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ABSTRACT:

This paper addresses the problem of 3D building reconstruction from thermal infrared (TIR) images. We show that a commercial
Computer Vision software can be used to automatically orient sequences of TIR images taken from an Unmanned Aerial Vehicle
(UAV) and to generate 3D point clouds, without requiring any GNSS/INS data about position and attitude of the images nor camera
calibration parameters. Moreover, we propose a procedure based on Iterative Closest Point (ICP) algorithm to create a model that
combines high resolution and geometric accuracy of RGB images with the thermal information deriving from TIR images. The process
can be carried out entirely by the aforesaid software in a simple and efficient way.

1. INTRODUCTION

Nowadays, thermal imaging systems are used in a wide range
of applications, such as archaeological heritage documentation
(Brumana et al., 2013), landslide hazard assessment (Teza et al.,
2015), crop health monitoring (Mangus et al., 2016) and photo-
voltaic plants inspection (Tsanakas et al., 2017). Thermographic
cameras are increasingly becoming important also in buildings
diagnostics. Indeed, thermography is a non-contact testing tech-
nology that allows to capture thermal irregularities caused by
flaws or damages localized in buildings. Thanks to the represen-
tation through digital images, thermography avoids destructive
interventions aimed at identifying the problem sources (Balaras
and Argiriou, 2002). Inspections of building envelopes with ther-
mal infrared (TIR) images can be used to detect heat losses, cracks,
thermal bridges, air leakages, insulation problems in walls and
roofs, moisture sources and other issues with thermal signature.

Moreover, the recent development of Unmanned Aerial Vehicle
(UAV) platforms represents a great advantage for the data col-
lection process, introducing a low-cost solution that is able to
quickly deliver high temporal and spatial resolution information
(Nex and Remondino, 2014). Thermal imaging cameras mounted
on UAV systems thus allow an easy inspection not only of the fa-
cades, but also of the building roof, that cannot be captured by
terrestrial images.

The analysis of TIR images can be complicated, since it is mostly
done manually and images are often interpreted individually, with-
out having a comprehensive view of the building, thus limiting in
this way the full potential of this technique. In order to moni-
tor big structures, therefore, a 3D building model becomes es-
sential (Hoegner and Stilla, 2016). However, exploiting existing
Photogrammetry and Computer Vision algorithms - developed to
process RGB images - for the 3D reconstruction from TIR im-
ages is a topic that has not been fully explored yet. The geometric
calibration of a thermographic camera has been studied in some
works (Luhmann et al., 2013, Lagüela et al., 2011). (Hoegner and
Stilla, 2015) propose a method for automatic texturing of building
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facades from terrestrial thermal infrared image sequences, while
(Pech et al., 2013) analyze the problem of using a TIR camera on
an UAV for acquiring multi-temporal thermal images and gener-
ating thermal orthophotos. In (Khodaei et al., 2015) it is demon-
strated that Digital Surface Models (DSM) generated from aerial
thermal imagery can have comparable accuracy with respect to
the one derived from visible images, while in (Hoegner et al.,
2014) a fusion of time-of-flight depth images and TIR images is
used to create an accurate 3D point cloud for subsequent scene
segmentation and people detection. Moreover, the co-registration
of images taken with both RGB and TIR cameras can give advan-
tages in terms of accuracy and density of the resulting 3D point
cloud, as highlighted in (Hoegner and Stilla, 2016, Hoegner et al.,
2016).

The aim of this paper is first to show that a high quality 3D model
reconstruction of a building can be obtained in a fast and auto-
matic way from TIR images only, using the commercial Computer
Vision software 3DF Zephyr, developed by 3Dflow1. Secondly,
we also propose an automatic method for the integration of TIR
and RGB images. The process is based on the registration with
Iterative Closest Point (ICP) algorithm of dense point clouds, ex-
tracted from both datasets, and can be efficiently carried out en-
tirely within the software. This approach allows to combine high
resolution and geometric accuracy of RGB images with the ther-
mal information deriving from TIR images.

The paper is organized as follows. In Sec. 2 the algorithms for re-
constructing a 3D model directly from TIR images are described,
while in Sec. 3 the procedure to automatically integrate TIR and
RGB images is illustrated. Experimental validation of the two
methods are reported in the respective sections, and discussed in
Sec. 4.

2. AUTOMATIC 3D RECONSTRUCTION FROM
THERMAL INFRARED IMAGES

Three-dimensional models of a subject can be obtained directly
from unordered, uncalibrated TIR images using state-of-the-art
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Photogrammetry and Computer Vision techniques. In the follow-
ing sections, we will review the 3D reconstruction pipeline imple-
mented in 3DF Zephyr, that is composed by three main modules,
Samantha (Toldo et al., 2015), Stasia (Toldo et al., 2013) and
Sasha. Starting from a set of images, Samantha is able to auto-
matically recover the orientation (position and angular attitude)
of the images. The robust auto-calibration algorithm that char-
acterizes Samantha makes it possible to work with any digital
camera, including TIR ones. Stasia extracts dense and accurate
point clouds by multi-views stereo, while Sasha finally produces
a texture mapped triangular mesh.

2.1 Structure-and-motion

The first step of Samantha is key-points extraction through the
detector proposed by (Lindeberg, 1998), where blobs with as-
sociated scale levels are identified from scale-space extrema of
the scale-normalized Laplacian. As for the descriptor, Samantha
implements a 128-dimensional radial descriptor (similar to the
log-polar grid of GLOH described by (Mikolajczyk and Schmid,
2005)), based on the accumulated response of steerable deriva-
tive filters. This combination of detector/descriptor performs in
a comparable way to SIFT (Lowe, 2004), which is proved to
be well suited for features detection also in low resolution ther-
mal imagery (Pech et al., 2013), and at the same time avoids
patent issues. Only a given number of key-points with the overall
strongest response are retained. This number is a multiple of n
(number of images), so as to fix the average quota of key-points
per image.

As the images can be unordered, one must then recover the epipo-
lar graph, i.e., the graph that tells which images overlap (or can
be matched) with each other. This must be done in a computa-
tionally efficient way, without trying to match key-points between
every image pair. In this broad phase only a small constant num-
ber of descriptors for each image is considered, and in particular
the key-points with the higher scales, since their descriptors are
more representative of the whole image content. So, each key-
point descriptor is matched to its approximated nearest neighbors
in feature space. A 2D histogram is then built that registers in
each bin the number of matches between the corresponding im-
ages. Instead of directly picking pairs with the highest score in
the histogram, that tends to create in the graph cliques of very
similar images with weak inter-clique connection, an alternative
approach based on taking maximum spanning trees is adopted,
which creates a strongly connected epipolar graph (Toldo et al.,
2015).

Subsequently, key-point matching follows a nearest neighbor ap-
proach with ”ratio test” (Lowe, 2004), namely rejection of those
key-points for which the ratio of the nearest neighbor distance
to the second nearest neighbor distance is greater than a thresh-
old. Matches that are not injective are discarded. Homographies
and fundamental matrices between pairs of matching images are
then computed using M-estimator SAmple Consensus (MSAC), a
variation of RANSAC proposed by (Torr and Zisserman, 2000),
and outliers are rejected. In the end, if the number of remain-
ing matches between two images is less than 20% of the total
number of matches before MSAC, they are discarded. The ratio-
nale is that if an excessive fraction of outliers has been detected,
the original matches are altogether unreliable (Brown and Lowe,
2003). After that, key-point matching in multiple images are con-
nected into tracks: consider the undirected graph key-points are
the nodes and edges represent matches; a track is a connected
component of that graph. Vertices are labeled with the image the

key-points belong to: an inconsistency arises when in a track a la-
bel occurs more than once. Inconsistent tracks and those shorter
than three frames are discarded. A track represents the projection
of a single 3D tie-point imaged to multiple exposures.

In the next step, images are organized into a tree (or dendrogram)
with agglomerative clustering, using a measure of overlap as the
affinity. The structure-and-motion computation follows this tree
from the leaves to the root, where images are stored in the leaves
and partial models (sets of exposures and 3D points expressed in
a local reference frame) correspond to internal nodes.

The whole hierarchical structure-and-motion approach relies on
four basic photogrammetric procedures, that are implemented in
Samantha with a special attention to outliers resilience. Intersec-
tion (a.k.a. triangulation) is the procedure of computing 3D point
coordinates from corresponding points in multiple images; Re-
section consist in recovering the camera matrix (or the exterior
parameters only) from known 3D-2D correspondences; Relative
orientation is the task of retrieving the relative position and at-
titude of two cameras from corresponding points in the two im-
ages; Finally, absolute orientation requires to compute the rigid
(or similarity) transformation that brings two models that share
some tie-points into a common reference frame. The hierarchical
algorithm can be summarized as follows:

1. Solve many independent relative orientation problems at the
leaves of the tree, producing many independent stereo-models.

2. Traverse the tree; in each node one of these operations takes
place:

(a) Update one model by adding one image with resection
followed by intersection;

(b) Merge two independent models with absolute orien-
tation. Once the models are registered, tie-points are
updated by intersection, and the new model is refined
with bundle block adjustment.

If the tree reduces to a chain, the algorithm performs only steps
1. and 2.(a) which is tantamount to the classical resection-intersection
sequential pipelines.

If the tree is perfectly balanced, only steps 2.(b) are taken, and the
resulting procedure resembles the photogrammetric Independent
Models Block Adjustment (IMBA) (Kraus, 1997) (where for each
pair of overlapping images, a stereo-model is built and then all
these independent models are simultaneously transformed into a
common reference frame with absolute orientation), besides the
fact that the models are disjoint and are recursively merged in
pairs.

Compared to the standard sequential approach, this framework
has a lower computational complexity, is independent of the ini-
tial pair of images, and copes better with drift problems, typical
of sequential schemes. In any case, the final step is a bundle block
adjustment.

The auto-calibration method of Samantha (Gherardi and Fusiello,
2010) is able to compute the interior parameters of the images
without providing any control point. It is based on the enumer-
ation of the inherently bounded space of the interior parameters
of two cameras in order to find the collineation of space that up-
grades a given projective reconstruction to Euclidean. Each sam-
ple of the search space (which reduces to a finite subset of R2 un-
der mild assumptions) defines a consistent plane at infinity. This



in turn produces a tentative, approximate Euclidean upgrade of
the whole reconstruction which is then scored according to the
expected intrinsic parameters of a Euclidean camera.

2.2 Model georeferencing

Images taken by a camera mounted on a UAV are often provided
with GNSS/INS information, that can be exploited as initial val-
ues for the unknown estimated orientation parameters. However,
their availability is not guaranteed. In any case, Samantha does
not require any ancillary information (GNSS/INS measures or
calibration parameters); the resulting camera orientation and 3D
points coordinates are expressed in a local reference frame and
defined up to a scale.

In order to transfer the model coordinates into a global coordinate
system and to remove the scale ambiguity, a similarity transfor-
mation must be computed. This can be done as soon as at least
three Ground Control Points (GCPs) are available, whose coordi-
nates are measured independently (by GNSS or other techniques)
and are expressed in the global reference frame. These control
points are identified manually in the images and their position in
the 3D space is estimated by intersection. Correspondences be-
tween true and estimated 3D coordinates are used to transform
the model with a similarity that aligns the control points in a
least-squares sense. Please note that GCPs can also be used as
a constraint to optimize the 3D reconstruction.

2.3 Multi-view stereo

The aim of multi-view stereo is to recover a dense point cloud
representing the surface of the imaged object, given images po-
sition and attitude. In 3DF Zephyr this procedure is performed
through Stasia (Toldo et al., 2013).

The first step of the algorithm is the extraction of depth hypothe-
sis. The goal of this phase is to estimate a number of candidates
depths for each pixel m and for each image Ii. These hypothesis
will be later used as labels in a Markov Random Field (MRF) that
extracts the final depth map δi(m). Similarly to many multi-view
stereo algorithms, a pixel-level matching along epipolar lines is
used, with Normalized Cross Correlation (NCC) as the matching
metric, which gives a good trade-off between speed and robust-
ness to photometric nuisances. Every depth map is created inde-
pendently from the others. The extraction of candidate depths is
performed by considering the reference image Ii and three neigh-
boring views η(Ii), chosen on the basis of the sparse structure
and the visibility information provided by Samantha. The candi-
date depths for each pixel are searched along the optical ray, or
equivalently, along the epipolar line of each neighboring image
using block matching and NCC. In this way, a correlation pro-
file Cj(ζ), parameterized with the depth ζ, is computed for every
pixel m and every neighbor image Ij ∈ η(Ii).

Candidate depths correspond to local peaks of the correlation
(peaks with a NCC value lower than 0.6 are discarded). Since the
search range of each pixel depth can heavily impact the perfor-
mance of the algorithm, information coming from the structure-
and-motion is used to limit the search range.

The final depth map δi is generated from the depth hypothesis us-
ing a discrete MRF optimization technique over the image grid.
Depth maps are then lifted in 3D space to produce a photocon-
sistency volume φ, represented by an octree that accumulates the
scores coming from each depth map δi. In order to avoid any

loss of accuracy, a moving average approach is used inside each
bin. At the end of the lifting process, each cell x contains a 3D
point position – which can be shifted with respect to the cell cen-
ter – and a photoconsistency value φ(x) given by the sum of the
correlation scores of the points that fall in that bin. The photo-
consistency volume at this stage contains a lot of spurious points,
which do not belong to a real surface. They are characterized
by two features: i) their photoconsistency is generally lower than
actual surface points, and ii) they usually occludes actual sur-
face points. This observation leads to an iterative strategy where
the photoconsistency of an occlusor is decreased by a fraction of
the photoconsistency of the occluded point. Points with negative
photoconsistency are eventually removed.

2.4 Mesh generation and texture mapping

At the end of the process, a surface is generated by the module
called Sasha. It employs the Poisson algorithm (Kazhdan et al.,
2006) starting with normals computed, at each point, by fitting a
plane to the closer neighbors. Normal direction is disambiguated
with visibility.

In addition, the surface can be further optimized inside the soft-
ware with an optimization algorithm based on photoconsistency.
As the initial surface reconstruction method is interpolatory and
since the point cloud may contain a decent amount of noise, the
obtained initial mesh is normally noisy and may fail to capture
fine details. By using all the image data, this mesh is refined
with a variational Multi-view stereo approach: the initial mesh
is used as the initial condition of a gradient descent of an ade-
quate energy functional with an algorithm similar to (Faugeras
and Keriven, 2002, Vu et al., 2012).

Finally a texture (TIR) map is built by wisely making use of both
the visibility and the view angle information.

2.5 Experiments

To assess the applicability of the proposed method, a dataset of
130 TIR images was acquired by a Optris PI450 LW thermal in-
frared camera (wavelength range from 7 µm to 13 µm), with a
detector of 382 × 288 pixels and a temperature resolution of 0.4
mK.

Figure 1. UAV platform used for the survey.

The camera was mounted on a octorotor UAV with a total payload
of 4 kg, roll and pitch axis stabilization, and a flight time of 20
minutes (see Fig. 1). The flight was planned for the images to
have a forward and a side overlap of 80% and an average Ground
Sampling Distance (GSD) of 94 mm.

The subject is a large building that houses an air conditioning and
heating plant. On the roof, many solar panels are installed. Due
to the size of the building, each image reproduces only a limited
portion, as shown in Fig. 2. Hence, it is highly recommended in



Figure 2. Sample images from the TIR dataset.

(a) (b)

(c) (d)

Figure 3. 3D reconstruction from TIR images: (a) sparse point cloud, (b) dense point cloud, (c) mesh with texture, (d) orthophoto.



this situation to create a 3D model and an ortophoto, in order to
have a comprehensive view of the building and to make it easier
the evaluation and interpretation of the thermal data.

Following the procedure described in Sec. 2, first the structure-
and-motion algorithm was run to retrieve position and attitude of
each image. After bundle adjustment, the RMSE was 0.31 pixel
and the estimated reference variance was 0.35 squared pixel. The
result, together with the generated sparse point cloud, is repre-
sented in Fig. 3(a). Then the model was georeferenced exploiting
the coordinates of three GCPs, measured by highly accurate GPS
differential positioning in a previous survey. This step was quite
tricky, because the GCPs, placed on the edges of the building,
were difficult to identify on the TIR images. In fact, the average
residual was 0.8 m.

Subsequently, the dense point cloud (Fig. 3(b)) was created with
the multi-view stereo algorithm (Sec. 2.3). Please note that, ex-
cept for some portions of the building facades and the sidewalk
around, the 3D point cloud has very high density and most of the
details are reconstructed, including the solar panels (see Fig. 4).

Figure 4. Details of the dense point cloud generated from the
TIR dataset. The solar panels on the roof of the building were

correctly reconstructed.

Finally, the mesh with texture was extracted (Fig. 3(c)) and a high
quality thermal orthophoto was created (Fig. 3(d)). The entire
process required less than 30 minutes on a PC with an Intel Core
i5-4200M CPU @ 2.50GHz and 8GB RAM.

These results demonstrate how structure-and-motion and multi-
view stereo algorithms can be successfully applied to create high
detailed dense point cloud, 3D models and orthophoto directly
from unordered, uncalibrated TIR images, without requiring ad-
ditional RGB images or ancillary information. This makes TIR
images of immediate use, reducing considerably the processing
time.

However, due to low geometric resolution and low contrast of
TIR images, 3D point clouds generated directly from them have
a lower accuracy than those obtained from RGB images. There-
fore, when RGB images of the same area are already available, it
might be wise to try and use them, as we will discuss in the next
section.

3. INTEGRATION OF TIR AND RGB IMAGES

In this section we will propose a procedure to combine TIR and
RGB images, in order to create high detailed 3D models that at
the same time maintain the thermal information. The method,
briefly summarized in Fig. 5, can be carried out automatically by
3DF Zephyr on any set of TIR and RGB images, i.e., each RGB
image does not need a corresponding TIR image taken from the
same position and the same orientation, as required in (Hoegner
et al., 2016).

TIR images 
block 

adjustment

Approximate 
model 

georeferencing 
and scaling

Dense point 
cloud 

generation

RGB images 
block 

adjustment

Model 
georeferencing 

and scaling

Dense point 
cloud 

generation

Point clouds 
alignment with 

ICP

Mesh 
generation from 

RGB point 
cloud 

Texture 
mapping from 
TIR images

Figure 5. Simplified overview of the procedure to create a 3D
building model from TIR and RGB images.

3.1 Point clouds generation

The first steps resemble the procedure described in the previous
section. TIR and RGB images are oriented separately through the
structure-and-motion algorithm (Sec. 2.1), without any a-priori
knowledge about their position and attitude. After that, the ob-
tained models are georeferenced and scaled using at least three
GCPs (Sec. 2.2). Please note that in this step the model deriving
from TIR images requires only a coarse georeferencing, since it
will be subsequently registered onto the RGB point cloud. Then,
the multi-view stereo algorithm (Sec. 2.3) independently gener-
ates TIR and RGB dense point clouds.

3.2 Alignment via Iterative Closest Point (ICP)

Thanks to georeferencing, RGB and TIR point clouds are close
together in the 3D space and have approximately the same scale.
Therefore, the TIR point cloud can be registered to the one gen-
erated from RGB images using the Iterative Closest Point (ICP)
method (Rusinkiewicz and Levoy, 2001). This algorithm com-
putes correspondences between the point sets given an estimate
for the transformation, then updates the transformation based on
the current correspondences, and iterates through these steps until
convergence - to a local minimum - is reached.

3.3 Final model extraction

Orientation parameters of the TIR images are automatically trans-
formed into the same reference system as the RGB images by the
alignment of the TIR point cloud with the RGB one. This makes



it possible to associate the thermal information deriving from the
TIR dataset to the 3D point clouds calculated from the RGB im-
ages. The final surface is generated from the RGB point clouds
through the Poisson algorithm (Sec. 2.4), thus maintaining the
geometric accuracy and the high level of detail arising from im-
ages acquired in the visible spectrum, whereas the texture map
is built from TIR images. The texture coordinates are obtained
projecting the vertices of the RGB mesh into the TIR images.

3.4 Experiments

To evaluate the procedure proposed for the integration of TIR
and RGB images, an already available dataset of 27 RGB images
taken over the same area was used. The images were acquired
two years before with a Canon Power Shot S100 camera (1/1.7
CMOS sensor) with an image size of 3000× 4000 pixels and an
average GSD of 27 mm.

After the block adjustment with Samantha the estimated refer-
ence variance was 0.52 squared pixel. In this case, georeferenc-
ing the model was easier than for the TIR dataset because the
GCPs, placed on building edges, road signs or edges of man-
holes nearby, were easily recognizable in the RGB images. The
least-squares alignment was performed on 12 GCPs with a final
average residual of 0.1 m. Then, the dense point cloud was gen-
erated from the RGB images and it was used as reference to align
the TIR point cloud previously extracted, computing a similarity
transformation. The orientation of the TIR images were updated
accordingly. After the registration via ICP, the mean distance of
corresponding 3D points of the two point clouds was 0.15 m, with
a standard deviation of 0.07 m. To further evaluate qualitatively
the obtained results, TIR and RGB point clouds were compared
(using ”CloudCompare” software2). From the distribution of the
residual point-point absolute distance shown in Fig. 6, no defor-
mations of the TIR block are appreciable.

The described process allowed the creation of an accurate surface
of the building from the RGB point cloud (Fig. 7(a)), that was
subsequently textured with the TIR images (Fig. 7(b)).

4. DISCUSSION

Results demonstrate that a Computer Vision software (3DF Ze-
phyr), developed to process RGB images, can be used also for
the 3D reconstruction from thermal infrared data. Structure-and-
motion and multi-view stereo algorithms can be successfully ap-
plied to create high detailed dense point cloud, 3D models and or-
thophoto directly from TIR images, without requiring additional
images in the visible spectrum. This makes TIR images of im-
mediate use, reducing considerably the processing time. On the
other hand, when RGB images are available in addition, the pro-
cedure proposed in Sec. 3 allows an automatic integration be-
tween TIR and RGB images.

Comparing the models generated from TIR and RGB datasets,
the RGB one shows an increase in the number of details, thanks
to the high resolution of the RGB images. This is due also by
the fact that building edges are less visible in the thermal infrared
with respect to the visual spectrum. As can be seen in Fig. 8, the
edges of the building are sharper and better reconstructed in the
RGB model. Furthermore, the distribution and the sizes of the
polygons in the RGB mesh are more regular. Therefore, as an-
ticipated, the integration of RGB and TIR guarantees the highest

2http://www.danielgm.net/cc/

(a)

(b)

Figure 6. Results of the comparison between TIR and RGB
point clouds. Colors encode the residual absolute distance (units

are in meters).

achievable geometric accuracy, maintaining at the same time the
thermal information.

Finally, it is important to highlight the differences with compara-
ble methods previously proposed in the literature (Hoegner and
Stilla, 2016, Hoegner et al., 2016). Our procedures allow to per-
form the images block adjustment even without GNSS/INS data,
which in some cases can be unavailable or, more often, have low
accuracy. The model georeferencing and scaling can be done sub-
sequently, exploiting at least three GCPs identified in the images
and whose 3D coordinates are known. Moreover, if it is not nec-
essary to express the model coordinates in a particular global ref-
erence frame, the use of GCPs can be avoided and only a control
distance is required to scale the reconstructed model.

In our methods, the geometric calibration of TIR images is not
requested, thanks to the robust auto-calibration algorithm imple-
mented in Samantha (Toldo et al., 2015) that works even with
TIR datasets, as demonstrated by the experimental evaluation.

Please note also that, unlike the procedure described in (Hoeg-
ner et al., 2016), we do not require that every RGB image has a
corresponding TIR image taken from the same position and with
the same orientation. TIR and RGB datasets can be totally in-
dependent and, if geometric variations do not occur in the area
over time, RGB images can be acquired in a different time pe-
riod. Moreover, this allows an automatic integration of UAV and
terrestrial datasets.

To conclude, the procedures proposed in this paper for the 3D
model reconstruction of a building from TIR images can pro-
vide an helpful support to make the interpretation of thermal data
faster, more automatic and objective.



(a) (b)

Figure 7. Integrating TIR and RGB images: (a) 3D model from RGB images, (b) texture from TIR images.

(a)

(b)

Figure 8. A detail of the RGB model (a) and of the TIR one (b).
Please note that building edges are less visible in the TIR model.
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