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Abstract In this paper the effectiveness of the Bag of
Words framework is exploited for the 3D domain. Such
approach provides a part-based representation by parti-
tioning the objects into subparts and by characterizing
each segment with different geometric descriptors. In this
fashion one object is modeled as an histogram of sub-
parts occurrences which becomes its signature. There-
fore, such signature is fed to a Support Vector Machine
which is learnt to classify different objects categories.
Several examples on the Aim@Shape watertight dataset
and on the Google Shape dataset demonstrate the versa-
tility of the proposed method in working with either 3D
objects with articulated shape changes or partially oc-
cluded or compound objects. In particular an exhaustive
experimental section is proposed by focusing on differ-
ent applications namely i) 3D object retrieval, ii) partial
shape matching, and iii) 3D object categorization. Re-
sults are encouraging as shown by the comparison with
other methods for each of the analyzed scenarios.

1 Introduction

In the last years, the proliferation of large databases of
3D models caused a surge of interest in methods for
content-based object retrieval [1–3]. One of major chal-
lenges in the context of data retrieval is to elaborate
a suitable canonical characterization of the entities to
be indexed. In the literature, this characterization is re-
ferred to as descriptor or signature. Since the descriptor
serves as a key for the search process, it decisively in-
fluences the performance of the search engine in terms
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Strada Le Grazie 15, 37134 Verona, Italy
roberto.toldo@univr.it
umberto.castellani@univr.it
andrea.fusiello@univr.it

of computational efficiency and relevance of the results.
Decriptors are global or local. The former consist in a
set of features that effectively and concisely describe the
entire 3D model [4]. The latter are instead collections of
local features of relevant object subparts [5].

In this paper we exploit the Bag-of-Words (BoW)
approach in order to combine and merge local informa-
tion into a global object signature. The BoW framework
has been proposed for textual document classification
and retrieval. A text is represented as an unordered col-
lection of words, disregarding grammar and even word
order. The extension of such approach to visual data re-
quires the building of a visual vocabulary, i.e., the set
of the visual analog of words. For example, in [6] 2D
images are encoded by collecting interest points which
represent local salient regions. This approach has been
extended in [7] by introducing the concept of pyramid
kernel matching. Instead of building a fixed vocabulary,
the visual words are organized in a hierarchical fashion
in order to reduce the influence of the free parameters
(e.g., the number of bins of the histogram). Finally, in
[8] the BoW paradigm has been introduced for human
actions categorization from real movies. In this case, the
visual words are the quantized vectors of spatiotemporal
local features. The extension of the BoW paradigm to
3D objects is non-trivial and has been proposed only in
few recent works [9–11]. In [9] range images are syntheti-
cally generated from the full 3D model and subsequently
treated as 2D (intensity) images. In [10,11] Spin Images
are chosen as local shape descriptors after sampling the
mesh vertices. Usually local techniques are defined by
point-based features rather than by segmentation. Only
recently [12] proposed a part-based retrieval method by
partitioning an object to meaningful segments and find-
ing analogous parts in other objects.

In our approach a 3D visual vocabulary is defined by
extracting and grouping the geometric features of the ob-
ject sub-parts. Thank to this part-based representation of
the object we achieve pose invariance, i.e., insensitivity
to transformations that change the articulations of the
3D object [13]. In particular, our method is able to dis-
criminate objects with similar skeletons, a feature that
is shared by very few other works like [14].

Beside being very effective in object retrival, the BoW
representation proved valuable also in the task of 3D ob-
ject categorization. In particular we devised a learning-
by-example approach [15]: Geometric features represent-
ing the query-model are fed into a Support Vector Ma-
chine (SVM) which, after a learning stage, is able to as-
sign a category (or a class) to the query-model without
an explicit comparison with all the models of the dataset.

In summary, the proposed approach is composed by
the following main steps:

Object sub-parts extraction (Sec. 2). Spectral clustering
is used for the selection of seed-regions. Being in-
spired by the minima-rule [16], the adjacency matrix
is tailored in order to allow convex regions to be-
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long to the same segment. Furthermore, a multiple-
region growing approach is introduced to expand the
selected seed-regions, based on a weighted fast march-
ing. The main idea consist on reducing the speed of
the front for concave areas which are more likely to
belong to the region boundaries. Then, the segmen-
tation is recovered by combining the seeds selection
and the region-growing steps.

Object sub-parts description (Sec. 3). Local region de-
scriptors are introduced to define a compact repre-
sentation of each sub-part. Working at the part level,
as opposed to the whole object, enables a more flexi-
ble class representation and allows scenarios in which
the query model is significantly deformed. We focus
on region descriptors easy to compute and partially
available from the previous step (see [5] for an ex-
haustive overview of shape descriptors).

3D visual vocabularies construction (Sec. 4). The set of
region descriptors are properly clustered in order to
obtain a fixed number of 3D visual words (i.e., the
set of clusters centroids). In fact, the clustering de-
fines a vector quantization of the whole region de-
scriptor space. Note that the vocabulary should be
large enough to distinguish relevant changes in object
parts, but not so large as to discriminate irrelevant
variations such as noise.

Object representation and matching (Sec. 5). Each 3D
object is encoded by assigning to each object sub-part
the corresponding visual word. The BoW representa-
tion is defined by counting the number of object sub-
parts assigned to each word. In practice, a histogram
of visual words occurrences is built for each 3D object
which represent its global signature [6]. Matching is
accomplished by comparing the signatures.

Object categorization by SVM (Sec. 6). A SVM is trained
by adopting a learning by example approach. In par-
ticular, a suitable kernel function is defined in order
to implicitly implement the sub-part matching.

Finally, the proposed approach has been successfully
applied on different applicative scenarios, namely i) 3D
object retrieval, ii) partial shape matching, and iii) 3D
object categorization.

2 Objects segmentation

The recent survey by [17] and the comparative study
by [18] have thoroughly covered the several different ap-
proaches developed in literature.

In the following we present a novel mesh segmenta-
tion technique that provides a consistent segmentation
of similar meshes, depends on very few parameters and
is very fast. It is inspired by the minima rule [16]: “for
the purposes of visual recognition, the huma visual sys-
tem divides 3D shapes into parts at negative minima of
principal curvature”. Therefore this suggests to cluster
in the same set convex regions and to detect boundary

parts as concave ones. A concise way to characterize the
shape in terms of principal curvatures is given by the
Shape Index [19].

s = − 2
π

arctan
(

k1 + k2

k1 − k2

)
k1 > k2 (1)

where k1, k2 are the principal curvatures of a generic ver-
tex x ∈ V . The Shape Index varies in [−1, 1]: a negative
value corresponds to concavities, whereas a positive value
represents a convex surface.

The key idea behind our algorithm is the synergy be-
tween two main phases: (i) the detection of similar con-
nected convex regions, and (ii) the expansion of these
seed-regions using a multiple region growing approach.
According to the minima-rule the Shape Index is em-
ployed in both phases.

2.1 Seed-regions detection by Spectral Clustering

The extraction of the seed-regions is accomplished with
Normalized Graph Cuts [20]. This approach has been
firstly applied to image segmentation although it is stated
as a general clustering method on weighted graphs. In
our case, the weight matrix w(xi, xj) is built using the
Shape Index at each vertex:

w(xi, xj) = e−|s(xi)−s(xj)| (2)

where the vertices with negative Shape Index – i.e., those
corresponding to concave regions – have been previously
discarded. In this way we cluster together vertices rep-
resenting the same convex shape.

The number of clusters, needed by the Spectral clus-
tering approach, is linked, but not equal, to the number
of final segments. Indeed, clusters are not guaranteed to
be connected in the mesh. This happens because we do
not take into account geodesic distance information at
this stage: we cluster only according to the curvature
value at each vertex. Hence, we impose connection as
a post-processing step: the final seed regions are found
as connected components in the mesh graph, with ver-
tices belonging to the same cluster. An example of seed
regions found by the algorithm is shown in Figure 1(a).

(a) Seed regions found with
spectral clustering.

(b) Final Segmentation.

Fig. 1 An example of segmentation.
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2.2 Multiple region growing by weighted fast marching

Once the overall seed regions are found, we must estab-
lish a criteria to assign the vertices that don’t belong
to any initial seed region. The key idea is to expand
the initial seeds region using a weighted geodesic dis-
tance. Again, the weight at each vertex is chosen ac-
cording to the minima-rule. In formulae, given two ver-
tices x0, x1 ∈ V , we define the weighted geodesic distance
d(x0, x1) as

d(x0, x1) = minγ

{∫ 1

0

‖γ′‖w(γ(t))dt

}
(3)

where w(·) is a weight function (if w(·) = 1 this is the
classic geodesic distance) and γ is a piecewise regular
curve with γ(0) = x0 and γ(1) = x1. Our weight function
is based on the Shape Index s:

w(x) = eαs(x) (4)

where α is an arbitrary constant. An high α value heavily
slow down the front propagation where the concavity
are more prominent. In our experiments we used a fixed
α = 5.

An example segmentation along with starting seed
regions is shown in Figure 1(b). Several other examples of
segmentation on different objects are shown in Figure 2.
Similar parts seem to be segmented in a similar manner
(provided that the parameters of the segmentations are
equal).

Fig. 2 Examples of segmentation of some objects from the
Aim@Shape Dataset.

3 Segment descriptors

We chosed four type of descriptors to represent each ex-
tracted region: the Shape Index Histogram (SIH), Ra-
dial Geodesic Distance Histogram (RGDH), Normal His-
togram (NH), and Geodesic Context (GC). The first three
are defined as the normalized histograms of local mea-
sures computed for each point of the region, namely
shape index, radial geodesic distance and normal. The
fourth descriptor depends on the relative positions of the
regions and thus it is a context descriptor.

The radial geodesic distance measures the geodesic
distance of a surface point to the geodesic centroid of
the region. In our case, for computation efficiency, we
approximate the geodesic centroid as the closest point
on the mesh to the Euclidean centroid.

The Geodesic Context descriptor for a region is built
computing the histogram of the geodesic distance be-
tween its centroid and the centroids of the other regions.
The GC descriptor, defined for regions, resembles the
shape context descriptor [21], defined for points.

Please note that the number of bins chosen for each
histogram of the four descriptors is a critical choice. A
small number reduce the capability of the region descrip-
tor in discriminating among different segments. On the
other hand, a high number increases the noise condition-
ing. Hence we introduce, for each descriptor, histograms
with different number of bins in order to obtain a coarse-
to-fine regions representation.

4 3D visual vocabularies construction

The different sets of region descriptors must be clustered
in order to obtain several visual words. Since we start
with different segmentations and different types of de-
scriptors, we adopted a multi-clustering approach rather
than merging descriptors in a bigger set. Before the clus-
terization, the sets of descriptors are thus split in differ-
ent subsets as illustrated in Figure 3. The final clusters
are obtained with a k-means algorithm. Again, instead
of setting a fixed free parameter k, namely the number of
cluster, we carry out different clusterizations while vary-
ing this value.

Once the different clusters are found we retain only
their centroids, which are our visual words. In Figure
4 an example of descriptors subset clusterization with
relative distance from centroid is shown. Note that object
sub-parts from different categories may fall in the same
cluster since they share similar shape.

More in details, at the end of this phase we obtain
the set of visual vocabularies V d,b,c

s , where:

– s identifies the index of the multiple 3D segmentation
(variable segmentation parameter s ∈ {6, 8, 10, 12, 14}),

– d identifies the region descriptor types (d ∈ {SI,RG, N, GC}),
– b identifies the refined level of the region descriptor

(number of histogram bins b ∈ {20, 30, 40, 50}),
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Fig. 3 The construction of the vocabularies is performed in a multilevel way. At the beginning we have all region extracted
for different numbers of seed regions (variable segmentation parameter). For every region, different descriptors are attached.
The different region descriptors are divided by the type of descriptor and its number of bins. The final clusterizations are
obtained with varying number of clusters. At the end of the process we obtain different Bag-of-Words histograms for each
mesh.

– c identifies the refined level of the vocabulary con-
struction (number of clusters).

5 3D representation and matching

In order to construct a Bag-of-Words histogram of a new
3D object, we compare its regions descriptors with the
visual words of the corresponding visual vocabulary. In
practice, each segment is assigned to the most similar
visual words. The Bag-of-Words representation is ob-
tained by counting the number of segment assigned to
each word. The resulting signature is a very sparse vec-
tor of occurences. Finally, the objects matching is ob-
tained by comparing their respective signature by using
standard metric for histograms.

6 Object categorization by SVM

One of the most powerful classifier for object categoriza-
tion is the Support Vector Machine (SVM) (see [22] for
a tutorial). The SVM works in a vector space, hence the
Bag-of-Words approach fits very well, since it provides a
vector representation for objects. In our case, since we

Fig. 4 Example of a Bag-of-Words cluster for SI descriptors.
The centroid is highlighted with red and others region in the
same cluster are sorted by distance from centroid. Note that
sub-parts of meshes from different categories may fall in the
same cluster since they share similar shape.

work with multiple vocabularies, we define the following
positive-semi-definite kernel function:

K(A,B) =
∑

s,d,b,c

k(φd,b,c
s (A), φd,b,c

s (B)), (5)

where (A,B) is a pair of 3D models, and φd,b,c
s (·) is a

function which returns the Bag-of-Words histogram with
respect to the visual vocabulary V d,b,c

s . The function
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k(·, ·) is in turn a kernel which measures the similarity
between histograms hA, hB :

k(hA, hB) =
c∑

i=1

min(hA
i , hB

i ), (6)

where hA
i denotes the count of the ith bin of the his-

togram hA with c bins. Such kernel is called histogram
intersection and it is shown to be a valid kernel [7]. His-
tograms are assumed to be normalized such that

∑n
i=1 hi =

1. Note that, as observed in [7], the proposed kernel im-
plicitly encodes the sub-parts matching since correspond-
ing segments are likely to belong to the same histogram
bin. Indeed, the histogram intersection function counts
the number of sub-parts matching being intermediated
by the visual vocabulary.

Finally, since the SVM is a binary classifier, in order
to obtain an extension to a multi-class framework, a one-
against-all approach [15] is followed.

7 Results

In order to prove the effectiveness and the generaliza-
tion capability of the proposed paradigm we tested it
with several different retrieval and categorization tasks,
also working with composed or partial mashes. The two
datasets employed are the Aim@Shape watertight dataset
and the Tosca Dataset. The first is composed of 400
meshes of 20 different classes (see Fig. 5). The dataset is
tough since there are many categories and objects inside
the same category can be very different. The second is
composed of 13 shape classes. In each class, the shape
underwent different types of transformations, namely:
null (no transformation), isometry, topology (connectiv-
ity change obtained by welding some of the shape ver-
tices), isometry+topology, triangulation (different mesh-
ing of the same shape) and partiality (missing informa-
tion,obtained by making holes and cutting parts of the
shape). In this case difficulties arise because the cate-
gories are very similar each other (see Fig. 6 and Fig. 7
for more details).

7.1 Aim@Shape Watertight

The Aim@Shape Watertight dataset has been used for
various retrieval contests [23]. Firstly, we compared our
method with the participant of the Aim@Shape Water-
tight 2007 contest [23]. We used precision and recall to
evaluate our results, that are two fundamental measures
often used in evaluating search strategies. Recall is the
ratio of the number of relevant records retrieved to the
total number of relevant records in the database, while
precision is the ratio of the number of relevant records
retrieved to the size of the return vector [24]. In table 2
the precision and recall of our approach along with the
results of the other methods are reported, while in figure

Fig. 5 Aim@Shape Watertight Dataset

Fig. 6 Example of different kind of objects in the Tosca
dataset. The category are 13, namely: centaur,horse,two
males,female,two cats,dog, horse, tiger, elephant, dromedary
and flamingo
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Fig. 7 Example of different type of transformation in the Tosca dataset.

Category Precision Category Precision
after 20 after 20

Human 0.53 Cup 0.46
Glasses 0.90 Airplane 0.73

Ant 0.92 Chair 0.57
Octopus 0.61 Table 0.52
Teddy 0.94 Hand 0.32
Plier 0.99 Fish 0.8
Bird 0.4 Spring 0.96

Armadillo 0.94 Buste 0.57
Mechanic 0.80 Bearing 0.44

Vase 0.8 Four Legs 0.32

Table 1 Precision for each category of the Aim@Shape
dataset after 20 retrieved items.

8 the precision vs recall plot of our method is shown.
The results divided by category are shown in figure 1.
The algorithm fails with some meshes, but the overall
rate of success is still fairly good.

In the second task we tested our method with some
query test models that are composed of parts of the orig-
inal dataset. The query test models are 30 and each
query model shares common subparts with (possibly)
more than one model belonging to the ground-truth dataset.
The query set is shown in figure 9. Again, we compared
our method with the participant of the Aim@Shape Par-

Precision after 20 40 60 80
Ideal 1 0.5 0.333 0.25

Tung et al. 0.714 0.414 0.290 0.225
Our Approach 0.648 0.379 0.270 0.210

Akgul et al. 0.626 0.366 0.262 0.205
Napoleon et al. 0.604 0.366 0.262 0.205

Daras et al. 0.564 0.346 0.252 0.199
Chaouch et al. 0.546 0.329 0.241 0.190
Recall after 20 40 60 80

Ideal 1 1 1 1
Tung et al. 0.714 0.828 0.872 0.902

Our Approach 0.648 0.758 0.808 0.841
Akgul et al. 0.626 0.732 0.786 0.821

Napoleon et al. 0.604 0.732 0.788 0.822
Daras et al. 0.564 0.692 0.756 0.798

Chaouch et al. 0.546 0.658 0.724 0.763

Table 2 Precision and Recall after 20, 40, 60 and 80 re-
trieved items for the Aim@Shape dataset.

tial Matching 2007 contest [23]. In order to evaluate the
performance, a set of highly relevant, marginally relevant
and non-relevant models belonging to the dataset has
been associated to each query model. The performance
indicator used is the Normalized Discounted Cumulated
Gain vector (NDCG) [25], which is recursively defined as

DCG[i] =
{

G[i]
DCG[i− 1] + G[i] log2(i))

if i = 1
otherwise (7)

where G[i] represents the value of the gain vector at the
position i. In our case, for a specific query, G(i) equals
2 for highly relevant models, 1 for marginally relevant
models and 0 for non-relevant models. The normalized
discounted cumulated gain vector NDCG is obtained by
dividing DCG by the ideal cumulated gain vector. In
figure 10 the NDCG of our approach along with the re-
sults of the other methods are reported. We can notice
how our method performs better than the other methods
considered.

Finally, we tested the dataset in a categorization prob-
lem. We performed the test using a Leave-One-Out ap-
proach. The Overall success rate is high: 87.25%. In
table the different results for each category are reported.
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Fig. 8 Precision vs Recall for the Aim@Shape dataset.
.
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(a) (b)

Fig. 10 Overall Normalized Discount Cumulated Gain considering only highly relevant models 10(a) and both highly relevant
and marginally relevant models 10(b) for the Aim@Shape partial matching contest.

Fig. 9 Aim@Shape Partial Matching query objects.
.

Category S.R. Category S.R.
Human 0.8 Cup 0.85
Glasses 0.95 Airplane 0.9

Ant 1.0 Chair 0.95
Octopus 0.95 Table 0.8
Teddy 1.0 Hand 0.8
Plier 1.0 Fish 0.85
Bird 0.8 Spring 0.95

Armadillo 1.0 Buste 0.95
Mechanic 0.75 Bearing 0.6

Vase 0.75 Four Legs 0.8

Fig. 11 Success Rate (S.R.) of categorization of the
Aim@Shape dataset. The overall rate is 87.25%.

7.2 Tosca

We tested also the Tosca dataset with a retrieval and a
categorization task. In this case we divided the results
for the different type of transformation.

Again, for the retrieval task, we measured the per-
formance using the precision and the recall. In this case
the number of object per category is variable. The query
length have thus been made variable according to size of
the specific category, so that 1 is the maximum value of
precision obtainable. The overall precision is 0.74%.

For the categorization task, the Leave-One-Out val-
idation have been used. The overall success rate is very
high: 0.98%.

The success rate for a precision query and mean suc-
cess rate for the categorization task, divided for the dif-
ferent transformation are shown in the Tab. 3. In Fig. 12
the plot of the precision vs recall for the retrieval task is
shown.
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Transformation S.R. S.R.
Precision Categorization

Isometry 0.77 1.0
Topology 0.44 0.99

Isometry + Topology 0.71 1.0
Noise 0.6 0.8
Null 0.86 1.0

Triangulation 0.58 1.0
Partially 0.68 1.0

Table 3 Success Rate (S.R.) for the precision queries with
length equal to the category sizes and Success Rate of the
categorization task for the Tosca dataset. The results are di-
vided for type of transformation.

.

7.3 Timing

The entire pipeline is computationally efficient in each
stage. We used an entry level laptop at 1.66Ghz to per-
form tests. The code is written in Matlab with some
parts in C. An entire mesh segmentation of 3500 vertices
is computed in less than 5 seconds, of which ∼ 2.8s are
necessary to extract all the seed regions, and ∼ 2.1s are
needed to compute the entire hierarchical segmentation.
Region descriptors are computed efficiently: on the aver-
age it takes ∼ 0.5s to extract all the four descriptors of a
single region. As for the k-means clusterization, 10 clus-
ters for 300 points each composed of 200 feature are ex-
tracted in less than one second. Finally, the time needed
to train a SVM with 400 elements is ∼ 80s, while the
time needed to validate a single element is about ∼ 2s.

8 Conclusions

In this paper the Bag-of-Words paradigm has been pro-
posed for the 3D domain. The main steps of the involved
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Fig. 12 Precision vs Recall for the Tosca dataset.
.

processing pipeline have been carefully designed by fo-
cusing on both the effectiveness and efficiency.

The Bag-of-Words approach fits naturally with sub-
parts encoding by combining segment descriptors into
several visual vocabularies. In this fashion, our meth-
ods is able to satisfy query models of composed objects.
Moreover, we have proposed a Learning-by-Example ap-
proach by introducing a local kernel which implicitly per-
forms the object sub-parts matching. In particular, the
object categories are inferred without an exhaustive pair-
wise comparison between all the models.

The experimental results are encouraging. Our frame-
work is versatile in reporting satisfying performances for
different applicative scenarios such as object retrieval,
partial matching and shape categorization as shown in
the comparison with other methods.
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