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Abstract

We deal with the problem of computing rigorous bounds to the position of 3-D points obtained by

stereo triangulation when both the camera matrix and the coordinates of image points are affected by

measurement errors. By “rigorous bounds” we mean that the true unknown 3-D points areguaranteed

to lie within the intervals computed by our method with mathematical certainty. To this end, we first

model the calibration process by assuming a bounded error in the localization of the reference points in

the image, then we compute narrow intervals for the entries of the camera matrix by using numerical

methods based on Interval Analysis. Finally, we apply triangulation and obtain cuboids that bound point

coordinates. We employed two state-of-the-art methods for the solution of linear systems of interval

equations, namely Rump’s and Shary’s methods. Our conclusion is that a careful selection of numerical

techniques allows to use Interval Analysis as a tool for obtaining realistic bounds on the output error

even in presence of significant errors in the input data.

I. I NTRODUCTION

Being an empirical science, Computer Vision has to deal with measurements affected by errors.

The problem of propagating errors from input data to results in Computer Vision is not new; in

fact, it has been addressed in [1], [2] and in a landmark workshop [3]. Consolidated techniques

are based on statistical analysis of error propagation: given an input error distribution, a closed

form expression for the output error distribution is derived.

In this work we take a different approach, based onInterval Analysis. Data are represented by

intervals containing unknown quantities, and error bounds are modeled by intervals. Arithmetic

operations are then performed on these intervals, with the guarantee that the resulting interval

contains the exact result.

In this paper we deal with error propagation in three-dimensional (3-D) reconstruction from

stereo, i.e we seek a bound on the accuracy of the position of 3-D points obtained by triangulation.

We assume that in this process both camera matrices and the corresponding points in the image

are affected by bounded errors. We also model error propagation in the calibration process by

computing bounds to the entries of the camera matrix. We concentrate in particular on calibration

and triangulation methods based on the solution of (over-determined) linear systems of equations.

Error propagation in the solution of linear systems have been widely studied (see [4]). Interval

Analysis has the appeal of computing error bounds simultaneously with the solution, instead of

July 30, 2004 DRAFT



3

estimating the error from perturbation analysis. Moreover, it does not make any assumption on

the underlying statistical error distribution, apart from being bounded.

A. Related work

For the most part, error analysis in Computer Vision is based on statistical methods. Assuming

that the input data has a certain error distribution, one desires to determine the output error

distribution. In principle this should be done by propagating the input distribution through

the steps of the algorithm, but this approach is not practical except for simple algorithms. An

approximation of this method is usually employed, assuming that the distribution is characterized

by its first and second moments only. The theory of covariance propagation in Computer Vision

have been developed in [1], [5], where the authors address the problem of propagating the

covariance ofx through f(x) when f is known explicitly (by linearisation) and whenf is

specified implicitly as the minimiser of a scalar cost function. In [6] the authors criticize the use of

covariance and propose an information theoretic criterion to estimate the probability distribution

function of the parameter being estimated, rather than concentrating on certain moments only.

A framework for performing statistical analysis of geometric algorithms has been introduced in

[2].

Marik et al. [7] first suggested to use interval analysis for the study of error propagation in

Computer Vision. These authors propose two error models, one based on covariance propagation,

and another (called min/max value propagation) based on Interval Arithmetic. As the bounds

obtained with direct application of the rules of Interval Arithmetic are usually too pessimistic,

they conclude that “the min/max model is very appropriate for studying the effect of the machine

precision on some computation.” [7] As we shall see, however, a careful selection of suitable

techniques allowed us to use Interval Analysis [8] as a tool for obtaining realistic bounds on the

output error even in presence of a significant error on the input data.

In the specific case of calibrated stereo-based reconstruction, several authors have found

expressions for the error probability distribution (under various assumptions) [9], [2], [1], [10],

[11], while others performed empirical evaluations [12].In [13], [14]confidence intervalsfor

3-D reconstruction from stereo are derived. These are random intervals which capture the true

value of the parameter being estimated with a given probability. In Interval Analysis, instead,

intervals are guaranteed to contain the true values of the unknowns.
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II. PROBLEM FORMULATION

This section briefly recalls the mathematical developments of stereo reconstruction that are

relevant to our work. For more details see [1]. We concentrate on the linear formulation of

calibration and reconstruction. It is well-known that optimal solutions to this problem, in the

Maximum Likelihood sense, are obtained by nonlinear optimization of a geometrically-valid

residual, whereas linear techniques only minimize an algebraic residual [15]. In our experience

with Interval Analysis, however, the complexity of non-linear optimization causes excessive

growth of intervals, thus giving rise to high code run times.

Let w = (x, y, z)T be the coordinates of a 3-D point in the world reference frame. Apinhole

cameraprojects the point onto the image plane. The coordinatesm = (u, v)T of the projected

image point are given by theperspective projectionequation:




u =
pT

1 w + p1,4

pT
3 w + p3,4

v =
pT

2 w + p2,4

pT
3 w + p3,4

.

(1)

wherepi ∈ R3 for i = 1 . . . 3. The 3× 4 full-rank matrix

P =




pT
1 p1,4

pT
2 p2,4

pT
3 p3,4


 (2)

models the pinhole camera, and it is calledcamera matrix.

A. Calibration

Calibration consists in estimating as accurately as possible the elements of the camera matrix

P . If enough correspondences between world points and image points are available, it is possible

to solve the perspective projection equation for the unknown entries ofP .

Given N reference points, not coplanar, each correspondence between an image pointmi =

(ui, vi)
T, and a reference pointwi gives a pair of equations, derived from (1):





(p1 − uip3)
Twi + p1,4 − uip3,4 = 0

(p2 − vip3)
Twi + p2,4 − vip3,4 = 0

(3)
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The unknown camera matrix has 12 elements, however, being defined up to a scale factor, it has

only 11 free parameters. We can choosep34 = 1, thus reducing the number of unknowns to 11,

obtaining the following two equations:


wT

i 1 0 0 −uiw
T
i

0 0 wT
i 1 −viw

T
i







p1

p1,4

p2

p2,4

p3




=


ui

vi


 . (4)

For N points we obtain a linear system of2N equations in 11 unknowns: 6 non coplanar points

are sufficient. In practice more points are available, and one has to solve a linear least-squares

problem.

If we assume that the pixel coordinate measurementsmi are affected by bounded errors (e.g.,

±0.5 pixel), this translates in bounding some of the entries of the coefficients matrix and the

right hand side vector of the linear system (4).

B. Triangulation

Given the matrices of the two cameras and the coordinates of the projections on the image

planes of a 3-D point, its coordinates can be recovered by a simple linear algorithm. Geomet-

rically, the process consists in intersecting the optical rays of the two image points, and this is

the reason why it is known astriangulation.

Let P andP ′ be the two camera matrices, letw be the unknown coordinates of the 3-D point,

and letm = (u, v)T andm′ = (u′, v′)T be the image coordinates of a conjugate pair. From (1)

we obtain a linear system of four equations in the unknown 3-vectorw:



(p1 − up3)
T

(p2 − vp3)
T

(p′1 − u′p′3)
T

(p′2 − v′p′3)
T




w =




−p1,4 + up3,4

−p2,4 + vp3,4

−p′1,4 + u′p′3,4

−p′2,4 + v′p′3,4




. (5)

Again, a bounded error affectingP , m and m′ translates into bounds to the entries of the

coefficient matrix and the right hand side vector of (5).

In the next section we see how arithmetic operations can be defined on intervals, allowing to

find rigorous bounds to the solution of linear systems of equations.
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III. I NTERVAL ANALYSIS

Interval Arithmetic is an arithmetic defined onintervals, rather than on real numbers. In the

beginning, Interval Arithmetic was mainly employed for bounding the measurement errors of

physical quantities for which no statistical distribution was known. Later on it was leveraged

to a broad new field of applied mathematics, aptly named Interval Analysis [8], where rigorous

proofs are the consequence of numerical computations.

In this paper we follow the notation used in [16], where intervals are denoted by boldface.

Scalar quantities and vectors are denoted by lower case letters and matrices are denoted by upper

case, brackets ‘[·]’ will delimit intervals, while parentheses ‘(·)’ will delimit vectors and matrices.

Underscores and overscores will represent respectively lower and upper bounds of intervals. An

interval x is calleddegeneratewhenx = x = x. IR and IRn stand respectively for the set of

real intervals and the set of interval vectors of dimensionn. The midpoint of an intervalx is

denoted bym(x). The width of x ∈ IRn is defined asw(x) = max {(xi − xi), i = 1, . . . , n}.
If f(x) is a function defined over an intervalx thenfu(x) denotes the range off(x) over x.

Finally, the topological interior of a setS is denoted byint(S).

If x = [x,x] andy =
[
y,y

]
, a binary operation in theideal Interval Arithmeticbetweenx

andy is defined as:

x op y , {x op y | x ∈ y and y ∈ y} , for op ∈ {+,−,×,÷} . (6)

Thus, the ranges of the four elementary interval operations are exactly the ranges of the corre-

sponding real operations. The operational definitions for the four elementary Interval Arithmetic

operations are

x + y ,
[
x + y,x + y

]
, (7)

x− y ,
[
x− y,x− y

]
, (8)

x× y ,
[
min

{
x y, x y, x y, x y

}
, max

{
x y,x y,x y,x y

}]
, (9)

1

x
,





[1/x, 1/x] if x > 0

[1/x, 1/x] if x < 0
(0 6∈ [x, x]), (10)

x÷ y , x× 1/y. (11)

The above definitions imply the ability to perform the four elementary operations with arbitrary

precision. When implemented in a digital computer, however, truncation errors occur, that may
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cause the result not to contain the result that would be obtained with ideal Interval Arithmetic.

In order to avoid this effect, the result corresponding to the lower endpoint of the interval must

be rounded down to the nearest machine number less than the mathematically correct result,

and the upper endpoint must be rounded up to the nearest machine number greater than the

mathematically correct result. This mode of operation, calleddirect rounding, is available on

any machine supporting the IEEE floating point standard.

Definition 1: An interval extension, denoted byf(x1, x2, . . . , xn), of a real functionf(x1, x2, . . . , xn)

is defined as any function of then intervalsx1,x2, . . . , xn that evaluates to the value off when

its arguments are the degenerate intervalsx1, x2, . . . , xn :

f(x1, x2, . . . , xn) = f(x1, x2, . . . , xn). (12)

The natural interval extension of a function is obtained by replacing variables with intervals

and executing all operations according to the rules above. For instance,f 1(x) = x2 − x,

f 2(x) = x(x − 1), and f 3(x) = (x− 1/2)2 − 1/4 are all different interval extensions of

f(x) = x2 − x = x(x− 1) = (x− 1/2)2 − 1/4.

The following theorem is known as the fundamental theorem of Interval Analysis [8]:

Theorem 1:Let f(x1, . . . , xn) be the natural interval extension of a real functionf(x1, . . . , xn).

If xi ⊂ yi, (i = 1, . . . , n) then

f(x1, x2, . . . , xn) ⊂ f(y1, y2, . . . , yn). (13)

¿From this theorem it follows immediately that

f(x1, . . . , xn) ⊃ fu(x1, . . . , xn). (14)

In the previous example, by settingx = [0, 1] we have

f 2(x) = [0, 1] ([0, 1]− 1) = [0, 1] [−1, 0] = [−1, 0] , (15)

which necessarily includes the exact rangefu([0, 1]) = [−1/4, 0].

A. Interval linear systems

Interval linear systems are useful to calculate rigorous bounds to the solutions of linear systems

of equations. They have the form

Ax = b, (16)

July 30, 2004 DRAFT



8

whereA ∈ IRn×n andb ∈ IRn. The solution setis defined as

Σ(A, b) = {x : ∃A∈A and ∃b∈b t.c. Ax=b}. (17)

In generalΣ(A, b) is a star-shaped polygonal set, with up to2n spikes for a system of

dimensionn [4]. Thus, we must accept to compute only theinterval hull ¤Σ(A, b) of the

solution, i.e., the smallest hyperrectangle containing the solution set. It has been shown [17] that

the calculation of theinterval hull is an NP-complete problem. However, practical methods give

a reasonable inclusion of the solution set with a computational cost ofO(n3).

The first practitioners of Interval Analysis realized very soon that the naive application of

standard numerical algorithms like Gaussian elimination to interval data gives very poor results.

This problem [4] has received a lot of attention during the last three decades, and today there

are many algorithms specific to the solution of interval linear systems. Among these we have

considered the method implemented by theverifylss function in the INTLAB toolbox for

MATLAB [18], [19] by Rump, and the method introduced by Shary [20].

1) INTLAB method:The following description is based on [19]. The first stage of the al-

gorithm implemented by theverifylss function is an iterative method introduced by Rump

[21], based on the well-known Krawcyzk operator [22] (see also [4]).

Assuming that there is an interval vectorxi such that¤Σ(A, b) ⊆ xi, then

∀Ã ∈ A, b̃ ∈ b : Ã−1b̃ = Cb̃ + (I − CÃ)Ã−1b̃ ∈ Cb + (I − CA)xi. (18)

whereC = m(A)i is a preconditioner. Hence,

¤Σ(A, b) ⊆ xi⇒¤Σ(A, b) ⊆ (Cb + (I − CA)xi) ∩ xi, (19)

and this gives theKrawcyzk iteration:

xi+1 = (Cb + (I − CA)xi) ∩ xi. (20)

Rump’s method, instead, proceeds by enclosing the error with respect to an approximate

solutionx̃ = C m(b). By applying (19) to an enclosuredi of ¤Σ(A, b−Ax̃), gives the following

iteration

di+1 = (C(b−Ax̃) + (I − CA)di) ∩ di. (21)

The solution to the original problem is̃x + di.
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Starting from the Brower [23] fixed point theorem, the following implication holds:

Cb + (I − CA)x ⊆ int(x)⇒¤Σ(A, b) ⊆ x (22)

, which is used to check convergence.

If there is no success after seven iterations, the algorithm described in [24] is applied.

2) Shary’s method:Shary introduced analgebraic approachfor enclosing the solution of a

linear system of equationsAx = b with interval coefficient matrixA and interval right hand

side vectorb. This methods finds analgebraic solution, which is an interval vectorx satisfying

the system whenever all the operations are performed according to the rules of theextended

Interval Arithmetic[25] IRex, which is obtained by addingimproper intervals[x,x], x > x to

the setIR = {[x,x] | x,x ∈ R, x ≤ x} of proper intervals. Shary’s method is based on the

fixed point equation

x = Cx + b, (23)

which resolves into finding an algebraic solution to the interval equation:

Cxª x + b = 0 (24)

whereC = I −A and ‘ª’ denote theinner subtraction, defined byx ª y , [x − y,x − y].

Unfortunately, most of the existing computational approaches are not directly applicable to this

problem, becauseIRex is not a linear space. Shary defines then animmersionmap that identifies

an interval vector ofIRex with a real vector ofR2n

σ(x1, x2, . . . , xn) , (x1, x2, . . . , xn,x1,x2, . . . , xn)T. (25)

Thus, the original problem of finding the zeroes of the functionψ(x) = Cx ª x + b, is

transformed into the equation

Ψ(x) = 0, (26)

whereΨ = σ ◦ ψ ◦ σ−1 : R2n → R2n, i.e.,

Ψ(x) = σ(Cσ−1(x)ª σ−1(x) + b) = σ(Cσ−1(x))− x + σ(b) (27)

The existence of a solution to the fixed point equation (23) is related to the spectral radius

of C. In order to extend the applicability domain and to get a sharper enclosure, a suitable

pre-conditioning step must be performed. Shary employs the fixed point equation (23), where

C = G−1(G−A) and b = G−1b (28)
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with G , diag(dev(Aii)) and

dev x ,





x if |x| ≥ |x|
x otherwise

. (29)

The search of the zeros of (26) is done using a variation of Newton’s method, known assub-

differential Newton’s method. All the details are in [20]. The convergence of the method and its

properties are further studied in [26].

3) Overdetermined Interval Linear Systems:There are two ways of casting an overdetermined

linear system of equationsAx = b into a square one. The most common is thenormal equation:

ATAx = ATb which has the advantage of keeping the size small, but it worsens the conditioning

of the system. The other way is to use theaugmented system:

A I

0 AT





x

y


 =


b

0


 (30)

which keeps the conditioning unchanged at the price of doubling the size of the system. This

solution is recommended by Rump [21] for the solution of overdetermined interval linear systems.

IV. EXPERIMENTAL RESULTS

In this section we report some experimental results obtained by applying interval analysis

techniques to the calibration and triangulation problems. The performances of Shary’s and

INTLAB’s methods have been compared on both synthetic and real data.

A. Calibration

Synthetic data consist of the 128 reference points of a calibration jig depicted in Fig. 2. On

each of the two orthogonal faces there are 64 points organised in a regular grid with a spacing

of 2 cm. Views were generated by placing cameras at random positions, at a mean distance from

the centre of 1 m with a standard deviation of 0.25 m. The orientations of the cameras were

chosen randomly with the constraint that the optical axis points towards the origin. The intrinsic

parameters were given the valuesαu = αv = 1600, u0 = 320, v0 = 240 e γ = 0. Image points

were (roughly) contained in a 640× 480 pixels image. It was assumed that the position of the

points in the image were affected by errors bounded in intervals of width 0.1, 0.5, 1 and 1.5

pixel.
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In each trial, interval camera matricesP were computed by solving the linear system (4)

with the two methods introduced in Sec. III-A. The projections of 3-D reference points onto the

image plane with these camera matrices are not points butrectangles, asP is an interval matrix.

Fig. 1 reports the square root of the average area of the rectangles over the image and over 100

independent trials versus the width of the intervals representing the position of the points in the

image plane. The value on the y-axis can be taken as a measure of the “effective width” ofP .

Experiments were also performed on the real calibration jig shown in Fig. 2. Six 640× 480

images have been taken from a distance of approximately 1 m with a digital camera. Image points

have been represented by square intervals 1 pixel wide, and interval calibration was performed

on each image with both methods. Figure 3 compares a detail of the back-projected 3-D points

for Shary’s and INTLAB’s methods. The average (over the image and over 6 trials) box width

of the back-projected 3-D points was 5.9 pixel for Shary and 27.6 pixel for INTLAB.

In both synthetic and real experiments, Shary’s method performed significantly better.

B. Triangulation

Interval triangulation was tested in the same conditions used in calibration. In each trial, two

random views were selected and both were calibrated assuming a 1 pixel wide enclosure for the

position of the points in the image. The resulting interval camera matrices and the corresponding

image points were used to perform interval triangulation, solving (5) with both methods. As in

the previous case, the position of the points in the image was enclosed by intervals of width

0.1, 0.5, 1 and 1.5 pixel. The output (Fig. 4) was a set of cuboids that contains the true 3-D

points and bounds the error. Fig. 5 reports the cubic root of the average (over the image and over

100 independent trials) volume of the reconstructed cuboids versus the width of the intervals

representing the position of the points in the image.

We performed a synthetic experiment where the distance separating the two cameras (baseline)

was progressively decreased. If we assume a finite size pixel, the result of triangulation is a

diamond-shaped solid, whose volume approaches infinity as the baseline vanishes. This behaviour

was correctly reproduced by interval reconstruction, as the average volume of the interval

reconstruction consistently increased.

Interval reconstruction was also tested on the same real images used for calibration (Fig. 2).

Starting from the interval camera matrices previously obtained, triangulation was applied to each
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Fig. 1. Synthetic calibration experiment: average box width of the back-projected 3-D points vs. enclosure width of image

points.

Fig. 2. Images of the calibration jig used in the real calibration experiment.
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pair of images, assuming an error of 1 pixel in the localization of points.

Figure 6 shows an instance of interval reconstruction. The true points (whose position is

known) are contained in the cuboids. The average side length of the cuboids enclosing the true

solution was 0.3 cm for Shary’s and 1 cm for INTLAB’s technique. The former is a reasonable

bound, given that the grid points have a 2 cm spacing.

In another experiment (Fig. 7) we applied the interval reconstruction technique to a view pair

whose camera matrices had been obtained fromautocalibration [27]. The procedure is much

more complex than the calibration described here, but the results are again two interval camera

matrices. Assuming that feature points in the images are contained in 2 pixel wide intervals,

the average side length of the 3-D intervals enclosing the true solution was about 14 cm with

INTLAB’s, and 12 cm with Shary’s method1.

Although in this case INTLAB’s accuracy is comparable to Shary’s, the second method pro-

duced significantly sharper inclusions in all the other synthetic and real experiments, confirming

the outcome of the calibration experiments.

V. CONCLUSIONS

In this paper we showed how to obtain realistic bounds to the reconstruction error using

numerical techniques based on Interval Analysis. This branch of numerical analysis has been

strangely overlooked by the Computer Vision community, possibly because it has been criticized,

in the past, for providing too pessimistic bounds. Indeed, the straightforward application of

Interval Arithmetic rules leads to an excessive growth of interval widths. However, as we show

in this paper, a careful choice of numerical techniques allows to obtain meaningful and realistic

error bounds. The advantages of Interval Analysis over traditional techniques are that i) no

assumptions are made about the underlying error distribution – apart from being bounded, ii)

the resultsand the error bounds are obtained simultaneously as the output of the same process

and iii) error bounds are guaranteed with mathematical certainty.

We concentrated on linear calibration and triangulation techniques and selected two state-

of-the-art methods for the solution of linear systems of interval equations, namely INTLAB’s

1The global scale factor of the scene structure, which autocalibration cannot recover, was estimated by guessing the height

of the columns of theTribuna.
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and Shary’s methods. Empirical comparison shows that the latter provides sharper error bounds

in this application. It is always recommendable, however, to take the intersection of the boxes

yielded by the two methods in order to get the best out of both.

Results are encouraging: delimitations seem realistic, given the order of magnitude of the

other parameters. We plan to pursue further the application of Interval Analysis to Computer

Vision problems.
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Fig. 3. Detail of the back-projected 3-D points for INTLAB’s (left) and Shary’s (right) methods. The red crosses are the

back-projected 3-D points with the sharp (non-interval) camera matrix.
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Fig. 4. Synthetic 3-D reconstruction with INTLAB’s (left) and Shary’s (right) methods.
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Fig. 5. Synthetic triangulation experiment: average side length of the reconstructed cuboids vs. enclosure width of image points.
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Fig. 6. Example of a reconstruction of the calibration grid obtained with INTLAB’s (left) and Shary’s technique (right). The

true position of the 3-D points is marked with a cross.
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Fig. 7. Interval reconstruction of theTribuna (left). The boxes are the intersection of the output of the two methods. Segments

join the midpoints of the intervals. One frame of the sequence from which the reconstruction was obtained is shown to the right.

July 30, 2004 DRAFT


