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Abstract

In this paper we present an image-based system for
novel view synthesis from multiple model views.
Our method works by segmenting images of a static
scene in background and foreground, basing on mo-
tion parallax. From this segmentation we are able
to recover therelative affine structure. Finally,
we synthesize novel views with an original method
based on step-wise replication of the epipolar ge-
ometry acquired from few model or “seed” views.
The method isuncalibrated, for it does not need the
rigid displacements in the Euclidean frame (which
is unknown), and it isautomatic, for it does not re-
quire the user to manually specify viewing parame-
ters.

1 Introduction

Nowadays we see an increasing interest in the con-
vergence of Computer Vision and Computer Graph-
ics [15]. One of the most promising and fruit-
ful topic is Image-Based Rendering(IBR) [17, 11].
While the traditional geometry-based systems use
a 3-D model, in IBR views are generated by re-
sampling one or more example images, using ap-
propriate warping functions. The advantage is that
photographs of real scenes can be used as a basis to
create very realistic images.

The warping functions are based on the observa-
tion that certain relationships exist between the po-
sitions of pixels representing the same points in the
scene observed from different viewpoints [4].

In the case of calibrated camera, algorithms
based on image interpolations yield satisfactory re-
sults [22, 21]. Uncalibrated techniques, that do not
assume any knowledge on the imaging device, uti-
lize image to image constraints such as the Fun-
damental matrix [14], trilinear tensors [1] or the

“plane+parallax” [24, 8], to reproject pixels from
a small number of reference images to a given view.

Although uncalibrated point transfer algorithms
are well understood, a “natural” way of specifying
novel views is missing. With an uncalibrated set-
ting, one cannot specify the position and orienta-
tion of the virtual camera in the familiar Euclidean
frame, because it is not accessible1. This means that
one have to specify some projective element, like
the epipole.

In this work, we propose an automatic solution
based on the replication of the epipolar geometry
that links two model views, considered as an ele-
mentary displacement step. This allows the user to
move the virtual camera “to the left and a little bit
upward,” for example.

Our method starts by segmenting images of a
static scene in background and foreground, basing
on motion parallax, using a statistical feature-based
method for dominant motion estimation. This ex-
tends [18], where independent motion was used to
segment moving objects from background. In this
work, objects are static and we only exploit cam-
era motion and parallax to recover the background.
Previous works on motion segmentation using a
parametric model for the dominant motion include
[7, 9, 19, 12, 20].

From this segmentation we are able to recover
the relative affine structure[24] for the foreground
points, and to build a mosaic of the background.
Following [2] we use two homographies to repre-
sent the epipolar geometry that links pairs of views.
Finally, we synthesize novel views with an original
method based on step-wise replication of the epipo-
lar geometry acquired from few model or “seed”
views.

The rest of the paper is structured as follows. In

1We are working in a projective frame that is linked to the Eu-
clidean frame by an unknown projective transformation.
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the next section we review some background ma-
terial necessary to make the paper self-consistent.
Then, we outline our method, which will be de-
scribed in details in Sections 4, 5, 6, 7, and 8. In
particular Section 8 deals with the method for spec-
ifying novel views. Some results are shown in Sec-
tion 9, and, finally, conclusions are drawn in Section
10.

2 Background

In this section we review some background notions
needed to understand the paper. A complete discus-
sion and formulation of the “plane+parallax” theory
can be found in [24, 25]. A more general reference
on the geometry of multiple views is [6].

Two views of a planar set of points are related
via a homography, i.e, a non-singular linear trans-
formation of the projective plane into itself. The
most general homography is represented by a non-
singular3× 3 matrixH.

If pi ∈ I1 and p
′
i ∈ I2 are projection in two

different viewsI1 andI2 of the same 3-D pointPi

belonging to some planeΠ, we have

p
′
i
∼= HΠpi (1)

whereHΠ is the homography induced by planeΠ,
∼= means “equal up to a scale factor” and points are
expressed in homogeneous coordinates.2 The ma-
trix HΠ has eight degrees of freedom, being defined
up to a scale factor: four corresponding points in the
two views define a homography.

For a general 3-D pointPi, we have

p
′
i
∼= HΠpi + kiv

′
(2)

wherev
′

denotes the epipole in the second view,
andki is therelative affine structure, which is pro-
portional to the distance of the pointPi from the
planeΠ (denoted by “a” in Fig. 1).

This equation tells us that points are first trans-
ferred as if they were lying on the reference plane
Π, and then their position gets corrected by a dis-
placementkiv

′
, calledparallax, in the direction of

the epipole, with magnitude proportional to the rel-
ative affine structure. IfPi ∈ Π thenki = 0 and
Eq. (2) reduces to Eq. (1).

2Points in the image plane are denoted asp =
(x1, x2, x3) ∼= (

x1
x3

,
x2
x3

, 1) with (u, v) = (
x1
x3

,
x2
x3

) being
the corresponding Cartesian coordinates.

For Eq. (2) to hold, it must be suitably normal-
ized, because both the homography matrixHΠ and
the epipole are defined only up to a scale factor. To
this end, a pointp0 is chosen and scale factors are
fixed so as to satisfy:

p
′
0
∼= HΠp0 + v

′
. (3)

p

a

P

Π

Hp

p’

v’

C’C

Figure 1: Relative affine structure. The segment
joining p′ andHp is the parallax for pointP.

A very important property is that the relative
affine structure is independent of the choice of the
second view. Therefore, arbitrary “second views”
can be synthesized by specifying a plane homog-
raphy and the epipole. This leads to the following
view synthesis algorithm [25]:

1. given two views in correspondencep′i ↔
p′i, i = 0 . . . n;

2. compute the plane homographyHΠ (it is al-
ways possible, given 3 arbitrary points and the
epipoles);

3. scaleHΠ to satisfyp′0 ' HΠp0 + v′;
4. solve for the relative affine structureki in

p′i ' HΠpi + kiv
′;

5. given a new epipolev′′ and a new homography
HΣ;

6. points are transferred in the third view with
p′′i ' HΣpi + v′′ki

Two problems are to be addressed here: i) how to
compute correspondences, and ii) how to specify a
new epipolev′′ and a new homographyHΣ.

Relative affine structure can be used similarly for
mosaicing. Given a sequence of images in full cor-
respondence, one can compute, for each view, the
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homography and the relative affine structure with
respect to a reference view, and then warp it to the
reference view using Eq. (2).

3 Outline of our method

As remarked in the previous section, view synthesis
must address the problems of computing correspon-
dences and specifying new views.

As for the first problem, we divide it in comput-
ing a dominant homography that caters for the mo-
tion of the majority of the pixels (usually the back-
ground), and a residual parallax. The latter can be
in turn computed as an homography, or as a sparse
field. New views are specified by replicating the
epipolar geometry that links two or more model (or
“seed”) views.

Let us consider the case where two model views
I1 andI2 are available; the extension to the case of
more than two views is straightforward. The pro-
cessing pipeline includes the following stages, each
of which is described in a separate section of the
paper:

1. Dominant motion recovery: computation of
Hd, the homography that aligns the back-
ground ofI1 andI2.

2. Foreground segmentation: pixels in I1 are
labeled as belonging to background or fore-
ground.

3. Relative affine structure recovery: computa-
tion of ki for each foreground pixel inI1 wrt
imageI2.

4. View Synthesis: transfer points fromI1 to the
new imageI3 using the relative affine structure
ki and the new viewpoint.

4 Estimating the dominant motion

The homography of the background plane is ob-
tained as the one that explains the motion of the ma-
jority of the pixels in the image: thedominant mo-
tion. We are here implicitly assuming that the back-
ground is approximately planar, or that its depth
variation is much smaller than its average distance
from the camera. We use a feature-based technique:
first we extract and match corners obtaining a cer-
tain number of candidate conjugate pairs. Then we
compute the homography with a robust parameter
estimation technique that disregards wrong conju-
gate pairs (outliers), which are caused either by a

wrong matching or by a correct matching of fore-
ground points.

Matching is done with a weighted area-based
correlation algorithm that takes into account both
distance and gray-level similarity between two im-
age windows.

The homography is computed using the Ran-
dom Sample Consesus (RANSAC) algorithm of
Fischler and Bolles [5], a minimal subset random
sampling search technique. Rather than maximising
the amount of data used to obtain an initial solution
and then identifying outliers, as small a subset of
the data as is feasible is used to estimate model pa-
rameters. The objective function to be maximized is
the number of data points (inliers) having absolute
residuals smaller than a predefined value. By virtue
of this prespecified inlier band, RANSAC can find
structures formed by substantially fewer than half
the data [26].

RANSAC proceeds by repeatedly constructing
solutions from randomly sampled minimum subsets
and evaluating them in terms of the amount of data
that is consistent with the resulting model (consen-
sus set). This process is repeated enough times to
ensure that, within some level of probability, at least
one of the subsets will contain only inliers. Even-
tually, the solution with the largest consensus set is
accepted.

Assuming the proportion of outliers in the data
is ε, the number of trialsm required by RANSAC
to arrive at a consensus with probabilityγ can be
estimated as [13]:

m =
log(1− γ)

log(1− (1− ε)p)
(4)

wherep is the size of the sampled subset.
In our case, a “data point” is a match, and the

size of the minimal subset is four, as instantiating
an homography needs four matching points. The
error used to determine the consensus set is the dis-
tance between the point transferred by the current
homography and its true conjugate.

5 Foreground segmentation

One of toughest problem to address is to separate
foreground from background. By warpingI1 with
the dominant homographyHd, we obtain another
imageIw that (ideally) matchesI2 in those points
that lie on the background plane. Therefore, the
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segmentation that divides the foreground from the
background can be determined by examining the
difference betweenIw and I2 (change detection).
This operation represents a critical phase of the ac-
quisition process. Simple image differences does
not suffices, because i) there are some residual dif-
ferences not imputable to parallax, due to photo-
metric distortion, image noise, imprecision of the
homography, rounding errors, aliasing; and ii) in
areas where the foreground objects have a uniform
color differences are zero. To make change detec-
tion more robust we use a local window to compare
the intensity distribution around the pixel, instead
of just the pixel itself. Following [10] we use the
likelihood ratiodefined as

λ =

�
σ1+σ2

2
+ (µ1−µ2

2
)2
�2

σ1σ2
(5)

whereµ andσ denote the mean gray value and the
variance for the window around the pixel. Thresh-
olding is then applied to the value ofλ at each pixel,
and the resulting binary image is processed using
morphological filtering to remove isolated points
and to fill small holes3. A manual intervention may
be required to trim the parameters (namely: window
size, threshold, number of iteration of morphologi-
cal operators), especially when uniform regions are
present.

6 Epipole recovery

The epipole can be computed from the Fundamen-
tal matrix [16], from the optical flow [27], from the
virtual parallax [3] and in many other ways. Our
system uses the relationship that arises from two ho-
mographies (see for example [6]).

Let Hd be the homography of dominant plane
and suppose to find another homographyHs map-
ping 4 coplanar points on the foreground. As any
homography maps one epipole to the other4, the
epipoles satisfy:v1

∼= Hdv2 andv1
∼= Hsv2, hence

v2
∼= H−1

d v1, (6)

and
v1
∼= HsH

−1
d v1. (7)

3We used the MATLAB “clean” and “fill” morphological oper-
ators.

4The line passing through the optical centers of the two cam-
eras will intersect any plane of the projective space in two points,
whose projection in the conjugate image plane are the epipoles.

The matrixHσ = HsH
−1
d has three eigenvectors:

two of them represent the line of intersection of the
plane that inducesHd with the plane that induces
Hs, the third is the epipole. Its associated eigen-
value is distinct from the other two, that are equal.

7 Relative affine structure recovery

In order to find the relative affine structure we dis-
tinguish two different cases. The first is when fore-
ground is (approximately) planar. In this case we
fit a homography to the foreground points as we did
for the background (Sec. 4).

Figure 2: Example relative affine structure recon-
struction. Top: image with with foreground fea-
tures highlighted. Bottom: surface interpolating the
values of the relative affine structure at the feature
points.

When, on the contrary, the foreground is a free
form surface, we recover the relative affine structure
of as many points as possible and then interpolate.
In order to match foreground points, we first warp
I1 with Hs, the homography that maps four fore-
ground points (used for computing the epipole), ob-
tainingI ′1. Then we extract and match corners in the
foreground region ofI ′1 andI2 as we did in Sec. 4.
Matching now is easier because it is restricted to the
foreground region and, in that region,I ′1 is closer to
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I2 thanI1. Indeed,I ′1 would perfectly overlapI2 in
the foreground area, if the foreground was planar.

Finally we compute the value ofki for each con-
jugate pair(pi; p

′
i):

ki =
(Hdpi × p

′
i)

T (p
′
i × v

′
)

‖ p
′
i × v′ ‖2 . (8)

Equation (8) can be derived from Eq. (2), given that
pi, p

′
i, v

′
are collinear, since they belong to the same

epipolar line.
Oncek is computed we obtain a surface by fitting

the set ofk with a suitable function (see Fig. 2).

8 The synthesis

Having extracted from the model images all the in-
formation that are required, we can now use the syn-
thesis equation

p′′i ' HΣpi + v′′ki (9)

to construct a synthetic view, but first we need to
specifyHΣ andv′′, that are projective elements.

As we pointed out in the Introduction, for a
view synthesis technique to be useful and usable,
there must be a natural way of specifying new view
points, and entering the epipole and the homogra-
phy is certainly not what one would define to be
“natural.” In this work we propose a solution based
on the replication of the epipolar geometry that
links the model views, considered as an elementary
displacement step. The user just need to specify, in
a graphical way, the direction toward which the vir-
tual camera must move, and the system computes
automatically the required epipole and homogra-
phy.

It is worth noting here that two homographies can
be used in the definition of a novel viewpoint: one
homography is used asHΣ in Eq. (9) and both are
used to compute the epipolev′′ as in Sec. 6.

The idea is based on the following observation:
suppose there are two planes, which induce homo-
graphiesHd andHs from imageI1 to I2. Let us
synthesize a novel viewI3 in such a way that the
same two planes induce homographiesH−1

d and
H−1

s respectively fromI1 to I3. Then the image
pair (I3, I1) is related by the same epipolar geome-
try than the image pair(I1, I2). This follows from
the fact that two homographies completely deter-
mine the Fundamental matrix [6, 2], that encodes
the epipolar geometry.

Please note also that the observation above is
equivalent to say that the rigid displacement be-
tween view point 3 and 1 is the same as the rigid dis-
placementG between view point 1 and 2. In other
words, with reference to view point 1, view point
3 is given byG−1. Therefore, if one uses the ho-
mography pairHs, Hd he/she obtains a new view-
point displaced byG from the original, otherwise,
if one usesH−1

s , H−1
d , he/she obtains a new view-

point displaced byG−1 from the original. When
we move away from the reference views, homogra-
phies must be composed accordingly.

This allows one to replicate the unknown rigid
displacement of two model views, using it as the
atomic step in the definition of new view points for
the view synthesis.

With only two views we can generate an arbitrary
number of synthetic views, that extrapolate in dis-
crete steps the basic displacement along two oppo-
site directions (Fig. 3).

Figure 3: Extrapolation of the displacement be-
tween two model views.

Each pair of model images determines a direc-
tion along which view extrapolation can take place.
With at least three model images, we can obtain
synthetic images from above, below, left, right and
combination of them, as shown in Fig. 4.

This technique can be extended to image inter-
polation. What we need in order to define a novel
view is an homography pair. We can obtain it by
“interpolating homographies”. There is no way, to
the best of our knowledge, to do this analytically5.
Therefore we resort to a technique based on dispar-
ity interpolation. We take a number of pointspi on a
regular grid. We transform them with the homogra-
phy, thereby obtaining a list of conjugate pointsp′i.
Then we computep′′i = tpi + (1 − t)p′i for some

5The straightforward interpolation of the matrices entries does
not work, because when interpolating two matrices which have sin-
gular values with different sign, one can obtain a singular matrix,
which is not an homography.
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Figure 4: Three model images allows to span the
viewing sphere.

value of t ∈ [0, 1]. Finally, we compute the new
homography from the correspondencespi ↔ p′′i .

Image warping was performed using destination
scan and bilinear interpolation for background and
planar foreground, and source scan and pixel “splat-
ting” for free-form foreground. The splat size is
fixed, even if it could have been made dependent
on the pixel parallax [23]. Pixels with largerk (rel-
ative affine structure) overwrites pixels with smaller
values.

9 Results

Several tests have been done using 640× 480 gray
scale images, taken with a digital camera. Figures 5
and 6 show some examples of view synthesis. The
bottom rows of each figure are synthetic images ob-
tained with our technique, using a plane for describ-
ing the foreground.

In Fig. 5 is probably better evident the fact that
the novel viewpoints are extrapolations of the model
ones along the directions given by the “seed” dis-
placements between the model viewpoints.

In Fig. 6 one can appraise the fact that a mosaic
of the background is used in the synthesis (indeed
the shape of the background in the synthetic images
is not a parallelogram).

Unlike Fig. 5, there are also black pixels in the
synthetic images of Fig. 6, owing to the smaller
baseline that did not allowed to “see” every point
of the scene,

More examples can be found on the web at
http://vips.sci.univr.it/˜fusiello/demo/synth.

10 Conclusion

An image-based method for synthesize novel im-
ages was introduced. Camera calibration is not re-
quired and no knowledge of its motion is needed.
The position of the virtual camera is specified in an
uncalibrated manner by replicating the epipolar ge-
ometry that links the model views, considered as
an elementary displacement step. The virtual view-
point is not constrained to lie in between the posi-
tions of the real cameras.

Our method starts by segmenting images of a
static scene in background and foreground, basing
on motion parallax, using a statistical feature-based
method for dominant motion estimation. From this
segmentation we recover the relative affine structure
and, finally, we synthesize the novel views.

The method works well for texturized scenes,
where a dominant background plane exist.

Future work will address the issue of homogra-
phy interpolation (is the method based on disparity
interpolation physically valid? is there an analytical
form?), will improve the segmentation and consider
more experiments with free-form surfaces instead
of planes.
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