expressed in terms of matrix multiplication as

ζm = PM (1)

where

• M = (x, y, z, 1)T are the homogeneous coordinates of the 3-D point,

• m = (u, v, 1)T are the homogeneous pixel coordinates of the image point,

• ζ is the distance of M from the focal plane of the camera and

• P is the matrix describing the mapping, called the camera projection matrix.
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If reference systems are chosen as in Fig. 1 then the camera matrix is




fx
fy
z


 =




f 0 0 0
0 f 0 0
0 0 1 0







x
y
z
1


 (2)

which further redudes to P = [I|0] if f = 1.

More in general, the camera matrix is the product of two matrices

P = K[I|0]G = K[R|t] (3)
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Extrinsic parameters

G =

[
R t
0 1

]
(4)

G is composed by a rotation matrix R and a translation vector t. It describes the
position and orientation of the camera with respect to an external (world) coordinate
system. It depends on six parameters, called extrinsic parameters.

The rows of R are unit vectors that, together with the optical centre, define the
camera reference frame, expressed in world coordinates.
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Intrinsic parameters

K =




f/sx f/sx cot θ ox

0 f/sy oy

0 0 1


 (5)

K is the camera calibration matrix; it encodes the transformation in the image
plane from the so-called normalized camera coordinates to pixel coordinates.

It depends on the so-called intrinsic parameters:

• focal distance f (in mm),

• principal point (or image centre) coordinates ox, oy (in pixel),

• width (sx) and height (sy) of the pixel footprint on the camera photosensor (in
mm),

• angle θ between the axes (usually π/2).

The ratio sy/sx is the aspect ratio (usually close to 1).
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General camera

If P describes a camera, also λP for any 0 6= λ ∈ R describes the same camera,
since these give the same image point for each scene point.

In this case we can also write:
m ' PM (6)

where ' means “equal up to a scale factor.”

In general, the camera projection matrix is a 3 × 4 full-rank matrix and, being
homogeneous, it has 11 degrees of freedom.

Using QR factorization, it can be shown that any 3× 4 full rank matrix P can be
factorised as:

P = λK[R|t], (7)

(λ is recovered from K(3, 3) = 1).
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Projection centre

The camera projection centre C is the only point for which the projection is not
defined, i.e.:

PC = P

(
C̃
1

)
= 0 (8)

where C̃ is a 3-D vector containing the Cartesian (non-homogeneous) coordinates
of the optical centre.

After solving for C̃ we obtain:

C̃ = −P−1
1:3 P4 (9)

where the matrix P is represented by the block form: P = [P1:3|P4] (the subscript
denotes a range of columns).
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Optical ray

The projection can be geometrically modelled by a ray through the optical centre
and the point in space that is being projected onto the image plane (see Fig. 1).

The optical ray of an image point m is the locus of points in space that projects
onto m.

It can be described as a parametric line passing through the camera projection
centre C and a special point (at infinity) that projects onto m:

M =

( −P−1
1:3 P4

1

)
+ ζ

(
P−1

1:3 m
0

)
, ζ ∈ R. (10)

The parameter ζ in Eq. (10) represent the the depth of the point M only if P has
been scaled so that λ = 1 in Eq. (7).

Knowing the intrinsic parameters is equivalent to being able to trace the optical ray
of any image point (with P = [K|0]).
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3 Two-View Geometry

The two-view geometry is the intrinsic geometry of two different perspective views
of the same 3-D scene (see Figure 2). It is usually referred to as epipolar geometry.

The two perspective views may be acquired simultaneously, for example in a stereo
rig, or sequentially, for example by a moving camera. From the geometric view-
point, the two situations are equivalent, provided that that the scene do not change
between successive snapshots.

Most 3-D scene points must be visible in both views simultaneously. This is not
true in case of occlusions, i.e., points visible only in one camera. Any unoccluded
3-D scene point M = (x, y, z, 1)T is projected to the left and right view as m` =
(u`, v`, 1)T and mr = (ur, vr, 1)T , respectively (see Figure 2).

Image points m` and mr are called corresponding points (or conjugate points) as
they represent projections of the same 3-D scene point M.

The knowledge of image correspondences enables scene reconstruction from images.
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The concept of correspondence is a cornerstone of multiple-view vision. In this notes
we assume known correspondences, and explore their use in geometric algorithms.
Techniques for computing dense correspondences are surveyed in [21, 3].

Fig. 2. Two perspective views of the same 3-D scene. m` and mr are corresponding points, as they

are the projection of the same 3-D point, M.
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We will refer to the camera projection matrix of the left view as P` and of the right
view as Pr. The 3-D point M is then imaged as (11) in the left view, and (12) in
the right view:

ζ`m` = P`M (11)

ζrmr = PrM. (12)

Geometrically, the position of the image point m` in the left image plane I` can be
found by drawing the optical ray through the left camera projection centre C` and
the scene point M. The ray intersects the left image plane I` at m`.

Similarly, the optical ray connecting Cr and M intersects the right image plane Ir

at mr.

The relationship between image points m` and mr is given by the epipolar geometry,
described in Section 3.1.
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3.1 Epipolar Geometry

The epipolar geometry describes the geometric relationship between two perspective
views of the same 3-D scene.

The key finding, discussed below, is that corresponding image points must lie on
particular image lines, which can be computed without information on the calibra-
tion of the cameras.

This implies that, given a point in one image, one can search the corresponding
point in the other along a line and not in a 2-D region, a significant reduction in
complexity.
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Fig. 3. The epipolar geometry and epipolar constraint.
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Any 3-D point M and the camera projection centres C` and Cr define a plane that
is called epipolar plane.

The projections of the point M, image points m` and mr, also lie in the epipolar
plane since they lie on the rays connecting the corresponding camera projection
centre and point M.

The conjugate epipolar lines, l` and lr, are the intersections of the epipolar plane
with the image planes. The line connecting the camera projection centres (C`,Cr)
is called the baseline.

The baseline intersects each image plane in a point called epipole.

By construction, the left epipole e` is the image of the right camera projection
centre Cr in the left image plane. Similarly, the right epipole er is the image of the
left camera projection centre C` in the right image plane.

All epipolar lines in the left image go through e` and all epipolar lines in the right
image go through er.
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The epipolar constraint.

An epipolar plane is completely defined by the camera projection centres and one
image point.

Therefore, given a point m`, one can determine the epipolar line in the right image
on which the corresponding point, mr, must lie.

The equation of the epipolar line can be derived from the equation describing the
optical ray. As we mentioned before, the right epipolar line corresponding to m`

geometrically represents the projection (Eq. (1)) of the optical ray through m`

(Eq. (10)) onto the right image plane:

ζrmr = PrM = Pr

( −P−1
`1:3

P`4
1

)

︸ ︷︷ ︸
er

+ ζ`Pr

(
P−1

`1:3
m`

0

)
(13)
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If we now simplify the above equation we obtain:

ζrmr = er + ζ`Pr1:3
P−1

`1:3
m`︸ ︷︷ ︸

m′
`

(14)

This is the equation of a line – parametrized by the depth ζ` – through the right
epipole er and the image point m′

`, which represents the projection onto the right
image plane of the point at infinity of the optical ray of m`.

The equation for the left epipolar line is obtained in a similar way.

Fig. 4. Left and right images with epipolar lines.
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If we take the first camera reference frame as the world reference frame, we can
write the following two general camera matrices:

P` = K`[I|0] = [K`|0] Pr = Kr[R|t] (15)

Then, two corresponding points m` and mr are related by

ζrmr = ζ`KrRK−1
` m` + Krt. (16)
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Depth-based warping If the depth of a pixel is given, it can be forward-mapped
from the real (left) view into the virtual view using Eq. (16). Indeed:

mv ' ζ`KvRK−1
` m` + Kvt. (17)

where R and t specify the position and orientation of the virtual camera with respect
to the real one.

Fig. 5. The image and depth information were acquired simultaneously using a laser-based 3D

scanner. The warped image is shown on the right. From [20].
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Problems with warping:

• Image folding: more than one pixel in the reference view maps into a single pixel
in the extrapolated view

• Holes: information missing (not visible) in the reference view is required in the
extrapolated view.

• Magnification: the projected area of a surface increases in the extrapolated view.

Fig. 6. Depth-based warping artifacts. (From A. Watt.)
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Image folding can be avoided by following a suitable evaluation order [18], that
guarantee that pixels closer to the viewer are warped after the others, thereby
overwriting them (e.g., if synthetic camera is translated to the left, pixel must be
processed from right to left.)

Magnification artifacts occurs also in texture mapping or 2D image warping. They
are typically solved by interpolation or by drawing “fat” pixels (splatting).

Holes are more difficult to solve. In the lack of more information one can only
guess the missing values. Layered Depth Images [23] solve the occlusion problem
by associating to each pixel many depths, namely the depth of each surface (layer)
that the optical ray through the pixel would intersect. Rendering is done back-to-
front, by processing one layer at a time.
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Epipolar transfer

If the depth is not known, but two images with a dense correspondence map are
given instead, point transfer is still possible.

If the epipolar geometry of three cameras Ir, I` and Iv is known, given two corre-
sponding points mr and m` in the two real views, the position of the corresponding
point mv in view Iv is completely determined (Figure 7). Indeed, mv belongs
simultaneously to the epipolar line of mr and to the epipolar line of m`.

13F

F
23

1 2 3

Fig. 7. Point transfer using epipolar constraints between three views.
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Fig. 8. From left to right: The two real views and the predicted view. (from [13]).

This description fails when the three optical rays are coplanar.

A more compact and stable description of the geometry of three views is given by
the Trifocal tensor [2], which has been used as well for point transfer.
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3.2 Rectification

Given a pair of stereo images, epipolar rectification (or simply rectification) deter-
mines a transformation of each image plane such that pairs of conjugate epipolar
lines become collinear and parallel to one of the image axes (usually the horizontal
one).

The rectified images can be thought of as acquired by two new virtual cameras,
obtained by rotating the actual cameras and possibly modifying the intrinsic pa-
rameters.

The important advantage of rectification is that computing stereo correspondences
is made simpler, because search is done along the horizontal lines of the rectified
images.

We assume here that the stereo pair is calibrated, i.e., the cameras’ intrinsic param-
eters, mutual position and orientation are known. This assumption is not strictly
necessary [9, 17, 11], but leads to a simpler technique and less distorted images.
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Specifying virtual cameras.

Given the actual camera matrices Por and Po`, the idea behind rectification is to
define two new virtual cameras Pnr and Pn` obtained by rotating the actual ones
around their optical centers until focal planes becomes coplanar, thereby containing
the baseline (Figure 9). This ensures that epipoles are at infinity, hence epipolar
lines are parallel.

To have horizontal epipolar lines, the baseline must be parallel to the x-axis of both
virtual cameras. In addition, to have a proper rectification, conjugate points must
have the same vertical coordinate.

In summary: positions (i.e, optical centers) of the virtual cameras are the same as
the actual cameras, whereas the orientation of both virtual cameras differs from
the actual ones by suitable rotations; intrinsic parameters are the same for both
cameras.

Therefore, the two resulting virtual cameras will differ only in their optical centers,
and they can be thought as a single camera translated along the x-axis of its
reference system.
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Fig. 9. Epipolar geometry before and after rectification.
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Using Eq. (7) and Eq. (9), we can write the virtual cameras matrices as:

Pn` = K[R | −R C̃`], Pnr = K[R | −R C̃r]. (18)

In order to define them, we need to assign K, R, C̃`, C̃r

The optical centers C` and Cr are the same as the actual cameras. The intrinsic
parameters matrix K can be chosen arbitrarily. The matrix R, which gives the
orientation of both cameras will be specified by means of its row vectors:

R =



rT

1

rT
2

rT
3


 (19)

that are the x, y, and z-axes, respectively, of the virtual camera reference frame,
expressed in world coordinates.
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According to the previous comments, we take:

(i) The x-axis parallel to the baseline: r1 = (C̃r − C̃`)/||C̃r − C̃`||
(ii) The y-axis orthogonal to x (mandatory) and to an arbitrary unit vector k:

r2 = k× r1

(iii) The z-axis orthogonal to xy (mandatory) : r3 = r1 × r2

In point 2, k fixes the position of the y-axis in the plane orthogonal to x. In order
to ensure that the virtual cameras look in the same direction as the actual ones, k
is set equal to the direction of the optical axis of one of the two actual cameras.

We assumed that both virtual cameras have the same intrinsic parameters. Actually,
the horizontal components of the image centre (v0) can be different, and this degree
of freedom might be exploited to “center” the rectified images in the viewport by
applying a suitable horizontal translation.
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The rectifying transformation.

In order to rectify the images, we need to compute the transformation mapping the
image plane of Po onto the image plane of Pn.

According to the equation of the optical ray, if M projects to mo in the actual
image and to mn in the rectified image, we have:

{
M̃ = C̃+ζoP

−1
o1:3

mo

M̃ = C̃+ζnP
−1
n1:3

mn
(20)

hence

mn =
ζo

ζn
Pn1:3

P−1
o1:3︸ ︷︷ ︸

H

mo (21)

The rectifying transformation is a linear transformation of the projective plane (a
collineation) given by the 3× 3 matrix H.

It is understood that this has to be applied to the left and right images.
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It is useful to think of an image as the intersection of the image plane with the
cone of rays between points in 3-D space and the optical centre. We are moving
the image plane while leaving fixed the cone of rays.

C

Rectification is actually an instance of view synthesis, where the rectified views
are obtained with a virtual rotation of the real cameras.

37



Left image

Rectified left image

Right image

Rectified right image

Fig. 10. Original and rectified stereo pair.
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Disparity-based interpolation (view morphing.) This technique interpolates
novel perspective views from a given pair of real views and a dense correspondence
map.

In the rectified images, two corresponding points m` and mr are related by

mr = m` +
1

ζ
K[tx, 0, 0]T . (22)

The difference mr−m` is called disparity d (as only the first component is different
from zero, we deem d to be a scalar.) The disparity map is computed from the
dense correspondence map.

The point transfer equation into the virtual view (Iv) is

mv = m` + [αd, 0, 0]T α ∈ [0, 1]. (23)

It is easy to verify that interpolating the disparity is equivalent to placing the virtual
camera at intermediate positions along the baseline from 0 to tx.
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The algorithm for rectified views was introduced by [6], and it was then extended
to tilted cameras by [22]. They simply rectify the real cameras, do the interpolation
and eventually de-rectify the resulting virtual view.

Fig. 11. The left and right images are the real ones, the central view is interpolated (from [22].)
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3.3 Planes and collineations

When observing a plane, we obtain an interesting specialization of the epipolar
geometry of two views.

First, let us establish that the map between a world plane and its perspective image
is a collineation of P2. The easiest way to see it is to choose the world coordinate
system such that the plane has equation z = 0.

Expanding the projection equation gives:

ζ




u
v
1


 = P




x
y
0
1


 = [P1|P2|P4]




x
y
1


 . (24)

Points are mapped from the world plane to the image plane with a 3 × 3 (non-
singular) matrix, which represents a collineation of P2.
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Fig. 12. The map between a world
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Fig. 13. The plane Π induces a

collineation between two views.
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Next, we prove that: images of points on a plane are related to corresponding image
points in a second view by a collineation (or homography) of P2.

We have one collineation from Π to the left image plane, and another collineation
from Π to the right image plane. By composing the inverse of the first with the
second, we define a collineation from the image plane of the left camera to the
image plane of the right camera.

The plane Π induces a collineation HΠ between the views, which transfers points
from one view to the other:

mr ' HΠm` if M ∈ Π. (25)

where HΠ is a 3× 3 non-singular matrix.
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3.3.1 Homography induced by a plane

If the 3-D point M lies on a plane Π with equation nTM = d, Eq. (16) can be
specialized, obtaining (after elaborating):

ζr

ζ`
mr = Kr

(
R +

t nT

d

)
K−1

` m`. (26)

Therefore, the collineation induced by Π is given by:

HΠ = Kr

(
R +

t nT

d

)
K−1

` (27)

This is a three-parameter family of collineations, parametrized by n/d.
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3.3.2 Infinite homography

The infinite homography H∞ is the collineation induced by the plane at infinity; it
maps vanishing points to vanishing points (a vanishing point is where all the lines
that shares the same direction meet).

It can be derived by letting d →∞ in (26), thereby obtaining:

H∞ = KrRK−1
` (28)

The infinity homography does not depend on the translation between views.

In other terms, the vanishing points are fixed under camera translation.
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3.3.3 Plane induced parallax

In general, when points are not on the plane, the homography induced by a plane
generates a virtual parallax. This gives rise to an alternative representation of the
epipolar geometry and scene structure [24].

First, let us rewrite Eq. (16), which links two general conjugate points, as:

ζr

ζ`
mr = H∞m` +

1

ζ`
er, (29)

The mapping from one point to its conjugate can be seen as composed by a transfer

with the infinity homography (H∞m`) plus a parallax correction term (
1

ζ`
er).

Note that if t = 0, then the parallax vanishes. Thus H∞ not only relates points
at infinity when the camera describes a general motion, but it also relates image
points of any depth if the camera rotates about its centre.
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We want to generalize this equation to any plane. To this end we substitute

H∞ = HΠ −Kr

(
t nT

d

)
K−1

` (30)

into Eq. (29), obtaining
ζr

ζ`
mr = HΠm` + γer (31)

with γ =

(
a

d ζ`

)
, where a is the distance of M to the plane Π.

When M is on the 3-D plane Π, then mr ' HΠm`. Otherwise there is a residual
displacement, called parallax, which is proportional to γ and oriented along the
epipolar line.

The magnitude parallax depends only on the left view and the plane. It does not
depend on the parameters of the right view.

From Eq. (31) we derive mT
r (er ×HΠm`) = 0, hence

F ' [er]×HΠ (32)
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Fig. 14. Plane induced parallax.
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Fig. 15. Left and right images. The leftmost image is a superposition of the warped left image and

the right image. The reference plane exactly coincide. However, points off the plane (such as the

bottle) do not coincide.
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3.3.4 Applications

Mosaics. Image mosaicing is the automatic alignment (or registration) of mul-
tiple images into larger aggregates [25]. There are two types of mosaics. In both
cases, it turns out that images are related by homographies, as we discussed previ-
ously.

Planar mosaic: result from the registration of different views of a planar
scene.

Panoramic mosaic result from the registration of views taken by a camera
rotating around its optical centre (typically panning).

In order to cope with large rotations (> 180 deg), the images are con-
verted to cylindrical (or spherical) coordinates.

50



Fig. 16. Planar mosaic with components location shown as white outlines.
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Fig. 17. Selected frames from “Arena” sequence (top) and panoramic mosaic (bottom). Components

location shown as white outlines.
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Fig. 18. Planar panoramic mosaic (right) and its projection onto a cylinder (left).

53



Orthogonal rectification. The map between a world plane and its perspective
image is an homography. The world-plane to image-plane homography is fully
defined by four points of which we know the relative position in the world plane.
Once this homography is determined, the image can be back projected (warped)
onto the world plane. This is equivalent to synthesize an image as taken from a
fronto-parallel view of the plane. This is known as orthogonal rectification [15] of
a perspective image.

Fig. 19. A perspective image and a ortho-rectified image of the floor plane
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Parallax-based transfer Since the relative affine structure is invariant on the
choice of the right view, arbitrary virtual “right views” can be synthesized, starting
from the the left view and the parallax field [24].

Let us rewrite Eq. (31) without the unknown depths:

mr ' HΠm` + γer. (33)

Given a certain number (> 6) of corresponding pairs (mk
1 ; mk

2) ∀k = 1, . . . , m
the homography HΠ and the epipole er can be easily computed.

Then, the parallax of each point is obtained by solving for γ in (33):

γ =
(HΠm` ×mr)

T (mr × er)

||mr × er||2 (34)

Please note that the epipole and the homography can be computed from images
only up to an unknown scale factor. It follows that the magnitude of the parallax
as well is known only up to a scale factor.
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Once the parallax has been recovered, a point can be forward-mapped from the real
(left) view into the virtual one using

mv ' H ′
Πm` + γev. (35)

Where H ′
Π is the homography induced by Π between the left and the virtual image

and ev is the epipole in the virtual image. They specify the position and orientation
of the virtual camera in a projective frame.

This technique is similar to the depth-based warping, but it uses the parallax instead
of the depth, therefore the internal camera parameters are not needed.

On the other hand, working in a projective frame, as opposed to a Euclidean frame,
is not intuitive.
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t -1.0 -0.5 0

t 0.5 1 1.5

Fig. 20. Some frames from the “Porta” sequence. The values t = 0 and t = 1 correspond to the

reference images.

57



In summary...

... we have seen several geometrical ways of performing view synthesis:

• Depth-based warping. Given the depth of a point use Eq. (14) Eq. (16) or to
map it to its corresponding point;

• Epipolar transfer. Given correspondences in two views and the epipolar geometry
linking them and a third synthetic view, intersect the epipolar lines in the virtual
view;

• Disparity-based interpolation. Interpolate disparity to synthesize in-between
views.

• Panoramic mosaics. Given several views taken with a rotating camera build a
spherical (or cylindrical) mosaic and then generate synthetic views (rotation and
zoom only) by grabbing a portion of the mosaic;

• Parallax-based transfer. Given correspondences in two views, compute parallax
and use it to a third view;
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• Please also note that orthogonal rectification and epipolar rectification produces
a virtual rotation of the camera.

We shall now see

• how these view synthesis instances fit in a bigger picture (taxonomy of IBR),
and finally

• how correspondences – which are essential to many IBR techniques – are ob-
tained (stereo matching).
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4 Image based rendering

Some definitions of IBR:

• Techniques to generate novel views by re-sampling one or more example images,
using suitable warping functions.

• Use of photographs to enhance realism in Computer Graphics.

• Use of pre-computed images to speed-up rendering.
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4.1 Plenoptic function

The plenoptic function [1], is the 5-dimensional function representing the intensity
(or radiance) of the light observed from every position and direction in 3-d space.

L = P (θ, φ, Vx, Vy, Vz)

Fig. 21. Plenoptic function (from [19]).
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In image-based modelling the aim is to reconstruct the plenoptic function from a
set of examples images.

Once the plenoptic function has been reconstructed, images are generated by in-
dexing the appropriate light rays.

If the plenoptic function is only constructed for a single point in space (Vx, Vy, Vz)
then its dimensionality is reduced from 5 to 2.

This is the principle used in reflection mapping (also known as environment map-
ping) where the view of the environment from a fixed position is represented by a
2-dimensional texture map.

A spherical panorama can be viewed as a sample the plenoptic function at a fixed
position.

Cylindrical panorama and conventional perspective images can be modelled as pro-
jection from the sphere onto a cilynder or a plane respectively.
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Sampling the plenoptic funcion with real sensors introduces discretization at two
levels:

1. Angular sampling (θ, φ) of a single plenoptic sample due to the finite pixel
resolution

2. Spatial sampling (Vx, Vy, Vz) due to the discrete positioning of the sensor.

It is necessary to obey the sampling theorem to avoid aliasing

Angular sampling is usually not a problem, but patial sampling may be critical.
Therefore IBR systems have to distinguish between dense and sparse sampling.

Dense sampling obey the the sampling theorem. [4] give bounds for the sampling
density as a function of the depth variation in the scene.

Sparse sampling violate the sampling theorem, hence additional information – usu-
ally in the form of depth, parallax or disparity – it is necessary to render correct
views, or to compensate.
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4.2 Taxonomy

The categorization of IBR systems follows [12], and its organized along three axes:

Geometry: the “amount” of geometry needed for compensation, ranging from
systems with no compensation at all (dense sampling) to full 3D information.

Samples: the plenoptic samples density (dense vs sparse) and the spatial samples
arrangement (unstructured, structured 1D, structured 2D).

Motion: amount of freedom in selecting the virtual viewpoint. Three categories:
predetermined discrete positions, constrained in some way, unrestricted.

In the following we will briefly survey IBR methods following the “Geometry” axis.
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Fig. 22. Taxonomy of IBR methods. The “Motion” axis is colour coded. Adapted from [12].
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4.3 Rendering without geometry

Methods within this class use no geomety information at all. Since no compensa-
tion is possible, the sampling must be either very dense, or the possible motion is
restricted.

• Movie Map

• Panoramic Mosaic

• Concentric Mosaic

• Light Field/Lumigraph
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4.3.1 Movie Map

Movie Map [16] was the earliest system to obtain restricted interactive look-around
capabilities, based on dense sampling with four orthogonal cameras mounted on a
car.

The streams were captured on video disks for interactive playback, allowing the user
to select the route at street intersections.

Fig. 23. A screenshot from the Aspen Movie Map. (http://en.wikipedia.org/wiki/Image:Aspen.jpg)
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4.3.2 Panoramic mosaics

A camera is rotated (on a tripod) at a fixed position and all images are stitched
together to form a cylindrical or spherical panoramic view of the scene (mosaic).
Any image of the scene from the capturing position can then be rendered using the
inverse mapping.

This is the principle used in QuickTimeVR which enables an environment to be
viewed in any direction from a discrete set fixed positions [5].

For videocommunications, panoramic images can serve to create and visualize static
background, but due to the missing parallax they cannot be used to generate novel
views of nearby objects.
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4.3.3 Concentric mosaics

Camera motion on a circle (this is not a pure rotation).

Novel views are rendered by assembling vertical line (slits) coming from the recorded
images (interpolating when needed).

Viepoint can move inside a circle with the same centre as the camera path and a
radius rmax = R sin(FOV/2)
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4.3.4 Light Field/Lumigraph.

Trade sample density for geometric complexity.

If one considers only the subset of light rays leaving the convex hull of a bounded
object, the fact the radiance along any ray remains constant allows to reduce the
5-dimensional plenoptic function to a 4-dimensional function.

Two similar methods (Lumigraph [7] and Light Field [14]) for representing this 4-d
function and for constructing the function from example images have been proposed.

Both of these methods allow scenes and objects to be rendered very efficiently from
novel viewpoints but even the 4-d functions requires very large amounts of storage.
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The principle of the Lightfield can be briefly addressed as follows. By placing the
object in its bounding box which is surrounded by another larger box, the Lightfield
indexes all possible light rays entering and exiting one of the six parallel planes of
the double bounding boxes.

The Lightfield data is thus composed of six 4D functions, where the plane of the
inner box is indexed with coordinate (u, v) and that of the outer box with coordinate
(s, t).

Fig. 24. From [26].
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Alternatively, the Lightfield can be considered as six twodimensional image arrays,
with all the light rays coming from a fixed (s, t) coordinate forming one image. This
is equivalent to setting a camera at each coordinate (s, t) and taking a picture of
the object with the imaging plane being the (u, v) plane.

To create a new view of the object, we just split the view into its light rays, which
are then calculated by interpolating existing nearby light rays in the image arrays.
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4.4 Rendering with geometry compensation

If dense sampling is not viable and a free view point is desired, the aliasing effect
must be compensated using additional information such as depth or disparity.

• Disparity-based interpolation (calibrated, viewpoint in-between)

• Image transfer (uncalibrated, free viewpoint)

• Depth-based warping (calibrated, free viewpoint)
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4.4.1 Disparity-based interpolation

The relatively small number of reference images required by Disparity-based inter-
polation together with the absence of explicit geometry are their principal charac-
teristics. However, the view point is constrained to lie in-between the original views.
All such techniques rely on establishing dense correspondences between the source
views and on the knowledge of the internal parameters of the camera.

Chen and Williams [6] introduced view interpolation. They arranged the set of
original images in a graph. The nodes of the graph are the images. Each arc in
the graph represents a correspondence mapping, which is bi-directional, and two
maps are associated with each arc. The user can then move continuously around
the space represented by the images by interpolating from one node to the next.

To synthesize views in-between a pair of images the displacement vectors are linearly
interpolated and the pixels in the reference images are moved by the interpolated
vector to their destination. However, linear interpolation only yields a valid repro-
jection if the source and the new image planes are parallel.
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To overcome this limitation Seitz et al. [22] proposed a three step algorithm called
view morphing. Initially they pre-warp (rectify) the source images so that their
image planes are aligned. By linearly interpolating positions and colours on the
reference images a new intermediate view along the line segment connecting the
two camera centres is generated. A post-warping (de-rectification) process finally
transforms the image plane of the new view to its desired position and orientation.

Generation of new views from perspective source images has been extended to
cylindrical panoramic images. McMillan and Bishop [19] describe a cylindrical
epipolar geometry that determines the possible positions of a point given its location
in some other cylinder.

This constraint is used to establish dense correspondences between cylindrical ref-
erence pairs. A warp function subsequently combines the transformation of the
disparity values from the known reference pair to the new cylinder and its reprojec-
tion as a planar image for viewing.
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4.4.2 Image transfer methods

Image transfer methods are based on the observation that certain relationships exist
between the positions of pixels representing the same points in space observed from
different viewpoints.

Uncalibrated transfer techniques utilise image to image constrains such as the fun-
damental matrix and the trifocal tensor – without knowing the camera parameters
– to transfer image pixels from a small number of reference images to a virtual
image, with unconstrained view point.
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For example, we have seen that, thanks to epiplar transfer [13], any third view can
be predicted given only the pixel correspondences and the epipolar geometry for the
two example views.

A more stable geometric constraint than the epipolar geometry is the trilinear tensor
(see [8] for example). The use of trilinearities as a warping function from model
views to novel synthesised images has been presented in [2]. A seed tensor is
computed from three reference images. For every new view with known camera
motion parameters relative to one of the reference images, a tensor is computed
between the remaining two images and this new view. The tensor is subsequently
used to render the image.

Another way of linking corresponding points is the plane+parallax [24, 10] paradigm,
that we discussed in some detail.
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4.4.3 Depth-based warping

Given a depth map (range image) and the camera parameters, it is easy to obtain
the position of each pixel in the synthetic view, i.e., computing the disparity (or
parallax) between the real view and the synthetic views.

Depth-based warping can extrapolate from just one view, but in this case the infor-
mation for filling holes is missing (occlusions). This is not the case when interpo-
lating views.

Layered Depth Images [23] solve the occlusion problem by associating to each
pixel many depths, namely the depth of each surface (layer) that a ray through the
pixel would intersect. Rendering is done back-to-front, by processing one layer at a
time, following McMillan’s ordering algorithm [18].

78



Fig. 25. Intersections from sampling rays A and B are added to the same layered depth pixel (from

[23]) .
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4.5 Rendering from (approximate) geometry

This is the class of methods closer to the tradition model-based rendering, because
a static 3D model is created, albeit approximate.

View-Dependent Texture Mapping. 3D surface model available (low detail).
The same polygon is seen from different positions. At rendering-time, the real
view nearest to the virtual view is texture-mapped onto the polygon.

Surface Lightfield. The inner box (s, t) is replaced by the parametric equation of
a surface patch.
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