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Abstract

In this paper, underwater scene modeling from multisensor data is ad-

dressed. Acoustic and optical devices aboard an underwater vehicle are used

to sense the environment in order to produce an output that is readily under-

standable even by an inexperienced operator. The main idea is to integrate

multiple-sensor data by geometrically registering such data to a model. The

geometrical structure of this model is a-priori known but not ad hoc designed

for this purpose. As a result, the vehicle pose is derived, and model objects can

be superimposed upon actual images, thus generating an augmented-reality

representation. Results on a real underwater scene are reported, showing the

effectiveness of the proposed approach.
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1 Introduction

Badly structured environments, like the underwater world, are difficult to perceive

and understand. Nevertheless, underwater scene exploration is an expanding re-

search field, linked to the great interest in monitoring the evolution of the subsea

flora and fauna and to the sustainable exploitation of such an environment. To

this end, the use of multiple sensors is typically necessary, but the related data

integration is critical.

This paper describes the design and implementation of an augmented-reality

system to support the human operator of an underwater Remotely Operated Vehicle

(ROV). The three-dimensional (3-D) synthetic models of objects of interest are

overlaid onto a real image to generate an augmented-reality representation, thus

improving the perception and understanding of the environment (so as to facilitate

the vehicle navigation) and the effectiveness of the exploration.

Two sensing channels (optical and acoustic) are mostly used underwater. Typi-

cally, optical images are easier to interpret by the human operator, but the under-

water visibility range is very limited due to low illumination and the presence of

clutter (even though special sensing configurations under investigation, like range

gated imaging systems and laser-based devices, can overcome such limitations). On

the other hand, 3-D acoustic data are not affected by illumination problems but are

more difficult to understand for the human operator. From these considerations, it

appears sensible to try to integrate the two channels in order to exploit the best of

both so as to compensate for their drawbacks.

Augmented Reality (AR) supplements reality by allowing the user to perceive
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the real world, with virtual objects superimposed upon it or merged with it. Virtual

objects convey information that the user cannot directly detect with her/his own

senses. A comprehensive review of AR can be found in [1].

In order to make synthetic graphics appear in the proper place (for example, like

a wire-frame outline superimposed on top of the corresponding real-world object), it

is necessary to know exactly the pose (i.e., position and orientation) of the camera

in the real world. This is the so-called registration problem, which is still a challenge

if one cannot rely on a tracking system mounted on the camera.

Video-based approaches, where a real image and the graphic overlay are com-

bined by using a video camera and a computer (as opposed to optical approaches,

where the overlay is obtained by means of a see-through display), can use computer

vision techniques to aid registration [2]. Since video-based AR systems have a dig-

itized image of the real environment, it is possible to enforce registration of the

model onto the view of the real world. This constitutes a ”closed-loop” approach,

as the digitized image provides a mechanism for bringing feedback into the system.

In video-based systems, the same video camera as used to capture the video image

serves as a tracking device as well. Moreover, the pose calculation is accurate on

the image plane, thereby minimizing the error on the perceived image alignment.

Considered from another viewpoint, registration can also be accomplished via

scene modeling, which is a problem extensively investigated nowadays, especially

for robotic purposes. In [3], [4], and [5], a laser range-finder is used to acquire

a depth map of a real object. The system is able to align the real and virtual

depth maps, thus providing the information needed for registration. In [6], range
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data are segmented into planar and quadric surfaces. Then, the operator selects

object models contained in a region of interest and a matching phase is carried

out to recognize object models and estimate their poses in the scene. This work is

improved in [7], in which model objects and actual objects are generally represented

by surface meshes; as a result, the recognition and pose estimation phases are more

reliably performed by using spin images. Accurate segmentation of range images

for industrial pipe modeling is carried out in [8]. Segmentation is performed by

fitting data to geometric models chosen from among a small set of primitives: plane,

cylinder, torus, cone, and sphere. The principal curvatures are estimated in a robust

way together with their centers, and heuristics are used to ensure pipe continuity

(e.g., setting a connectivity threshold).

All the cited works consider laser range-finder data that are affected by noise

only to a limited extent, as compared with 3D data acquired by an acoustic sensor.

In the latter case, speckle noise degrades the image much more and injects a high

percentage of outliers. For these reasons, our approach must be more robust than

those used in the above-described applications.

Instead of using them as alternative sensors to video cameras, laser range-finders

can be used in addition to video cameras for better reconstruction and to support

the registration process. Indeed, fusion of range and optical data is recognized to

be important in many respects, and much research is oriented in this direction.

In [9], registered range and optical aerial images are used to detect and recon-

struct buildings. In [10], a Markov Random Field (MRF) model is proposed for the
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fusion of registered range and intensity images for the purpose of image segmenta-

tion. A similar method for the fusion of range and intensity images is adopted in [11],

where edge detection, semantic labeling, and surface reconstruction are integrated

into a single framework.

Although fusion and integration of different kinds of data are a matter of active

research [12, 13], to the best of our knowledge our approach to sensor integration

and data fusion contains some original ideas, and no similar works are available in

the literature. A method was recently proposed [14] that resembles our approach,

although with substantial differences. In [14], a pipeline methodology for editing a

real scene acquired by an optical camera and a laser range-finder is presented. It

assumes a higher degree of control of the scene by requiring manual intervention

and the use of artificial fiducials spread over the whole scene. The final goal of

recovering the 3-D scene modeling is achieved 1) by segmenting the 3-D image with

an interactive graph-based technique, and 2) by deriving photometric information

via the estimation of the optical camera pose with the aid of calibration targets.

Our approach proposes to automatically fuse optical and range data to recognize

and estimate the poses of 3-D objects for the purpose of obtaining an augmented-

reality representation. We aim to locate model objects present in a cluttered scene

and to facilitate human interpretation by displaying such objects on the real images

in the correct positions and orientations. Acoustic and optical underwater data are

first processed separately in order to estimate the positions of the objects present

in the scene. In this way, the relative poses of acoustic and optical cameras are

estimated on line and actual data integration is achieved.
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This implicit calibration process is carried out without using ad hoc designed

objects or a particular sensorial set-up, and the result of this phase is that 3-D

information is registered to the optical image pixels, with a great advantage in

terms of precision and scene comprehension.

It is worth noting that the operative conditions of the underwater environment

are very badly structured, and no accurate control or positioning can actually be

performed by the sensor devices aboard a vehicle.

The proposed system is composed of a set of modules to process acoustic and

optical data; the modules already contain per se some novel aspects and solutions

necessary to deal with the very uncertain, noisy nature and different resolutions

of the two types of data. However, the most original contribution consists in the

development of a system able to integrate different sensors and fuse different kinds

of data in numerical form, dealing with very sparse and noisy range data.

The rest of the paper is organized as follows. After an overview of the global

system in Section 2, the acoustic sensing phase and the related data processing

are addressed in Section 3. In Section 4, the description of the optical sensory and

processing channel is provided. The integration phase is illustrated in Section 5, and

two examples showing the method’s performance on real data are given in Section

6. Finally, conclusions are drawn in Section 7.

2 System Overview

The application scenario consists in an ROV approaching an oil rig whose geo-

metrical model is given in a descriptive language (e.g., Virtual Reality Modeling
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Language, VRML). The ROV is equipped with an optical and an acoustical camera

located at fixed but unknown relative positions. The optical camera provides 2-D

intensity images, whereas the acoustical one provides an image consisting of a set of

3-D points [15]. These images are not registered and are only partially overlapped,

as the points of view and the view frusta are different for the two sensors.

The oil rig is a complex structure of connected pipes, and the goal of the system

is to identify and locate the joints, thereby obtaining the position of the ROV in a

world reference frame.

The system is subdivided into two data-processing threads that are related to

the two sensory channels, and that eventually merge in the integration stage (see

Fig. 1). Each thread is composed of several modules devoted to object recognition

and pose estimation. The acoustic data-processing thread includes the following

modules:

• filtering, to reduce noise and eliminate spurious points;

• segmentation, to determine the most significant regions;

• classification and reconstruction, to label the regions according to their shapes

and to carry out a rough reconstruction on the basis of the geometrical features

estimated by the classification module;

• recognition and model-view registration: a matching phase is first performed

between classified regions and a model base to identify the observed object

models; the result of this phase is then used to refine the reconstruction by an

accurate registration process and to estimate the relative pose.
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Figure 1: System overview. The single modules are described in the paper.

Accordingly, the optical data-processing thread is composed of the following

modules:

• filtering, to reduce degrading noise while preserving edge information;

• line extraction and grouping, to estimate and combine straight contours to

identify feature groups likely to belong to significant regions;

• model-view matching, by which the model and its pose estimated by the acous-

tic data processing phase are used to find the exact match between model

features and image features to support the next registration phase;

• model-view registration, to register the model to the observed view and to

estimate the relative pose.
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Therefore, the poses of both sensors are computed with respect to the fixed

observed object, and an actual registration and an integration of the two images are

obtained. A range map of the optical image or a textured 3D model of the sensed

object can now be shown to the operator, where the 3D information comes from the

acoustic camera, whereas the texture comes from the video image.

Even though our approach considers a particular application domain and a spe-

cific class of objects, this does not limit its generality and usefulness in other con-

texts. On the other hand, general object-recognition systems are not yet completely

automated, as they require the user’s interaction, as in [14].

The overall process involves quite typical image-processing stages, which have

been adapted and made more robust to manage the particular type of data, in par-

ticular, noisy and low-resolution acoustic data. More specifically, low/medium-level

processing stages, like filtering, segmentation, and grouping (in terms of lines and

regions) are shared by many vision tasks. Subsequent higher-level stages, like classifi-

cation and reconstruction (for the acoustic channel) and recognition and model-view

registration (for both channels), are obviously tailored to the kind of objects con-

sidered, but the adopted techniques are generally applicable to any object that can

be decomposed into primitive elements.

3 Acoustic Sensing

In this section, we describe the processing of three-dimensional data obtained with

the acoustic camera in order to register the sensed data to the model.
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3.1 Acoustic Camera

Three-dimensional data are obtained with a high-resolution acoustic camera, the

Echoscope 1600 [16]. The scene is insonified by a high-frequency acoustic pulse, and

a two-dimensional array of transducers gathers the backscattered signals (see Fig

2). The whole set of raw signals is then processed (i.e., re-phased) in order to form

computed signals (called beam signals) whose profiles depend on echoes coming from

fixed steering directions, whereas those coming from other directions are attenuated.

The distance of a 3-D point can then be measured by detecting the time instant at

which the maximum peak occurs in the beam signal (see Fig 2). The 3-D image

provided by the acoustic camera is formed by 64 × 64 points ordered according to

a polar reference system, as adjacent points correspond to adjacent beam signals.

Moreover, the intensity of the maximum peak can be used to generate another image

representing the reliability of the associate 3-D measures, therefore, in general, the

higher the intensity, the safer the associate distance.

array plane

x

y

z

u

transducer

t

Beam signal along u

t*
R*

z*

s*

Figure 2: Functioning of the acoustic camera: after the insonification of the scene,
backscattered echoes are acquired and processed to form beam signals coming from
specific directions; the maximum peak of the beam signal identifies the scene distance
in that direction.
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3.2 Filtering and Segmentation

The acoustic image may be affected by false reflections, caused by secondary lobes,

multiple returns, and acquisition noise, which is modeled as speckle noise. Al-

though the Echoscope directly performs a preliminary low-level processing, it has

proved useful in filtering 3-D data by a suitable algorithm. In particular, in the first

step, connected components in the image are computed: two points are considered

connected if they are adjacent in the 64 × 64 angular relation matrix and if their

Euclidean distance is below a fixed threshold dependent on the spatial resolution of

the camera. As a result, it is possible to subdivide the image into a certain num-

ber of connected components, while discarding those formed by a small number of

points, that are not likely to represent interesting physical objects. In the second

step, “reliable” connected components are formed by the points whose intensity is

above a certain threshold, still dependent on the camera properties.

After this preprocessing phase, it is necessary to segment the image, i.e., to

subdivide the set of 3-D points into distinct regions that are pipe candidates. To

this end, the skeleton [17, 18] is first extracted and then used to subdivide the image

into different convex components. The following procedure is applied to extract the

skeleton: for every point x, we consider all the points that are in a sphere of radius

r centered on x. Then, we shift x from its actual position to the centroid of such

a distribution of points. The overall effect of this transformation is to shift points

from the border toward the center, while leaving unaltered the points that are well

inside the object considered. The iterative application of this procedure tends to

cluster all the points of the distribution around the skeleton (see Fig. 3). Then,
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the skeleton points are labeled as belonging to a branch or a joint by exploiting the

properties of the inertial tensor (described in Sec. 3.3): for each point, the inertial

tensor is computed in a small neighborhood, and the points showing a cylindrical

symmetry are identified as branches. More details on this technique can be found

in [19].

3.3 Classification and Geometric Reconstruction

The image segmentation by the skeleton extraction has provided us with a certain

number of clusters of 3-D points that have been labeled as branches, which are the

natural pipe candidates. They are now classified as pipe-like or non-pipe-like with

a technique (related to the so-called Principal Component Analysis) based on the

estimation of the inertial tensor.

Given a discrete distribution of N points {xi}i=1...N , the inertial tensor is the

3× 3 matrix defined as

I =
∑

i

(xi − o) u (xi − o) (1)

where o is the centroid and the symbol u represents the following operator:

a u b =




(ayby + azbz) −axby −axbz

−aybx (axbx + azbz) −aybz

−azbx −azby (axbx + ayby)




. (2)

The eigenvalues and eigenvectors of I are then employed to extract useful in-

formation about the shape of the discrete distribution. Let α1 ≤ α2 ≤ α3 be the
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eigenvalues of I. If

α1 ¿ α2 and α1 ¿ α3 and α2 ' α3 (3)

then the region is cylindrical in shape and is classified as a pipe; otherwise, it is

discarded. To check on these relations, a threshold for the ratios α2/α1 and α3/α1

is introduced. The choice of this threshold is critical: if it is too low, it is probable

to classify as a pipe something that is only elongate, whereas, if it is too high, it is

possible that some pipes in the scene may be lost. A typical example of classification

is shown in Fig. 4, where pipes are identified correctly.

Figure 3: Skeletons extracted from data. Figure 4: Segmented data. Each candi-
date pipe is in a different color.

From the value of the minimum eigenvalue it is possible to roughly estimate the

radius of the tubular region. In the case of a complete cylindrical distribution, the

following relation holds:

α1 =
1

2
Nr2 (4)

where N is the total number of points in the distribution and r is the radius. Un-

fortunately, in acoustic images, points are not distributed on the whole surface of a

cylinder but only on a little portion of it. Moreover, they are so noisy that they carry
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little information about the curvature. Hence, relation (4) is only an approximation

but is sufficient to give an order of magnitude for the radius, as will be seen in the

section on the experimental results. In practice, we replace the term 1
2

in Eq. (4)

with an empirical constant k computed from synthetic images.

Finally, it is possible to determine the approximate position of the pipe axis

(whose direction is given by the eigenvector relative to α1) by translating the centroid

of the distribution of r in the direction of the eigenvector corresponding to α3, which

is the radial direction.

In general, the axes of pipes belonging to a joint do not intersect exactly at one

point or may not intersect at all. To extract an approximate intersection, we use

the following simple algorithm: for every axis pair i, we compute the midpoint mi

of the single segment that connects the two lines defined by the axes and that is

perpendicular to both of them.

If the number of axes is n, the number of possible pairs is n(n− 1)/2. We define

the center of the joint as the center of mass of the midpoints, i.e.,

n(n−1)/2∑
i=1

mi

n(n− 1)/2
. (5)

As we consider each line containing an axis, we retain only the intersections that

are close enough to the axis endpoints.

This method works in a straightforward manner if there is only one joint in the

scene; if this is not the case, it is first necessary to subdivide the set of extracted

pipes into subsets containing pipes that belong to the same joint. To this end, it
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is sufficient to group the pipes whose distance, defined as the distance between the

lines passing through the axes, is below a threshold that depends on the radius

of the pipes. This can be done by building the incidence graph G of the pipes,

i.e., a graph whose nodes are the pipes and in which two nodes are connected if

the distance between the corresponding pipes is below the given threshold. A joint

corresponds to a maximal complete subgraph of G, i.e., a complete subgraph that

is not contained in any larger complete subgraph. Two distinct joints can share no

more than one node, corresponding to the pipe that connects them. The algorithm

can be summarized as follows:

1. Start with the graph G of order n (the total number of pipes) and with an

empty list of joints.

2. While n > 1, repeat the following steps:

3. Search for a complete subgraph of G of order n that is not contained in a

subgraph of the list of joints.

4. If the subgraph exists, add it to the list of joints. Otherwise, decrement n.

A complete subgraph of order three may not represent a real joint but a triangle

formed by three pipes. This is a degenerate case that is easily handled. It is sufficient

to calculate the three midpoints mi (defined above for the three pairs of pipes) and

discard those whose distance is larger than a threshold.

For each of the remaining joints, the center is computed by using Eq. 5.

To sum up, the skeleton segmentation and the subsequent analysis with the

inertial tensor are able to locate most of the pipes present in the observed scene and
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to reconstruct, in a rough way, their geometrical properties. Although some pipes

may be lost in this phase, a partial reconstruction is sufficient for the subsequent

matching and alignment steps.

3.4 Recognition and Model-View Registration

After the extraction of the geometrical properties relevant to the joints in the ob-

served scene, the model-object registration can be performed. Such properties are

used to match these joints to the ones stored in the VRML model. In particular,

we use the angles between the pipes as the recognition features: two joints match if

such angles are equal within a certain error. As the joints analyzed are composed of

a small number of pipes, the matching can be performed by an exhaustive method,

although more sophisticated algorithms (e.g., based on Interpretation Trees [20])

can be adopted.

Acoustic data points lying on the surfaces of cylinders are matched to the un-

derlying object surface model by using an iterative least-squares technique. Data

points are expressed in the acoustic reference frame, whereas the model cylinders

are placed in the model reference frame. The sought rigid transformation that links

the two reference frames is given by Ga, which is defined below.

In their paper, Besl and McKay [21] proposed the Iterative Closest Point (ICP)

algorithm, a general-purpose method for the registration of rigid 3-D shapes. This

approach eliminates the need to perform any feature extraction or to specify any

feature correspondence.

16



3.4.1 The ICP algorithm

Suppose that we have two sets of 3-D points which correspond to a single shape

but are expressed in different reference frames. We call one of these sets the model

set X and the other the data set Y. Assume that, for each point in the data set,

the corresponding point in the model set is known. The problem is to find a 3-D

transformation that, when applied to the data set Y, minimizes the distance between

the two point sets. The goal of this problem can be stated more formally as follows:

min
R,t

N∑
i=1

‖xi − (Ryi + t)‖2, (6)

where Ga =



R t

0 1


 , R is a 3 × 3 rotation matrix, t is a 3 × 1 translation vector,

and the subscript i refers to corresponding elements of the sets X and Y. Efficient,

non-iterative solutions to this problem were compared in [22], and the one based on

Singular Value Decomposition (SVD) was found to be the best.

The general 3-D registration problem that ICP addresses differs from the corre-

sponding point-set registration problem in two important aspects. First, the point

correspondence is unknown. Second, 3-D shapes to be registered are not necessarily

represented as point sets.

Suppose that we have again two sets, X and Y, corresponding to a single shape,

where Y is a set of 3-D points and X is a surface (of a cylinder, in our case). The

correspondence between Y and X is unknown. For each point yi in the set Y, there

exists at least one point on the surface X that is closer to yi than all the other points

on X. This is the closest point, xi. The basic idea behind the ICP algorithm is that,
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under certain conditions, the point correspondences provided by sets of closest points

are reasonable approximations for the true point correspondences. Besl and McKay

proved that, if the process of finding the closest-point sets and then solving equation

(6) is iterated, the solution is guaranteed to converge to a local minimum. The ICP

algorithm can now be stated:

1. For each point in Y, compute the closest point on X.

2. Using the correspondences from step 1, compute the incremental transforma-

tion (R, t) by SVD.

3. Apply the incremental transformation from step 2 to the data Y.

4. Compute the change in the total mean square error. If the change in the error

is less than a threshold, terminate. Else go to step 1.

The ICP algorithm is only guaranteed to converge to a local minimum, and there is

no guarantee that this local minimum will correspond to the actual global minimum.

In our case, the recognition of the joint based on the estimated axes gives a fairly

good initial alignment with the model, sufficient to achieve global convergence.

4 Optical Sensing

In this section, we describe the processing of the optical data in order to perform

registration, that is, solving for the camera pose that best fits a model to some

matching image features.
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As the model is a tubular rig, the relevant image features are the segments

forming the bounding contours of the pipes.1

4.1 Camera Model

The optical device is modeled by the pinhole camera, which is given by its optical

center C and its retinal plane (or image plane) R. A 3-D point W is projected onto

an image point M given by the intersection of R with the line containing C and W

(Fig. 5). The line containing C and orthogonal to R is called the optical axis and

its intersection with R is the principal point. The distance between C and R is the

focal distance (note that, as in this model C is behind R, real cameras will have

negative focal distances).

Go Ga

Ga

Go
C

W

O

X

Y

−1

Echoscope

Camera

M

ModelZ

Model reference frame

Figure 5: Optical/acoustic calibration.

Let w = [x y z]> be the coordinates of W in the model reference frame, and let

m = [u v]> be the coordinates of M on the image plane (pixels). The mapping from

3-D coordinates to 2-D coordinates is the perspective projection, which is represented

by a linear transformation in homogeneous coordinates. Let m̃ = [u v 1]> and

1Given a viewpoint, the rim of an object is the set of all the points on the object surface to
which the line joining the viewpoint (optical ray) is tangent (assuming perspective projection).
The projection of the rim is the bounding contour of the object in the image.
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w̃ = [x y z 1]> be the homogeneous coordinates of M and W, respectively; then, the

perspective transformation is given by the 3×4 matrix P̃:

λm̃ = P̃w̃, (7)

where λ is an arbitrary scale factor. The camera is therefore modeled by its perspec-

tive projection matrix (henceforth PPM) P̃, which can be decomposed, using the

QR factorization, into the product

P̃ = A[I|0]Go, (8)

where [I|0] is a 3×4 matrix composed of the identity and a column of 0’s appended.

The 3×3 matrix A depends on the intrinsic parameters only: focal length in pixels,

aspect ratio, principal point, and skew factor. The camera position and orientation

(pose) are encoded by the 4 × 4 matrix Go, representing the rigid transformation

that brings the camera reference frame onto the model reference frame. R is the

3× 3 rotation matrix and t is the 3× 1 translation vector.

We seek the matrix Go, assuming that the constant intrinsic parameters have

been computed off line by a calibration procedure [23].

4.2 Lines Grouping

Underwater images are characterized by a very low signal-to-noise ratio because

of low illumination and bad environmental conditions. In order to filter the noise

without affecting the signal, we use the Perona-Malik [24] anisotropic smoothing
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filter, which preserves the information about object contours. Basically, it is a

Gaussian smoothing filter with a standard deviation dependent on the grey-level

gradient.

Straight lines are extracted by combining the Canny [25] edge detector with

Burn’s Plane Fit Algorithm [26]. First, edge points are extracted with the Canny

edge detector, which allows one to find very sharp edges (often one-pixel large)

thanks to the non-maxima suppression. Then, pixels are clustered into support

regions if they are spatially adjacent and if their gradient orientations are roughly

the same. The line parameters are computed with plane intersections of the weighted

fit to the intensity values and the horizontal average pixel intensity plane, within a

support region. The weight favours the intensity values of pixels with high gradient

magnitude. Taking primarily the gradient orientation as evidence for a line and

using the plane fit method, the algorithm actually extracts long, straight lines as

well as shorter lines, and is effective in finding low-contrast lines.

Each extracted segment is then labeled and its attributes are computed. In order

to find pipes in the image, pairs of segments are grouped together; they are likely

to be the projections of the boundaries of a pipe (not every segment pair is the

projection of a pipe). Grouping is based on proximity and covering criteria: two

segments are paired if their projections onto their median axes overlap by more than

60%, and the distance between their midpoints is less than a threshold (which is

related to the expected distance of the pipe boundaries in the image).
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4.3 Model-View Registration

Optical alignment is performed using an algorithm (developed by Lowe [27]) that

finds the camera pose that yields the best matching between each image segment

and the projection of its corresponding cylinder rim. The algorithm assumes that

image-model correspondences are given. In our case, the initial pose of the optical

camera is assumed to be the same as that of the acoustic one (Ga), already com-

puted. Projecting the model accordingly, model segments are matched to the image

segments by using an algorithm introduced by Scott and Longuet-Higgins [28] to

associate the features of two arbitrary patterns.

If the approximate camera pose were unknown, a more complex recognition

algorithm should be used [29].

4.3.1 The Scott and Longuet-Higgins algorithm

Scott and Longuet-Higgins [28] proposed an algorithm (based on the singular value

decomposition (SVD)) for associating the features of two images. The algorithm

incorporates both the principle of proximity and the principle of exclusion.

Let I and J be two images, containing m features Ii and n features Jj, respec-

tively, which we want to put in one-to-one correspondence. The algorithm consists

of three stages.

The first stage is to build a proximity matrix G of the two sets of features

Gij = e−r2
ij/2σ2

(9)

where rij is a well-defined distance between the features Ii and Jj, and σ is an
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appropriate unit of distance that controls the scale of interaction. The next stage is

to perform the SVD of G

G = USV> (10)

where U and V are orthogonal and S is a non-negative m× n diagonal matrix.

Finally, S is converted into a new m × n matrix D by replacing every diagonal

element Sii with 1, thus obtaining another matrix

P = UDV> (11)

of the same shape as the original proximity matrix and whose rows are mutually

orthogonal. The element Pij indicates the extent of pairing between the features Ii

and Jj. If Pij is both the largest element in its row and the largest element in its

column, then we regard the two different features Ii and Jj as corresponding with

each other.

This matrix incorporates the principle of proximity by construction of G and

the principle of exclusion by virtue of its orthogonality.

In our application, the elements to be matched are lines, expressed in the normal

form:

u cos αi + v sin αi − di = 0. (12)

As a distance between model lines and image lines, we used the following

rij =

∥∥∥∥
[
cos αi, sin αi,

2di

maxl dl

]
−

[
cos αj, sin αj,

2dj

maxl dl

]∥∥∥∥ (13)
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The first two components are bounded in the interval [−1, 1], whereas the third

belongs to [0, 2]. As the initial pose is quite close to the true one, this simple matching

is sufficient.

4.3.2 Lowe’s algorithm

Let us suppose that point correspondences are available and that the intrinsic camera

parameters are known. Let w1 . . .wN be N points of an object model expressed in

the model reference frame, and let m1 . . .mN be the image points, projections of

the wi. The relation between an object point and an image point is given by the

perspective projection:

κA−1m̃i = [R|t]w̃i. (14)

derived from (8) by setting Go =



R t

0 1


 . Let p̃i = [ui, vi, 1]> = A−1m̃i be the

normalized image coordinates. If we expand, we see that each point correspondence

generates two equations: 



ui =
r>1 wi + t1
r>3 wi + t3

vi =
r>2 wi + t2
r>3 wi + t3

.

(15)

where R = [r1, r2, r3]
> and t = [t1, t2, t3]

>. The 12 unknown components of R and

t could be derived from a sufficient number of point correspondences by solving a

linear system. The resulting R, however, is not guaranteed to be orthogonal. To

explicitly enforce its orthogonality, R must be parametrized with the three Euler

angles φ, ψ, θ, ending up with a nonlinear system of six unknowns t, φ, ψ, θ, which

can be determined if at least three point correspondences are known. To counteract
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the effect of inaccurate measures or correspondences, however, it is advisable to

use as many correspondences as possible. The resulting overdetermined system of

nonlinear equations can be solved (in the Least-Squares sense) by Gauss-Newton’s

method. This is usually referred to as Lowe’s algorithm [27].

Equation (15) is linear with respect to translation and scaling over the image

plane, and approximately linear over a wide range of values of the rotational param-

eters. Hence, the method is likely to converge to the desired solution for rather a

wide range of possible starting positions. In our case, the initial pose of the optical

camera is assumed to be the same as that of the acoustic one (Ga), already com-

puted. Given the small displacement between the two cameras and the negligible

rotation, this is usually sufficient to ensure convergence.

The method can be easily extended to cope with line correspondences [27]. Given

a set of pairs of corresponding image and model lines, we choose two points on

each model line and compute the signed distance between each projected point and

the corresponding image line. As each point gives one equation for the correction

parameters, and as two points are sufficient to uniquely identify the model line, a

line-to-line correspondence yields the same information (two equations) as a point-

to-point correspondence, and the structure of the algorithm remains unchanged.

The case of smooth-boundary objects, like cylinders, is different. A rim generated

by a sharp edge is stable on the object as long as the edge is visible, whereas a rim

generated by a smooth surface changes continuously with the viewpoint. In our case,

the rim is a line in space whose position is a function of the parameters t, φ, ψ, θ.

Hence, the expression for the residuals becomes more complicated. However, as
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noted by Lowe [27], ignoring this dependence, hence treating the rim as a fixed line

in space, does not prevent the algorithm from converging, and does not affect the

precision of the final alignment.

5 Integration and Virtual Modeling

Given a rig composed of an optical and an acoustic camera, and given an acoustic

image composed of a set of target points, each at a certain 3-D position, we want

to project the acoustic image onto the optical image plane, thus obtaining a depth

map with reference to the image plane.

To this end, the relative poses of the optical and acoustic cameras are needed.

In principle, one should calibrate the cameras. A suitable object should be manu-

factured that is characterized by distinct features in both the acoustic and optical

images. This is impractical underwater and very difficult to achieve, mainly because

of the low resolution of the acoustic device. In our approach, we use the scene itself

as a calibration object. Knowing the VRML model of the observed object, we regis-

ter both the acoustic and optical data to the model, thereby obtaining the relative

pose of the optical camera with respect to the acoustic cameras. As this process

is performed on line, better estimates can be obtained by integrating the measures

over time, using a Kalman filter [30].

Let Go be the matrix representing the pose of the optical camera, obtained after

the optical alignment, as described in Sec. 4:

w̃std = Gow̃model, (16)
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and let Ga be the rigid transformation that brings the acoustic-camera reference

frame onto the model reference frame, computed by the 3-D alignment, as described

in Sec. 3:

w̃sonar = Gaw̃model. (17)

By composing the two transformations, we get: w̃std = GoG
−1
a w̃sonar. Hence, the

PPM that projects the 3-D points expressed in the acoustic-camera reference frame

onto the image plane of the optical camera is given by (see Fig. 5):

P̃oa = A[I|0]GoG
−1
a . (18)

The intrinsic parameters’ matrix A is the same as that of the optical camera, and

is obtained by a calibration procedure.

By projecting the 3-D points onto the image plane, while keeping the third

coordinate, which represents the distance of the points to the focal plane of the

camera, we obtain a depth field defined at sparse locations. To obtain a proper

depth map, a surface mesh is first generated by Delaunay triangulation on the

image plane. The mesh may have several unwanted features upon creation, such

as small, insignificant noise patches and jagged boundaries. Long edges and small

unconnected surface patches are then removed. Moreover, as the acoustical data

have been registered to the model, the points falling outside the pipe boundaries –

because of the low spatial resolution of the acoustic device – are discarded. Finally,

a uniformly sampled surface at a higher resolution than that of the original mesh

data is obtained by interpolation and resampling the image over the pixel grid. As
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a result, we achieve a depth map referred to the optical image.

Moreover, the accurate estimate of the position of the system relative to the

environment is used in combination with the database information to provide a high-

quality, 3D graphics, virtual display of the environment. This scene can be viewed

from any position and direction, including the ROV itself, and as this virtual view

is unaffected by turbidity, etc., it provides a clear and easily understandable view of

the complete working environment.

6 Results

(a) (b)

Figure 6: Raw acoustic data recorded with the acoustic camera. The joint is clearly
visible, but there are also spurious points.

In this section, we provide the results obtained in two real cases. An ROV

equipped with a video camera and an acoustic camera was used to take images of

an underwater rig off Bergen, Norway. This rig constituted our model base and was

approximately 20 × 20 m large and 10 m high; its VRML model was completely
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known. The video camera was calibrated [23] underwater, using a suitable cali-

bration jig in order to estimate the intrinsic parameters. The lateral displacement

between the two cameras was approximately 300 mm, and the views were approxi-

mately parallel. However, we did not rely on these measures, for the relative pose

of the cameras was obtained as explained in the previous sections.

(a) (b)

Figure 7: Optical images with the projected model superimposed according to the
initial pose estimate (dashed lines) and to the final pose estimate (solid lines).

Our procedure started from the raw acoustic data (in Fig. 6(a) and 6(b)) and

the video image (visible in Figs. 7(a) and 7(b)) of a scene consisting of pipes of radii

500mm and 250mm meeting at a joint. These are typical cases used under operating

conditions, as the view frustum of the acoustic camera cannot be too large due to

interference phenomena. One can notice the quite bad qualities of both kinds of

images, especially the low range resolution of the acoustic images.

A small annex attached to the vertical pipe is visible in Fig. 7(a). This structure

is contained in the geometrical model, and if detected, can be used to validate the

recognition of the main pipe structure. It cannot be confused with the main pipe,
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even though the pipe-extraction module had detected it, thanks to the different size.

(a) (b)

Figure 8: Optical images with the projected acoustic points (white dots) and the
projected model superimposed upon them. Points falling outside the pipe bound-
aries have been discarded.

When the vehicle is close to the structure, marine vegetation attached to the

pipes may prevent them from being optically recognized (e.g., as in Fig. 7(b), where

two pipes out of five have not been detected). However, the system still works

because the matching to the model is guided by the acoustical data only.

The viewing distance was 7.7m for the joint in Fig. 7(a) and 9.2m for the joint in

Fig. 7(b). The registration of 3-D data converged to a solution with a residual (RMS

point-model distance) of approximately 70 mm in both cases. This is a good result,

as compared with the camera range resolution, which was 10 cm. The results of the

optical registration are shown in Fig. 7(a) and Fig. 7(b), in both of which one can

notice the accuracies of the optical model-view registrations starting from the rough

alignment derived from the acoustic data processing phase. After both registration

stages, the poses of the cameras with respect to the object were estimated and the

acoustic-optical integration was actually carried out.
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(a) (b)

Figure 9: Acoustic depth maps registered to the optical images. The gray level of
a given pixel represents its depth (the darker, the closer). Solid lines represent the
model projected according to the camera pose estimate.

The results of the integration can be appreciated in Fig. 9(a) and Fig. 9(b), which

show depth images (registered to the optical images) where the depth for each pixel

was computed from the projection of 3D acoustic points onto the optical images (see

Figs. 8(a) and 8(b)).

(a) (b)

Figure 10: Surfaces interpolating the (processed) 3-D acoustic points, with the real
image texture mapped onto them. An arbitrary background plane is also shown.

In Fig. 10(a) and Fig. 10(b), the same depth maps are shown as surfaces, with
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the original image texture-mapped onto them. Finally, Fig. 11(a) and Fig. 11(b)

show the synthetic models with the 3-D acoustic points superimposed upon them.

The software prototype was written partly in C (GNU compiler) and partly

in MATLAB on a Windows 95 Pentium 1 platform, and runs off line, taking as

inputs one frame from the recorded sequence of acoustic data (in the form of x, y, z

triplets) and the corresponding frame from the video sequence (in AVI format).

Acoustic and video data carry time stamps (visible in the upper left corners of the

images in Figs. 7 and 8). Calibration data are available in a configuration file. The

overall computing time is about 10 seconds for the typical examples given in this

section, the ICP algorithm being the most time-consuming operation, also because

it is fully implemented in MATLAB. We are currently porting the system to Visual

C++ on a Pentium IV 1.7 GHz computer, for the purpose of making it run at 10

frames per second.

(a) (b)

Figure 11: Virtual model of the scene with the 3-D acoustic points superimposed
upon it. In the left picture the point of view was chosen such as to make visible two
pipes that were occluded in the original image.
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7 Conclusions

Guidance and inspection/maintenance/repair tasks performed by ROVs are very

hard for several reasons. They require specialist crew, expensive training and many

hours’ practice. The output from the video camera is difficult to understand due to

the 2-D nature of the images or to bad environmental conditions leading to disorien-

tation. This situation cannot be significantly improved by using traditional acoustic

sensors, as their outputs are not available in a form that is readily understandable

even by a trained operator. The aim of our work is to overcome these difficulties.

This paper has presented a system aimed at assisting an ROV pilot by provid-

ing him with an augmented-reality image obtained by integrating multisensor data

coming from an optical and an acoustic sensor and a VRML model. This virtual

display of the working environment offers the basis for undertaking many typical

underwater tasks with relative ease, as compared with current methods using video

cameras only.

Available data are matched separately to a model in order to compute the pose of

each sensor with respect to the model reference frame. In addition, the calibration

of the two sensors leads to the registration of 3-D acoustic data to a 2-D optical

image.

The system adopts some interesting methods for both acoustic and optical data

processing. The most significant issues addressed by these methods are the synergic

use of two different sensor devices, the calibration of the relative pose of the two

sensors by using an observed object, and the integration of 3-D and 2-D data at the

numerical level.
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