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ABSTRACT

In this paper we present a technique for tracking complex
models in video sequences with multiple cameras. Our me-
thod uses information derived from image gradient by com-
paring them with edges of the tracked object, whose 3D
model is known. A score function is defined, depending on
the amount of image gradient “seen” by the model edges.
The sought pose parameters are obtained by maximizing
this function using a non deterministic algorithm which pro-
ved to be optimal for this problem. Preliminary experiments
with both synthetic and real sequences have shown small er-
rors in pose estimations and a good behavior in augmented
reality applications.

Categories and Subject Descriptors

1.3.7 [Computer Graphics|: Three-Dimensional Graph-
ics and Realism— Virtual reality; 1.4.8 [Image Processing
and Computer Vision]: Scene Analysis—tracking, stereo;
H.5.1 [Information Systems Applications]: Multimedia
Information Systems

General Terms
Algorithms

Keywords

Pose estimation, Registration, Exterior orientation

1. INTRODUCTION

In Augmented Reality (AR) applications [1], in order to
make synthetic graphics appear in proper place, it is nec-
essary to know exactly pose (position and orientation) of
the camera in the real world. This is the so-called registra-
tion problem, which have been addressed in early systems
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with tracking devices (like beacons, transponders, etc.). In
video-based AR, where the real image and the graphic over-
lay are combined using a computer, the same video camera
used to capture video serves as a tracking device. Since the
system captures a digitized image of the real environment,
it is possible to enforce registration of the model onto the
view of the real object, thereby closing the loop. Solving
this problem repeatedly for each frame of a video sequence
is referred to as model tracking. Model tracking consist in
computing the correct projection of the model onto the real
object (registration), which is equivalent to solving for the
pose of the camera with respect to the object.

Most approaches are based on the extract-and-match pa-
radigm [6, 3, 4, 11, 13]: image features are extracted and
then matched against stored model features. A drawback
of all these methods is that errors introduced in the feature
extraction phase cannot be eliminated subsequently. More-
over, matching is usually strongly problem dependent and
based on fine tuned thresholds; occlusions pose a serious
challenge. As a result, these methods are likely to fail in
cluttered and complex environment.

In this paper we present a technique for tracking models
of rigid objects with multiple cameras that does not require
feature extraction and matching. The main idea [9, 7, 12]
consists of comparing the image gradient information with
edges of the tracked model, assuming that the latter give rise
to local gradient maxima. A score function is therefore de-
fined, that measures the amount of image gradient collected
by the projected model edges: Maximizing this function is
tantamount to obtaining pose parameters of the camera.

Speed and accuracy of the tracking depends critically on
two steps: i) the optimization procedure and ii) computa-
tion of the score function, which entails model projection
(rendering). In both these respects we differ from [8, 12].
As for the first issue, after a thorough analysis of optimiza-
tion algorithms (reported in [10]) we selected the Shaker
algorithm [2], a non-deterministic method based on adap-
tive noise. A simple Kalman filter that tracks the pose of
the camera provides the starting guess for the optimization.
The computation of the score function combines the speed of
rasterization (via OpenGL) with the accuracy of a vectorial
representation.

Thanks to these solutions we we improve on [12] in both
accuracy and speed. A further improvement in occlusion
handling and accuracy is brought by the introduction of a
second camera.



In principle our technique can track any rigid object, that
OpenGL can render, including smooth-boundaries ones. In
practice, real-time requirements pose limits the complexity
of the model.

2. CONCEPTS

Let W = [x,y,2,1]" be the homogeneous coordinates of a
3D point W in the model reference frame and m = [u, v,1]"
the homogeneous coordinates of its projection M in the im-
age plane (in pixels). The pinhole camera is modeled by
the perspective projection matriz P = [R|t]. A depends on
five intrinsic parameters; R and t are the extrinsic param-
eters that define the rotation and translation — respectively
— bringing the camera reference frame onto the object refer-
ence frame. R is parameterized by a vector w = (wg,wy,w:)
such that R = e“. The matrix exponential is computed ac-
cording to the Rodriguez’s formula. The modulus of w gives
the angle of rotation, while its direction represents the axis.

The mapping from 3-D points to 2-D points is given by:

1h ~ PWw (1)

where ~ means equal up to a scale factor. If we collect the
11 parameters (6 extrinsic and 5 intrinsic) in one vector ¢,
we can define the projection operator II as:

m = II(w; ¢). (2)

Given a sufficient number of (mj;, w;) matching pairs, one
may compute the parameters vector ¢ such that Eq. (2) is
satisfied for all 7.

In principle one could estimate all the 11 parameters, as
knowing a model of the object make the problem equiva-
lent to camera calibration [9]. In practice, if viewing con-
ditions are close to affine, the translation along the optical
axis becomes indistinguishable from a focal length change.
As in a tracking application the viewing conditions cannot
be guaranteed (unlike in the calibration process), we will
assume that intrinsic parameters are known and constant,

ie, ¢ = (w,t).

3. TRACKING METHOD

At each discrete time step ¢, the 3D model (known) is
projected according to the predicted pose of the camera, and
the actual pose ¢ of the camera is computed by optimizing
an objective function E(¢). The prediction is given by a
simple Kalman filter which has also the effect of smoothing
out pose changes.

3.1 Objective function

Following [9, 7], pose computation is cast as an optimiza-
tion problem, where the score function is defined as the in-
tegral of the local image gradient along the projected model
contours. The objective function to be optimized writes:

E(¢) = 22 VI(IL(wi; ¢))] 3)

where VI(x) is the image gray level gradient computed at
point x. Points w; belongs to visible model-edges (both con-
tour and color edges). Furthermore, in presence of noise or
cluttered background, it is advisable to take into account the
direction of the gradient [7] so as to make the cost function
more selective. Let I'y be the set of the projected visible
edge points and nr, (x) the edge direction, the objective

function is defined as:
1 .
E(¢p) = WEXI(VI(X) ~fir, (x))xr, (%)] (4)

where xr, is the characteristic function of the set 'y, also
called model edge map. In order to have a smooth and larger
basin of attraction for the optimum, we consider not only
points belonging to I'g, but also their neighbors in a given
range, weighted by a Gaussian function. This can be for-
malized by conmsidering a fuzzy characteristic function xr,
which decreases with a Gaussian law as points are farther
from the actual edge.

3.2 Numerical optimization

As the score function cannot be expressed in analytical
form, we had to exclude from consideration gradient-based
methods and resort to direct-search maximization algorithms.

After a thorough comparative analysis of several direct-
search algorithms, reported in [10], the Shaker algorithm
proposed by Caprile and Girosi [2] was selected, as it has
shown best results on both synthetic and real experiments.

Given a real multivariate function g = g(x), defined in a
domain A of R", let x be a point in A and P = {P, ..., P}
a partition of set I,, formed by all natural numbers greater
than 0 and smaller than n +1 (I, = {1,...,n}). For each
element P; € P we define a positive number w; and let €2 be
the set of all these numbers; such set represents the noise
list. Let rand(a,b) be the result of a real number random
extraction in [a, b] and let n be a given accuracy threshold.

SHAKER ALGORITHM

ge := g(x);
initialize 2 ;
while Vi € I, : w; <
for each P; € P;
a n-dimensional vector v is generated s.t.:

rand(—w;,w;) if j€P;
Vi =

0 otherwise;

ga = f(x +V);
if go < gc then:

e *= Ga;

X =X+ V;

w; 1= 2w;;
otherwise

w; = w; /2.
end

end

In our application, parameters are partitioned into P; =
{tz,ty,t.} and P» = {wa,wy,w: }.

3.3 Using multiple cameras

As reported in [11], general benefits derived by using mul-
tiple cameras concern the handling of occlusions and a better
conditioning of the problem.

Let us consider the case of two cameras [11], and let ¢, =
(we, te) the (fixed) pose of the right camera with respect
to the left camera, computed once for all by calibration.
Let ¢, = (wi, t;) and ¢, = (w,,tr) be the current pose of
the left and right camera, respectively. Assuming the left
camera as the reference one, the total score function writes:

E'(¢) = E'(¢)) = 3(E(¢) + E($. 0 d1)) (5)

where o denotes the composition of rigid tranformations.



3.4 Projection of visible edges

The objective function of our tracking algorithm is com-
puted using the projection of visible model-edges. A raster
representation —such as that readily obtained using OpenGL
— is unsuited to our needs, because the normal to each pro-
jected edge in the image is required. A vectorial representa-
tion of projected edges is needed, but vectorial hidden line
removal is too expensive.

The idea is to use back face culling, which is easy to per-
form, to obtain the vectorial representation for a superset of
the visible edges. First, we compute and store in a matrix
the contribution of each pixel to the cost function, using the
edges (vectorial) produced by back face culling. Than we
mask this matrix with the true model edge map, obtained
as the wireframe rendering (raster) of the model. The result-
ing matrix will contain only the contribution of the visible
edge-points, and the sum of its elements yields the value of
the objective function.

For smooth-boundaries objects (like cylinders) we render
filled polygons with flat shading. When doing the masking,
only “white” pixels that have at lest one “black” neighbor
are considered as “1”. All the others are considered as “0”,
so as to mask out the interior of the objects. Only contour
edges can be used in this case.

4. RESULTS

In this section some preliminary experiments are presen-
ted, aimed at validating our algorithm in both synthetic
and real cases, with different objects and motion patterns.
Real video sequences have been captured with a Videre color
stereo camera with resolution of 640 x 480 pixels. The maxi-
mum tracking rate is similar for all the tested sequences and
it reaches 9 fps on the average, using a Mobile AMD Athlon
XP @ 2 GHz. Synthetic experiments have been carried out
in order to assess the registration accuracy with respect to
the ground truth. In all the experiments the background is
fairly cluttered, and this adds realistic disturbance to the
score function. More details on experiments can be found
n [10]. Video sequences are available on the WWW?!.

Figure 1: Sample frame from the “Satellite” syn-
thetic sequences.

Ezperiment 1: Satellite

In this experiment the synthetic satellite shown in Figure 1
has been tracked. It is moving toward the observer with a
screw motion (all the pose components are changing) from
far (17m) to close (6m) to the observer. The size of the
satellite is about 2m®. As can be noted in Figure 2, the
error in the estimate of rotation angle is always less than 1

"ttp://www.sci.univr.it/ fusiello/demo/mdt.
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Figure 2: Satellite - pose errors.

degree and the translation errors are less than 2cm for ¢,
and ty. As expected, the error for ¢. is higher (one order of
magnitude).
Ezperiment 2: Printed circuit board
In this experiment the system was requested to track a
real printed circuit board (PCB). Although the PCB has
many details, a simplified model containing only the main
model edges is sufficient for tracking. Several cases have
been tested: (i) mainly forward motion (figure 3.a - 3.b),
(ii) mainly rotation (figure 3.c - 3.d), (iii) severe occlusion
(Figure 3.e - 3.f). In all those sequences the system per-
formed reasonably well.
Ezperiment 3: Spray bottle
In this experiment the system was required to track a real
smooth-boundaries object: the spray bottle depicted in Fig-
ure 4.a. Eventually the video sequence was augmented with
the synthetic Utah teapot.

A more complex video that simulates the interaction be-
tween real and synthetic objects is available on the WWW!,

S. CONCLUSION

In this paper we presented a technique for tracking com-
plex models in video sequences with multiple cameras. The
problem has been modeled as the maximization of a score
function which measures the fit of the projection of the
model onto the actual images. In order to obtain the cor-
rect pose parameters, an efficient optimization technique has
been applied. The projection of the model combines the
speed of rasterization with the accuracy of a vectorial rep-
resentation. The method can cope with multiple cameras,
complex objects (both polyhedral and smooth boundaries),
general motion and is robust to occlusions. Furthermore, it
can work in (nearly) real-time.

Preliminary experiments with a small baseline stereo pair
are encouraging. This work will be eventually implemented
in a system called VE?* consisting of a room with five cam-
eras pointing inward and tracking objects in real-time. The
system is supposed allow interaction with a virtual world
projected onto a wall. In this context, more experiments
will be conducted.



Figure 3: Selected frames from the PCB experi-
ment. The model outline is overlaid onto the real

images.

Figure 4: Spray bottle. Sample frame from the orig-
inal sequence (a) and from the tracking sequence
(b), where the model is overlaid in green. Two

frames augmented with the Utah teapot (c) (d).
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