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1 Introduction

Goal: recover the geometry of the imaged objects (structure) and the motion of the
camera from images.

Photogrammetry was born in 1850.

Analytical Photogrammetry was born in 1950.

Structure from motion in Computer Vision became an active field in the late ’70s.

Completely automatic pipeline (Bundler): first decade of this century.

Still an active field.



2 Background

The pin-hole (or stenopeic) camera is described by its centre O (also known as centre
of projection) and the image plane.

The distance of the image plane from O is the focal length f (or principal distance).

The line from the camera centre perpendicular to the image plane is called the principal
axis of the camera.

The plane parallel to the image plane containing the centre of projection is called the
principal plane or focal plane of the camera.

The relationship between the 3-D coordinates of an object point and the coordinates
of its projection onto the image plane is described by the central or perspective
projection.
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Fig. 1: The pinhole camera



A 3-D point is projected onto the image plane with the line containing the point and
the centre of projection.

Let the centre of projection O be the origin of a Cartesian coordinate system wherein
the Z-axis is the principal axis.

By similar triangles it is readily seen that the 3-D point (X, Y, Z)T is mapped to the
point (f X/Z, f Y/Z)T on the image plane.

If the object and image points are represented by homogeneous vectors, then per-
spective projection can be expressed in terms of matrix multiplication as
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The matrix describing the mapping is called the camera projection matrix P . Equation
(1) can be written simply as:

Zx̃ = P X̃ (2)

where X̃ = (X, Y, Z, 1)T are the homogeneous coordinates of the 3-D point and
x̃ = (u, v , 1)T are the homogeneous coordinates of the image point.



The above formulation assumes a special choice of object coordinate system and
image coordinate system. It can be generalized by introducing suitable changes of
the coordinates systems.

Changing coordinates in space is equivalent to multiplying the matrix P to the right
by a 4⇥ 4 matrix:

G =


R t
0 1

�
(3)

G is composed by a rotation matrix R and a translation vector t.

It describes the position and attitude of the cam-
era with respect to an external (object) coordinate
system.

It depends on six parameters, called exterior pa-
rameters.



Changing coordinates in the image plane is equivalent to multiplying the matrix P to
the left by a 3⇥ 3 matrix (representing an a�ne transform):
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where

• uo, vo are the coordinates (in pixel) of the principal point (or image centre),
• ✓ is the angle between the coordinate axes of the pixels grid (should be 90�),
• and (�u,�v) are width and height respectively of the pixel footprint on the camera
photosensor (or e↵ective dimensions of the pixel).

This transformation account for the fact that the pixel indices have the origin in the
upper-left corner of the image, that the photosensor grid can be non-rectangular (or
skewed), and that pixels have a given physical dimension.



It is customary to include also the focal length f (which act as a uniform scaling) in
this transformation, to obtain:

K =
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4
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K is the camera calibration matrix; It depends on the so-called interior parameters:

• focal length ↵u (in �u units),
• principal point (or image centre) coordinates uo, vo (in �u units),
• aspect ratio r = �u/(�v sin ✓) (usually ⇡ 1),
• skew � = �1/ tan ✓ (usually ⇡ 0).



K encodes the (a�ne) transformation from the so-called normalized image coordi-
nates to image coordinates:

• image coordinates are measured in the digital image, in pixels.
• normalized image coordinates (NIC) would be measured on an ideal image plane
at unit distance from O. Their unit is the same as the 3D points (e.g., meters).

Normalized image coordinates p̃ (not accessible) are obtained from the image coor-
dinates (accesible) via the kowledge of K, with

p̃ = K�1x̃.



Thus the camera matrix, in general, is the product of three matrices:

P = K[I|0]G = K[R|t] (6)

and the projection equation writes:

⇣x̃ = P X̃ (7)

where ⇣ is a suitable scale factor, that turns out to be the distance of X̃ from the
focal plane of the camera.

Centre of projection. The centre of projection O is the only point for which the
projection is not defined, i.e.:

P Õ = P
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O
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where O is a 3-D vector containing the Cartesian (non-homogeneous) coordinates
of the centre of projection. After solving for O we obtain:

O = �P�1
1:3

P
4
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where the matrix P is represented by the block form: P = [P
1:3

|P
4

] (the subscript
denotes a range of columns).



Optical ray. The optical ray of an image point x̃ is the locus of points in space that
projects onto x̃. It can be described as a parametric line passing through the camera
centre O and a special point (at infinity) that projects onto x̃:
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0

◆
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Please note that in order to be able to trace the optical ray of an image point, the
interior parameters must be known.



2.1 Collinearity equations

In Photogrammetry the perspective projection is described by the so-called collinearity
equations, which, in our notation with � = 0, r = 1 , write:8
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where rTi are the rows of R.

The perspective projection equation (7) is the matrix equivalent of the collinearity
equations. To see this, let substitute P = K[R|t] in (7), obtaining:

x̃ = ⇣�1K(RX+ t)

Since (from (9)) t = �RO we have
x̃ = ⇣�1K(RX� RO) = ⇣�1KR(X�O)

The third (homogeneous) coordinate of the lefthand side is 1, the third coordinate
of the righthand side is ⇣�1(rT

3

(X�O)), hence ⇣ = rT
3

(X�O).



2.2 Camera resection by DLT

A number of point correspondences x̃i $ X̃i is given,
and we are required to find a camera matrix P such
that

x̃i ' P X̃i for all i . (11)

The equation can be rewritten in terms of the cross
product as

x̃i ⇥ P X̃i = 0. (12)

This form will enable a simple a simple linear solution
for P to be derived. Using the properties of the Kro-
necker product (⌦) and the vec operator (Magnus and
Neudecker, 1999), we derive:

x̃i⇥P X̃i = 0 () [x̃i ]⇥P X̃i = 0 () vec([x̃i ]⇥P X̃i) = 0 () (X̃Ti ⌦[x̃i ]⇥) vecP = 0

where we used the fact that the cross product of two vectors can be written as a
product of a skew-symmetric matrix and one vector: a⇥ b = [a]⇥b.



These are three equations in 12 unknown, only two of them are linearly independent.

Indeed, the rank of (X̃Ti ⌦ [x̃i ]⇥) is two because it is the Kronecker product of a
rank-1 matrix by a a rank-2 matrix.

From a set of n point correspondences, we obtain a 2n⇥ 12 coe�cient matrix A by
stacking up two equations for each correspondence.

In general A will have rank 11 (provided that the points are not all coplanar) and the
solution is the 1-dimensional right null-space of A.

If the data are not exact (noise is generally present) the rank of A will be 12 and a least-
squares solution is sought, which can be obtained as the singular vector corresponding
to the smallest singular value of A.

This algorithm is known as the Direct Linear Transform (DLT) algorithm (Hartley
and Zisserman, 2003; Kraus, 2007).



3 Pairwise processing

Pairwise processing indicates generically all those techniques that are designed to
estimate the three-dimensional coordinates of points on an object (a.k.a. stereo-
model) employing measurements made in two photographic images.

If the two camera matrices are known the process reduces to intersection.

Thus assuming known interior parameters, the core of the problem is to recover the
exterior parameters of the two cameras.

In this section we will study di↵erent orientation1 problems:

• Relative orientation
• Absolute orientation
• Exterior orientation

All of them consume point correspondences (of di↵erent nature) and produces a 6
d.o.f rigid transformation that represents position and angular attitude.

1
This terminology comes from Photogrammetry (and from German), where “orientation” means angular attitude and position (Kraus, 2007).



3.1 Intersection (or triangulation)

Given the camera matrices P` and Pr , let x̃` and x̃r
be two conjugate points, i.e., they are projections
of the same 3-D object point X̃ on the left and
right images respectively.

The goal of intersection is to recover the coordi-
nates of X̃.

Let us consider x̃`, the projection of the 3D point
M according to the perspective projection matrix
P`. The projection equation (7) can be rewritten
using the cross product as

x̃` ⇥ P`X̃ = 0. (13)

with the e↵ect of eliminating the factor ⇣.

Hence, one point in one camera gives three homogeneous equations, two of which
are independent.



Let us now consider its conjugate point x̃r , and let Pr be the second perspective
projection matrix. Likewise we can write:

x̃r ⇥ PrX̃ = 0. (14)

Being both projection of the same 3D point X̃, the equations provided by x̃` and x̃r
can be stacked, thereby obtaining a homogeneous linear system of six equations in
four unknown (including the last component of X̃):

[x̃`]⇥P`
[x̃r ]⇥Pr

�
X̃ = 0. (15)

The solution is the null-space of the 6⇥ 4 coe�cient matrix, which must then have
rank three, otherwise only the trivial solution X̃ = 0 would be possible.

In the presence of noise this rank condition cannot be fulfilled exactly, so a least
squares solution is sought, typically via Singular Value Decomposition (SVD).

This method generalizes to the case ofm > 2 cameras: each one gives two equations
and one ends up with 2m equations in four unknowns.

This topic addressed in more details in (Beardsley et al., 1997; Hartley and Sturm,
1997; Hartley and Zisserman, 2003)).



3.2 Relative orientation and the Essential matrix

Both in CV and Photogrammetry, a pivotal concept in pairwise processing is those of
relative orientation, i.e., the rigid transformation that represent position and angular
attitude of one camera with respect to the other.

The computer vision approach to the problem of relative orientation leads to an
encoding of the baseline (translation) and attitude (rotation) in a single 3⇥ 3 matrix
called the Essential matrix.

The essential matrix is defined by E = [t]⇥R, where [t]⇥ is the skew-symmetric
matrix that satisfies [t]⇥v = t⇥ v for any vector v, with t being the baseline and R
a rotation matrix encoding the attitude.



3.2.1 Epipolar geometry

Any unoccluded object 3-D object point X̃ = (X, Y, Z, 1)T is projected to the left
and right image as x̃` = (u`, v`, 1)T and x̃r = (ur , vr , 1)T , respectively.
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Image points x̃` and x̃r are called corre-
sponding or conjugate points.

We will refer to the camera projection
matrix of the left image as P` and of the
right image as Pr .

The 3-D point X̃ is then imaged as (16)
in the left image, and (17) in the right
image:

⇣`x̃` = P`X̃ (16)

⇣r x̃r = PrX̃. (17)

The relationship between image points x̃` and x̃r is given by the epipolar geometry.



Given a point x̃`, one can determine the epipolar line in the right image on which the
corresponding point, x̃r , must lie.

The equation of the epipolar line can be derived from the equation describing the
optical ray, for the epipolar line of x̃` geometrically represents the projection (Eq. (7))
of the optical ray of x̃` (Eq. (10)) onto the right image plane:

⇣r x̃r = PrX̃ = Pr

✓
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4
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| {z }
er

+ ⇣`Pr

✓
P�1`
1:3

x̃`
0
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If we now simplify the above equation we obtain the description of the right epipolar
line:

⇣r x̃r = er + ⇣`Pr
1:3

P�1`
1:3

x̃`
| {z }

x̃0`

(19)

This is the equation of a line through the right epipole er and the image point x̃0`
which represents the projection onto the right image plane of the point at infinity of
the optical ray of x̃`.

The equation for the left epipolar line can be obtained in a similar way.



3.2.2 The Essential matrix E

Let us now assume that the interior parameters are known, as is customary in Pho-
togrammetry, hence we can assume that points are in NIC.

Using NIC the left and right camera projection matrices write:

P` = [I|0] and Pr = [R|t]. (20)

where the the object reference frame is fixed onto the left camera.

If we substitute these two particular instances of the camera projection matrices in
Equation (18), we get

⇣r p̃r = t+ ⇣`Rp̃`. (21)

In other words, the point p̃r lies on the line through the points t and Rp̃`. In the
projective plane this can be written as follows:

p̃Tr (t⇥ Rp̃`) = 0, (22)

as the homogeneous line through two points is expressed as their cross product, and
a dot product of a point and a line is zero if the point lies on the line.



By introducing the matrix equivalent of the cross product, Equation (22) can be
written as

p̃Tr [t]⇥Rp̃` = 0, (23)

In summary, the relationship between the corresponding image points p̃` and p̃r in
NIC is the bilinear form:

p̃Tr Ep̃` = 0. (24)

where we introduced the essential matrix E:

E = [t]⇥R. (25)

E encodes only information on the rigid displacement between cameras. It has five
degrees of freedom: a 3-D rotation and a 3-D translation direction.

E is characterized by the following theorem (Huang and Faugeras, 1989):

Theorem 1 A real 3 ⇥ 3 matrix E can be factorized as product of a nonzero skew-
symmetric matrix and a rotation matrix if and only if E has two identical singular
values and a zero singular value.



Proof. Let E = SR where R is a rotation matrix and S is skew-symmetric. Let
S = [t]⇥ where ||t|| = 1. Then

EET = SRRTST = SST = I � ttT

Let U the orthogonal matrix such that Ut = [0, 0, 1]T . Then

UEETUT = U(I � ttT )UT = I � U t tTUT = I � [0, 0, 1]T [0, 0, 1] =

2

4
1 0 0
0 1 0
0 0 0

3

5 .

The elements of the diagonal matrix are the eigenvalues of EET i.e., the singular
values of E. This demonstrates one implication.

Let us now give a constructive proof of the converse. Let E = UDV T be the SVD
of E, with D = diag(1, 1, 0) (with no loss of generality, since E is defined up to a
scale factor) and U and V orthogonal. The key observation is that
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where S0 is skew symmetric and R0 a rotation. Hence

E=UDV T=US0R0V T=det(UV T )(US0UT )| {z }
S

det(UV T )(UR0V T )| {z }
R

Q.E.D.

The theorem has a constructive proof that describes how E can be factorized into
rotation and translation (skew-symmetric) using its SVD.

This factorization is not unique. Because of homogeneity of E, we can change its
sign, either by changing the sign of S0 or by taking the transpose of R0 (because
S0R

0T = �D). In total, we have four possible factorizations given by:

S = U(±S0)UT (26)

R = det(UV T )UR0V T or R = det(UV T )UR0TV T , (27)

The choice between the four displacements is determined by the requirement that
the 3-D points must lie in front of both cameras, i.e., their depth must be positive.
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3.2.3 The eight-point algorithm

If a number of point correspondences p̃i` $ p̃ir is given (in NIC), we can recover the
unknown matrix E from Equation (24).

Thanks to the properties of the Kronecker product we can write:

p̃Tr Ep̃` = 0 () vec(p̃Tr Ep̃`) = 0 () (p̃T` ⌦ p̃Tr ) vec(E) = 0.

Each point correspondence gives rise to one linear equation in the unknown entries
of E. From a set of n point correspondences, we obtain a n ⇥ 9 coe�cient matrix
A by stacking up one equation for each correspondence. The least-squares solution
for vec(E) is the singular vector corresponding to the smallest singular value of A.

This simple algorithm provides good results in many situations and can be used to
initialize a variety of more accurate, iterative algorithms. Details of these can be
found in (Hartley and Zisserman, 2003).

The same algorithm can be used to compute the fundamental matrix if image points
are expressed in image coordinates.



3.2.4 Closure

If a su�cient number of point correspondences p̃i` $ p̃ir in NIC is given, the con-
struction of a 3D model from two images proceeds as follows:

• compute E with the eight-points algorithm (Sec. 3.2.3);
• factorize E in [t]⇥ and R using Theorem 1;
• use the rotation R and translation t to instantiate a camera pair as in Eq. (20);
• compute 3D points coordinates by intersection.

The resulting model has an overall scale ambiguity deriving from the fact that E is
defined up to a scale factor: t can be scaled arbitrarily in Equation (25) and one
would get the same essential matrix. Therefore translation can be recovered from E
only up to an unknown scale factor, which is inherited by the model.

This is also known as depth-speed ambiguity (in a context where points are moving
and camera is stationary).



The stereo-model produced by the above procedure is represented in a local, arbitrary
reference frame (also called model coordinates)

While in CV this is fine, in Photogrammetry it is mandatory that the model is expressed
in object coordinates (frequently a control or global system).

For this reason, the three methods presented below (Kraus, 2007) assume the knowl-
edge of a certain number ground control points (GCP) in the object coordinte system:

• two-step combined orientation (relative + absolute)
• separate exterior orientation
• combined single stage orientation (bundle)



3.3 Two-step combined orientation

This procedure works in two steps:

• Solve relative orientation and compute a stereo-model;
• Align the stereo-model to GCPs via a 3D similarity.

In Photogrammetry specific methods have been conceived to solve relative orientation,
but they can be seen as functionally equivalent to the Essential approach described
above.

We shall therefore concentrate on the second step, dubbed absolute orientation.



3.3.1 Absolute orientation

Given two sets of 3-D points {Bi} and {Ai}, i = 1 . . . p related by

Bi = �RAi + t for all i = 1 . . . p (28)

we are required to estimate the unknown rotation R, translation t and the scale �
from point correspondences.

Rotation Scale Translation

B AB A B
A

A
B

Assuming homogeneous and isotropic noise, the optimal (ML) estimate can be ob-
tained via (Extended) Orthogonal Procrustes Analysis (next section).



The terms Procrustes Analysis (e.g. (Gower and Dijksterhuis, 2004)) is referred to
a set of least squares mathematical models used to compute transformations among
corresponding points belonging to a generic k-dimensional space, in order to achieve
their maximum agreement.

In particular, the Extended Orthogonal Procrustes Analysis (EOPA) model allows to
recover the least squares similarity transformation between two point sets.

Let us consider two matrices A and B containing the coordinates of p points of Rk by
rows. EOPA allows to directly estimate the unknown rotation matrix R, a translation
vector t and a global scale factor � for which the residual:

��B � �AR � 1tT
��2
F

(29)

is minimum, under the orthogonality condition: RTR = RRT = I.

The minimization proceeds by defining a Lagrangean function and setting the deriva-
tives to zero (details can be found in (Schnemann and Carroll, 1970)).



The rotation is given by

R = Udiag
�
1,1,det(UV T )

�
V T (30)

where U and V are determined from the SVD decomposition:

AT
�
I � 1 1T/p

�
B = UDV T (31)

The det(UV T ) normalization guarantees thatR is not only orthogonal but has positive
determinant (Wahba, 1965).

Then the scale factor can be determined with:

� =
tr

�
RTAT

�
I � 1 1T/p

�
B

�

tr (AT (I � 1 1T/p)A) (32)

And finally the translation writes:

t = (B � �AR)T 1/p. (33)



To reconcile this notation with the one that is more customary in Computer Vision,
it is su�cient to note that:

• points are represented by rows, hence linear operators (e.g., rotations) are repre-
sented by post-multiplication with a matrix;

• A1/p where A is n ⇥ p corresponds to taking the average of the rows;
• A

�
I � 1 1T/p

�
has the e↵ect of subtracting to A its rows average;

• The matrix
�
I � 1 1T/p

�
is symmetric and idempotent.



The EOPA solves also the total least squares formulation of the problem, where both
sets are assumed to be corrupted by noise (Arun, 1992)

However, if noise is more realistically considered anisotropic and inhomogeneous, The
ML solution becomes a non-linear least-squares, that can be solved with Levenberg-
Marquardt. The LM is basically the Gauss-Newton method, to which the gradient
descent principle is combined to ensure convergence.

In geodetic science (and Photogrammetry as well), on the other hand, the Gauss-
Helmert method is popular for similarity estimation (the similarity transformation is
sometimes referred to as the Helmert transformation). The Gauss-Helmert method
first linearizes the nonlinear constraint around the current values of the unknowns and
expresses the residual as a quadratic function in the increments of the variables. Then,
the variables are updated by the increments that minimizes it, and this procedure is
iterated.

Gauss-Helmert can be seen as an instance of Gauss-Newton with a specific Hessian
approximation (Kanatani and Niitsuma, 2012).



3.4 Separate exterior orientation

In this method the position and attitude of each camera with respect to the object
coordinate system (exterior orientation of the camera) is solved independently.

The problem can be solved with the help of the collinearity equations

p = f (O,!,X)

that express measured quantities p as a function of the exterior orientation parameters
O,!, where the vector ! collects the three parameters that describe the rotation R.

For every measured point two equations are obtained. If 3 GPS are measured, a total
of 6 equations is formed to solve for the 6 parameters of exterior orientation.

The collinearity equations are not linear in the parameters. Therefore, the solution
requires approximate values with which the iterative process will start.



3.4.1 Exterior Orientation

The problem of estimating the position and attitude of a perspective camera given
its interior parameters and a set of object-to-image correspondences is known as
the Perspective-n-Point camera pose problem (PnP) in computer vision or exterior
orientation problem in Photogrammetry

Given a number p of 2D-3D point correspondences p̃j $ Xj (where p̃j are in NIC)
the PnP problem requires to find a rotation matrix R and a translation vector t (which
specify attitude and position of the camera) such that:

⇣j p̃j = K[R|t]X̃j for all j. (34)

where ⇣j denotes the depth of Xj .

One could immediately solve this problem by doing camera resection with DLT in NIC
istead of image coordinates.

However, this algorithm is sub-optimal, because ut does not enforce the orthonor-
mality constraints on the rotation matrix.



Ad hoc methods for Exterior Orientation should provide an orthogonal matrix by
construction (Fiore, 2001; Ansar and Daniilidis, 2003; Lepetit et al., 2009; Gao et al.,
2003; Lepetit et al., 2009; Hesch and Roumeliotis, 2011).

In a recent paper (Garro et al., 2012) the image exterior orientation problem have
been solved using Procrustean analysis. After some rewriting, (34) becomes:
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where O = �RT t, and 1 is the unit vector. In matrix form:

S = ZPR + 1OT (36)

where P is the matrix by rows of (homogeneous) image coordinates defined in the
camera frame, S is the matrix by rows of point coordinates defined in the object
system, Z is the diagonal (positive) depth matrix, O is the coordinate vector of the
projection centre, and R is the orthogonal rotation matrix.



This is an instance of the EOPA with a diagonal unknown matrix Z of anisotropic
scales that replaces the uniform scale �.

Δ 3

Δ 2

Δ 1X1

X2

X3

p1 p3

p2

O

The minimization is accomplished with an al-
ternating scheme (also called “block relaxation”
(de Leeuw, 1994)), where each variable is alter-
natively estimated while keeping the others fixed:

• assuming Z is known, use EOPA to find rota-
tion and translation;

• given R and O, solve for Z by finding the po-
sition along the (fixed) optical ray that mini-
mizes the distance to the (known) 3D points.



In order to solve this last step, let us rewrite Eq. (36) as:

ZP = (S � 1OT )RT (37)

or equivalently, with Y = (S � 1OT )RT

PTZ = Y T (38)

Since Z is diagonal, the previous equation can be transformed in the followin linear
system, thanks to the properties of the Khatri-Rao product (�):

(I � PT ) diag�1(Z) = vec(Y T ) (39)

where diag�1 returns a vector containing the diagonal elements of its argument.

Non-negativity constraint on Z must be enforced a-posteriori by clipping to zero
negative values.



3.5 Combined single stage orientation

This is also called the “bundle” method, and indeed it is equivalent to a bundle
adjustment (see ahead) with just two images and GCPs. The basic idea is the
following.

Let us rewrite the collinearity equation as

p = f (O,!,X)

where the vector ! collects the three parameters that describe the rotation R; the
6 orientation parameters (O,!) are unknown, while some of the 3D points X are
known (GCP) and the others are not (tie-points).

For every GCP seen in one camera two equations can be written in 12 unknown (the
orientation of one camera has 6 d.o.f).

For every tie-point (seen in two imgaes) we add four equations and 3 unknowns (its
3D position), therefore the balance is positive: tie-points adds information.

This method can be used without GCP, and the model is therefore represented in an
arbitrary reference system (free solution).



4 Multiple images constraints

The question whether epipolar geometry can be generalized to more than two images
arises naturally. Since conjugate points in two images are linked by a bilinear form,
one might conjecture that points in tree images are related by a trilinear form, and
so on. This is indeed correct, and in this section we shall see how all the meaningful
multifocal constraints on N images can be derived in very elegant way, as described
in (Heyden, 1998).

Consider one point viewed by m cameras:

⇣i x̃i = PiX̃ i = 1 . . . m (40)

By stacking all these equations we obtain:
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This implies that the 3m⇥ (m + 4) matrix L is rank-deficient, i.e., rankL < m + 4.
In other words, all the (m + 4)⇥ (m + 4) minors of L are equal to 0.

The minors that does not contain at least one row from each camera are identically
zero, since they contain a zero column.
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0
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3m

0

4+m

0
0
0
0
0

If a minor contains only one row from some cam-
era, the image coordinate corresponding to this
row can be factored out (using Laplace expansion
along the corresponding column).

Hence, at least one row has to be taken from
each camera to obtain a meaningful constraint,
plus another row from each camera to prevent
the constraint to be trivially factorized.



Since there are m views, after taking one row from each camera, the remaining four
rows can be chosen as follows, depending on the number of cameras:

If m = 2 choosing two rows from one image and two rows from another image gives
a bifocal (epipolar) constraint.

If m = 3, choosing two rows from one image, one row from another image and one
row from a third image gives a trifocal constraint.

If m = 4, choosing one row from each of four di↵erent images gives a quadrifocal
constraint.

If m > 4, there is no way to avoid that some minors contain only one row from some
images.

Hence, constraints involving more than 4 cameras can be factorized as product of the
two, three, or four-images constraints and image point coordinates. This indicates
that no interesting constraints can be written for more than four images2.

2
Actually, it can be proven that also the quadrifocal constraints are not independent (Ma et al., 2003).



In Section 3.2.4 we saw how a camera pair can be extracted from the essential matrix.
Likewise, a triplet of consistent cameras can be extracted from the trifocal tensor.
The procedure is fairly tricky, though and generalizes only up to four cameras.

As a consequence, there is no direct generalization of the pairwise processing to
multiple images, and specific methods have been developed in Photogrammetry and
Computer Vision.



5 Block processing

Block processing is the generalization of pairwise processing to multiple overlapping
images (a block).

The technique referred to as Structure from Motion (SfM) in Computer Vision has a
large overlap with the block adjustment problem of Photogrammetry: given multiple
images of a stationary scene, the goal is to recover both structure, i.e. 3D coordinates
of object points, and motion, i.e. the exterior orientation (position and attitude) of
the photographs.

It is assumed that the interior parameters of the cameras are known, namely the focal
length and the coordinates of the principal point.

It is assumed that a certain number of (3-D) tie-points are visible in subsets of images
and that they can be identified (via key-point extraction and matching)3.

3
Please note that tie-points are 3-D, while key-points or features are 2-D. When two or more key-points are matched they implicitely define a tie-point via

intersection.





Fig. 2: The proposed taxonomy of Structure from Motion methods



There are many possible taxonomies of the Structure-from-motion methods. We
choose to first dichotomize methods that merge partial models vs global methods
that uses all points and all cameras simultaneously.

Among the first we single out Bundle Adjustment (e.g. (Triggs et al., 2000)), and
factorization-based methods.

The other class is further subdivided according to the the space where the merging
occurs: frame space or points space.

In the first case camera frames are aligned before recovering the 3D points (Govindu,
2001; Martinec and Pajdla, 2007; Kahl and Hartley, 2008; Enqvist et al., 2011; Arie-
Nachimson et al., 2012; Moulon et al., 2013) ( first solve for the “motion” and then
recover the “structure”), whereas in the second case 3D points are recovered and
then used to guide the alignment.

In the latter group we find the independent models block adjustments (e.g. (Crosilla
and Beinat, 2002)), where first stereo-models are built and then co-registered, and
structure-and -motion methods, such as resection-intersection methods (Brown and
Lowe, 2005; Snavely et al., 2006a), hierarchical methods (Gherardi et al., 2010; Ni
and Dellaert, 2012)), where “structure” and “motion” are somehow interleaved.



5.1 Bundle block adjustment

Bundle block adjustment minimizes the reprojection error, i.e., the distance in the
image plane between the projection of a tie-point PiX̃j and the corresponding key-
points x̃ji for every image i where they have been detected:

min
Pi ,˜X

j

X

i ,j

d(PiX̃
j , x̃ji)

2 (42)

where d() is the Euclidean distance between the homogeneous points.

If the reconstruction is projective Pi is parameterized with its 11 d.o.f. whereas if the
reconstruction is Euclidean, one should use Pi = Ki [Ri |ti ] where the rotation has to
be suitably parameterized with 3 d.o.f.

In this case, using the collinearity equations, it can be equivalently written:

min
Oi ,!i ,X

j

X

i ,j

kpji � f (Oi ,!i ,X
j)k2 (43)

with possibly some X known and fixed (GCPs).

See also (Triggs et al., 2000) for a review and a more detailed discussion on bundle
adjustment.



Fig. 3: Bundle adjustment. GCP are in red; tie-points are in gray.
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As m and n increase, this becomes a very large
minimization problem. However the Jacobian
of the residual has a specific structure that can
be exploited to gain e�ciency.

• Primary structure: on the row correspond-
ing to x̃ji , only the two elements corre-
sponding to camera Pi and to point X̃j are
nonzero.

• Secondary structure: not all points are seen
in all views (data-dependent).



The primary structure can be exploited to decompose the Jacobian two parts: one
relative to cameras and one to points:

J =
⇥
Jc Jp

⇤
. (44)

Please note that Jc and Jp are block diagonal. The normal equation

JTJ|{z}
H

�u = �JT f (u) (45)

is partitioned accordingly:

JTc Jc J

T
c Jp

JTp Jc J
T
p Jp

� 
�uc
�up

�
=


�JTc f (uc |up)
�JTp f (uc |up)

�
(46)

or equivalently: 
Hcc Hcp
Hpc Hpp

� 
�uc
�up

�
=


bc
bp

�
. (47)

where Hcc and Hpp are block diagonal.



Let us multiply the equation by

I �HcpH�1pp
0 I

�
(48)

which has the e↵ect of making the lefthand matrix block lower triangular:

Hcc �HcpH�1pp Hpc 0

Hpc Hpp

� 
�uc
�up

�
=


bc �HcpH�1pp bp

bp

�
(49)

Hence the unknown can be recovered as in a blockwise Gaussian elimination

(Hcc �HcpH�1pp Hpc)�uc = bc �HcpH�1pp bp. (50)

�up = H
�1
pp (bp �Hpc�uc). (51)

The linear system is smaller than the original, and the inversion of Hpp is made easy
by its block structure.

The secondary structure reflects onto the matrix (Hcc�HcpH�1pp Hpc): if each image
sees inly a fraction of points it will be sparse. For a sequence of images it has a band
structure.



The numerical implementations of BA can di↵er, but all of them stem from the
Gauss-Newton method.

Levemberg-Marquardt is customarily used in Computer Vision, but it is is basically
a Gauss-Newton method, to which the gradient descent principle is combined to
improve convergence.

If the cost function is weighted by the true measurement covariances, there is no
di↵erence between the Gauss-Newton method and the so-called Gauss-Markov ad-
justment (common in Photogrammetry).

Moreover, all these methods can be seen as instances of a more general class of
damped Gauss-Newton methods (Börlin and Grussenmeyer, 2013).

Bundle block adjustment is the optimal (in a ML sense) solution to structure and
motion, but it requires to be initialized close to the solution so, it does not solve the
problem alone, some other method is needed to bootstrap the reconstruction. Also,
it does not deal with the matching stage (how tie-points are obtained).



5.2 Factorization method

When many images are available, an elegant method for multi-image modeling is
described in (Sturm and Triggs, 1996), based on the same idea of the factorization
method (Tomasi and Kanade, 1992).

Iterative factorization methods (Sturm and Triggs, 1996; Heyden, 1997; Oliensis,
1999; Oliensis and Hartley, 2007) produce a model from multiple images by a two
step iteration (a block relaxation, in fact), where in one step a measurement matrix,
containing image points coordinates, is factorized with SVD, and in the subsequent
step the depths of the points are computed, assuming all the other parameters fixed.

A limitation of these methods is that they work with image coordinates (i.e., uncali-
brated images), thereby producing a projective model, i.e. a model that di↵ers from
the true one by an unknown projectivity of space. The knowledge of the interior
parameters of the images (either by calibration or autocalibration) allows to subse-
quently upgrade the model to a Euclidean one, that di↵ers from the true model by a
similarity transformation.



Considerm cameras P
1

. . . Pm looking at n 3-D points X̃1 . . . X̃n. The usual projection
equation

⇣ji x̃
j
i = PiX̃

j i = 1 . . . m, j = 1 . . . n. (52)

can be written in matrix form:2
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In this formula the x̃ji are known, but all the other quantities are unknown, including
the projective depths ⇣ji . Equation (53) tells us that W can be factored into the
product of a 3m ⇥ 4 matrix P and a 4⇥ n matrix M. This also means that W has
rank four.



If we assume for a moment that the projective depths ⇣ji are known, then matrix W
is known too and we can compute its singular value decomposition:

W = UDV T . (54)

In the noise-free case, D = diag(�
1

,�
2

,�
3

,�
4

, 0, . . . 0), thus, only the first 4 columns
of U (V ) contribute to this matrix product. Let U

3m⇥4 (Vn⇥4) the matrix of the first
4 columns of U (V ). Then:

W = U
3m⇥4 diag(�1,�2,�3,�4) V

T
n⇥4. (55)

The sought model is obtained by setting:

P = U
3m⇥4 diag(�1,�2,�3,�4) and M = V

T
n⇥4 (56)

This model is unique up to a (unknown) projective transformation. Indeed, for any non
singular projective transformation T , PT and T�1M is an equally valid factorization
of the data into projective motion and structure. Consistently, the choice to subsume
diag(�

1

,�
2

,�
3

,�
4

) in P is arbitrary.



In presence of noise, �
5

will not be zero. By forcing D = diag(�
1

,�
2

,�
3

,�
4

, 0, . . . 0)
one computes the solution that minimizes the following error:

||W � PM||2F =
X

i ,j

||⇣ji x̃
j
i � PiX̃

j ||2

where || · ||F is the Frobenius norm. As the depth ⇣ji are unknown, we are left with
the problem of estimating them.

An iterative solution is to alternate estimating ⇣ji (given P and M) with estimating
P and M (given⇣ji ).

If P and M are known, estimating ⇣ji is a linear problem. Indeed, for a given point j
the projection equation writes:
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The method can be summarized as follows:

1. Start from an initial guess for ⇣ji (e.g. ⇣
j
i = 1)

2. Normalize W such that ||W |||F = 1;
3. Factorize W and obtain an estimate of P and M;

4. If ||W � PM||2F is su�ciently small then stop;
5. Solve for ⇣j in Qj⇣j = PMj , for all j = 1 . . . n;

6. Update W .

7. Repeat from 2. until convergence

Step 2. is necessary to avoid trivial solutions (e.g. ⇣ji = 0).



Although this technique is fast, requires no initialization, and gives good results in
practice, there is no guarantee that the iterative process will converge to a valid
solution. A discussion on convergence of this class of methods can be found in
(Oliensis and Hartley, 2007).

In this basic version it is of little practical use, though, because it assumes that all
the point are visible in all the images.

However the issue of visibility in matrix factorization methods can be side-stepped by
matrix completion techniques, exploiting the low rank of the measurement matrices
(Brand, 2002; Kennedy et al., 2013; Hartley and Scha↵alitzky, 2003), or by providing
additional information.



Fig. 4: The proposed taxonomy of Structure from Motion methods



5.3 Independent models block adjustment

This is a classical method in Photogrammetry (Kraus, 2007).

• First stereo-models are created, by relative orientation. Each of these models is
described in an local, arbitrary reference frame.

• In the course of the block adjustment the individual models will be amalgamated
into a single one and simutaneously transformed into the ground coordinate sys-
tem.

We will consider here a Procrustean approach proposed in (Crosilla and Beinat, 2002),
which by its nature produces a “free” solution (i.e., expressed in an arbitrary reference
frame), but can be modified to include GCPs.



5.3.1 Generalized Procrustes Analysis

Generalized Procrustes Analysis (GPA) is a technique that generalizes EOPA and
provides a least-squares solution when more than two model points matrices are
present (Gower, 1975). It minimize the following least squares objective function:

mX

i=1

mX

j=i+1

k(�iAiRi + 1tTi )� (�jAjRj + 1tTj )k (58)

where A
1

, A
2

, . . . , Am are m model points matrices, which contain the same set of
k-d p points in m di↵erent coordinate systems. The GPA objective function has an
alternative formulation. Said Bi = �iAiRi + 1tTi , the following equivalence holds:

mX

i=1

mX

j=i+1

||Bi � Bj ||2 = m
mX

i=1

||Bi �K||2, (59)

where K is the geometrical centroid,

K =
1

m

mX

i=1

Bi. (60)

Therefore the righthand term of Eq. 59 can be minimized – instead of Eq. 58 - in
order to determine the unknowns �i , Ri , ti(i = 1...m).



The unknown centroid can be iteratively estimated, according to the following pro-
cedure.

1. First the centroid K is initialized.

2. Iterate:

(a) At each step a direct solution of the transformation parameters of each model
points matrix Ai with respect to the centroid K is found by means of a EOPA
solution.

(b) After the update, a new centroid can be estimated.

3. The procedure continues until global convergence, i.e. the stabilization of the
centroid K.

The algorithm always converges (Commandeur, 1991), though not necessarily to the
global minimum.

GPA can be used also in the global registration of multiple 3D point sets (Beinat and
Crosilla, 2001). The di↵erence with IMBA is that that the transformation is a rigid
one (6 d.o.f.) instrad of a similarity (7 d.o.f.).



5.3.2 Anisotropic Generalized Procrustes Analysis

We will derive here a procustean solution to the bundle adjustment, on the same line
as in (Fusiello and Crosilla, 2015).

Consider now m cameras P
1

. . . Pm looking at n 3-D points X1 . . .Xn. The usual
projection equation writes:

⇣ji p̃
j
i = [Ri |ti ]X̃

j i = 1 . . . m, j = 1 . . . n. (61)

Working as in Eq. (36), we can write for each camera i :

S = ZiPiRi + 1O
T
i (62)

In this formula the Pi are known, but all the other quantities are unknown, including
the depths Zi . We are required to minimize:

mX

i=1

mX

`=`+1

k(ZiPiRi + 1OTi )� (Z`P`R` + 1OT` )k
2

This formulation matches the GPA problem with the di↵erence that the isotropic
scale �i is substituted by an anisotroipic scaling matrix Zi (diagonal).



The iterative solution is modelled onto the GPA solution, with the di↵erence that the
Zi matrices are computed by solving:

(I � PTi ) diag�1(Zi) = vec(Y Ti ) (63)

where all the remaining unknowns are contained in Yi .

The final reconstruction will be referred to an arbitrary reference system used in
the generalized extended procustes solution. Georeferencing can be accomplished by
a-posteriory by solving an absolute orientation problem.



5.4 Resection-intersection method

As of today, the most succecesful structure-from-motion pipelines in CV (Brown and
Lowe, 2005; Snavely et al., 2006b; Vergauwen and Gool, 2006; Irschara et al., 2007;
Gherardi et al., 2010) are based on the idea of growing partial models – composed
by cameras and points – where new cameras are iteratively added by resection and
new points by intersection. This approach o↵ers the advantage that corresponding
features are not required to be visible in all images.

The idea was indeed already known in Photogrammetry (Kraus, 1997, Sec. 4.1),
but the CV community coupled it with automated designation of tie-points (SIFT
extraction and matching) and resilience to rogue data (RANSAC), achieving the first
completely automatic pipeline, from images to 3D models.



We present here an approach to reconstruct the projective (or Euclidean) structure
and motion from a sequence4 of images.

We assume that for each pair of consecutive images we are given a set of correspond-
ing keypoints.

The 3D point of which they are projection is called a tie-point.

Fig. 5: Keypoints are connected into multiple-view correspondences, called tracks.

4
We assume that even if images are unordered they can be suitably sequenced



Initializing the model Two images of the sequence are used to initialize the process.

The model reference frame is aligned with the first camera P
1

.

The second camera P
2

is chosen so that the epipolar geometry corresponds to the
computed fundamental matrix F (projective) or essential matrix E (Euclidean).

Once P
1

and P
2

have been determined, the coordinates ot the tie-points visible in the
two images can be reconstructed through intersection.

In other words, the initialization consist in solving a relative orientation problem and
building a stereo-model.



Updating the model After initialization, the following operations are carried out for
every additional image i > 2.

The projection matrix Pi is computed with exterior orientation in the Euclidean case
or resection in the projective case, using tie-points that are visible in image i whose
coordinates have been already computed in previous steps.

The model is updated with intersection. This entails:

(i) refining the position of tie-points already present in the model and (ii) adding new
tie-points thanks to the new matches brought by image i .

Frequent bundle adjustment is needed in practice to to contain error accumulation.





5.5 Hierarchical approach

The previous method can be generalized by organizing the photographs on a tree
instead of a chain.

The tree is produced by hierarchical clustering the photographs according to their
overlap.
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Fig. 6: Dendrogram resulting from hierarchical clustering of images



This hierarchical algorithm, called Samantha in (Gherardi et al., 2010), can be sum-
marized as follows shows a sample model:

1. Solve many independent relative orientation problems at the leaves of the tree,
producing many independent stereo-models.

2. Traverse the tree; in each node one of these operations takes place:

(a) Update one model by adding one image by resection followed by intersection;

(b) Merge two independent models with absolute orientation.

Steps 1. and 2.(a) are the resection-intersection steps.

Step 2.(b) summons up the photogrammetric Independent Models Block Adjustment.

If the tree reduces to a chain, the algorithm is the resection-intersection method. If
the tree is perfectly balanced, only step 2.(b) is taken, and the resulting procedure
resembles the IMBA.



5.5.1 Preprocessing (hints)

We assumed images come in a sequence, but usually they are unordered.
The following steps are usually taken:

• Keypoint extraction (usually SIFT or similar)
• Matching – broad phase: select a O(m) pairs to be matched
• Matching – narrow phase: match keypoints between those pairs
• Define the seed pair (critical)
• Define the order of processing of the subsequent views

The two-phases matching avoids the matching of all O(m2) view pairs.

In the hierarchical approach, the last two steps are substituted by hierarchical cluster-
ing.



Fig. 7: The proposed taxonomy of Structure from Motion methods



5.6 Global motion first

Global motion-first methods share a common scheme:

• Solve relative orientation between pair of images, which results in relative rotations
and relative translations (up to a scale);

• Solve a motion averaging or syncronzation problem. This is usually broken in a ro-
tation syncronization followed by translation syncronization, but one-step methods
have also been proposed.

• The model is computed (by intersection) only at the end.

These global methods are usually faster than the others, while ensuring a fair distri-
bution of the errors among the cameras, being global.

Although the accuracy is worse than those achieved by bundle adjustment, these
global methods can be seen as an e↵ective and e�cient way of computing approximate
orientations to be subsequently refined by bundle adjustment.



Go to:

Synchronization problems in Computer Vision



A Kronecker product

Let A be a m ⇥ n matrix and B a p ⇥ q matrix. The Kronecker product of A and
B is the mp ⇥ nq matrix defined by

A⌦ B =

2

4
a
11

B . . . a
1nB

... ...
am1B . . . amnB

3

5 . (64)

The Kronecker product is defined for any pair of matrices A and B. It is associative
and distributive with respect to matrix sum and product, but it is not commutative.
The transpose of a Kronecker product is (A⌦ B)T = AT ⌦ BT .

A very important property concerns the eigenvalues of the Kronecker product: the
eigenvalues of A ⌦ B are the outer product of the eigenvalues of A and B. This
implies that:

rank(A⌦ B) = rank(A) rank(B). (65)



Vectorization

The vectorization of a matrix is a linear transformation which converts the matrix into
a column vector. Specifically, the vectorization of the matrix A, denoted by vec(A),
is the vector obtained by stacking the columns of A one underneath the other.

The basic connection between the vec operator and the Kronecker product is

vec(abT ) = b⌦ a (66)

for any column vectors a and b. The generalization of this is the following important
property:

vec(AXB) = (BT ⌦ A) vec(X) (67)

for matrices A,B,X of compatible dimensions.

The half-vectorization, vech(A), of a symmetric n⇥n matrix A is the n(n+1)/2⇥1
column vector obtained by vectorizing only the lower triangular part of A.

The duplication matrix Dn is the unique n2 ⇥ n(n + 1)/2 matrix which, transforms
vech(A) into vec(A): Dn vech(A) = vec(A).



B Khatri-Rao product

The Khatri-Rao product (Khatri and Rao, 1968), denoted by �, is in some sense
a partitioned Kronecker product, where by default the column-wise partitioning is
considered.

Let us consider two matrices A of order p ⇥ r and B of order q ⇥ r and denote the
columns of A by a

1

· · · ar and the those of B by b1 · · ·br . The Khatri-Rao product
is defined to be the partitioned matrix of order pq ⇥ r :

A� B = [a
1

⌦ b
1

, · · · ar ⌦ br ] (68)

where ⌦ denotes the Kronecker product.

If X is diagonal, then

vec(AXB) = (BT � A) diag�1(X) (69)

where diag�1 returns a vector containing the diagonal elements of its argument.



With B = I one obtains

vec(AX) = (I � A) diag�1(X). (70)

It it is easy to see that
(I � A) = blkdiag(a

1

. . . an) (71)

where a
1

. . . an are the columns of A and blkdiag is the operator that construct a
block diagonal matrix with its arguments as blocks.



References

Ansar, A., Daniilidis, K., 2003. Linear pose estimation from points or lines. IEEE Transactions on Pattern Analysis

and Machine Intelligence 25 (5), 578 – 589.

Arie-Nachimson, M., Kovalsky, S. Z., Kemelmacher-Shlizerman, I., Singer, A., Basri, R., 2012. Global motion

estimation from point matches. International Conference on 3D Imaging, Modeling, Processing, Visualization and

Transmission.

Arun, K. S., 1992. A unitarily constrained total least squares problem in signal processing. SIAM Journal on Matrix

Analysis and Applications 13 (3), 729–745.

Beardsley, P., Zisserman, A., Murray, D., 1997. Sequential update of projective and a�ne structure from motion.

International Journal of Computer Vision 23 (3), 235–259.

Beinat, A., Crosilla, F., 2001. Generalized procrustes analysis for size and shape 3d object reconstruction. In: Optical

3-D Measurement Techniques. pp. 345–353.

Börlin, N., Grussenmeyer, P., 2013. Bundle adjustment with and without damping. The Photogrammetric Record

28 (144), 396–415.

Brand, M., 2002. Incremental singular value decomposition of uncertain data with missing values. In: Proceedings

of the European Conference on Computer Vision. Springer, pp. 707–720.

Brown, M., Lowe, D. G., June 2005. Unsupervised 3D object recognition and reconstruction in unordered datasets.

In: Proceedings of the International Conference on 3D Digital Imaging and Modeling.

Commandeur, J. J. F., 1991. Matching configurations. DSWO Press, Leiden.

Crosilla, F., Beinat, A., 2002. Use of generalised procrustes analysis for the photogrammetric block adjustment by

independent models. ISPRS Journal of Photogrammetry & Remote Sensing 56 (3), 195–209.



de Leeuw, J., 1994. Block-relaxation algorithms in statistics. In: Information Systems and Data Analysis. Springer-

Verlag, p. 308325.

Enqvist, O., Kahl, F., Olsson, C., 2011. Non-sequential structure from motion. In: Eleventh Workshop on Omnidi-

rectional Vision, Camera Networks and Non-classical Camera.

Fiore, P. D., 2001. E�cient linear solution of exterior orientation. IEEE Transactions on Pattern Analysis and

Machine Intelligence 23 (2), 140–148.

Fusiello, A., Crosilla, F., April 2015. Solving bundle block adjustment by generalized anisotropic procrustes analysis.

ISPRS Journal of Photogrammetry and Remote Sensing 102, 209–221.

Gao, X.-S., Hou, X.-R., Tang, J., Cheng, H.-F., 2003. Complete solution classification for the perspective-three-

point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 930–943.

Garro, V., Crosilla, F., Fusiello, A., 2012. Solving the pnp problem with anisotropic orthogonal procrustes analysis.

In: Second Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization and Transmission

(3DIMPVT). pp. 262–269.

Gherardi, R., Farenzena, M., Fusiello, A., 2010. Improving the e�ciency of hierarchical structure-and-motion. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010).

Govindu, V. M., 2001. Combining two-view constraints for motion estimation. In: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition.

Gower, J., 1975. Generalized procrustes analysis. Psychometrika 40 (1), 33–51.

Gower, J. C., Dijksterhuis, G. B., January/Winter 2004. Procrustes problems. Vol. 30 of Oxford Statistical Science

Series. Oxford University Press, Oxford, UK.

Hartley, R., Scha↵alitzky, F., 2003. PowerFactorization: 3D reconstruction with missing or uncertain data. In:

Australia-Japan advanced workshop on computer vision. Vol. 74. pp. 76–85.



Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision, 2nd Edition. Cambridge University

Press.

Hartley, R. I., Sturm, P., November 1997. Triangulation. Computer Vision and Image Understanding 68 (2), 146–

157.

Hesch, J. A., Roumeliotis, S. I., 2011. A direct least-squares (dls) solution for PnP. In: Proc. of the International

Conference on Computer Vision.

Heyden, A., 1997. Projective structure and motion from image sequences using subspace methods. In: Scandinavian

Conference on Image Analysis. pp. 963–968.

Heyden, A., 1998. A common framework for multiple-view tensors. In: Proceedings of the European Conference on

Computer Vision. Freiburg, Germany,.

Huang, T., Faugeras, O., December 1989. Some properties of the E matrix in two-view motion estimation. IEEE

Transactions on Pattern Analysis and Machine Intelligence 11 (12), 1310–1312.

Irschara, A., Zach, C., Bischof, H., 2007. Towards wiki-based dense city modeling. In: Proceedings of the 11th

International Conference on Computer Vision. pp. 1–8.

Kahl, F., Hartley, R. I., 2008. Multiple-view geometry under the l1-norm. IEEE Trans. Pattern Anal. Mach. Intell.
30 (9), 1603–1617.

Kanatani, K., Niitsuma, H., 2012. Optimal computation of 3-d similarity: Gaussnewton vs. gausshelmert. Compu-

tational Statistics & Data Analysis 56 (12), 4470 – 4483.

Kennedy, R., Balzano, L., Wright, S. J., Taylor, C. J., 2013. Online algorithms for factorization-based structure

from motion. CoRR abs/1309.6964.

Khatri, C. G., Rao, C. R., 1968. Solutions to some functional equations and their applications to characterization
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