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Generation of All-in-focus Images by Noise-robust
Selective Fusion of Limited Depth-of-field Images

Said Pertuz, Domenec Puig, Miguel Angel Garcia, Andrea Fusiello

Abstract—The limited depth-of-field of some cameras prevents
them from capturing perfectly focused images when the imaged
scene covers a large distance range. In order to compensate for
this problem, image fusion has been exploited for combining
images captured with different camera settings, thus yielding a
higher quality all-in-focus image. Since most current approaches
for image fusion rely on maximizing the spatial frequency of
the composed image, the fusion process is sensitive to noise. In
this work, a new algorithm for computing the all-in-focus image
from a sequence of images captured with a low depth-of-field
camera is presented. The proposed approach adaptively fuses
the different frames of the focus sequence in order to reduce
noise while preserving image features. The algorithm consists
of three stages: focus measure, selectivity measure and image
fusion. An extensive set of experimental tests has been carried
out in order to compare the proposed algorithm with state-of-the-
art all-in-focus methods using both synthetic and real sequences.
The obtained results show the advantages of the proposed scheme
even for high levels of noise.

Index Terms—All-in-focus, image fusion, extended depth of
field, focus measure

I. INTRODUCTION

THE limited depth of field of optical systems is a com-
mon problem in image acquisition since it leads to

the defocusing of those parts of the depicted scene that are
not comprised within the in-focus limits, hence affecting the
quality and amount of information that can be retrieved from
the captured images. In particular, when images are captured
with a low depth-of-field system, the objects at different depths
from the camera may appear out of focus if they are away from
the focus plane.

Image fusion aims at combining several images of the same
scene with different camera settings and a same distance
between the camera and the scene. The aim is to obtain a
higher quality image more suitable for human or machine
interpretation (for instance, focus fusion, high dynamic range
creation, etc). In the particular case of low depth-of-field
imaging, image fusion can be carried out by combining images
of a focus sequence, that is, a sequence of images of the same
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scene captured with different focus settings. The goal is to
obtain an image where all the visible objects are focused.
Such an image is referred to as an all-in-focus (AIF) image.
This paper assumes that the different frames of the focus
sequence are properly aligned, that is, that the image shift
due to parallax or magnification change is negligible or has
already been compensated.

Previous algorithms proposed in the literature to compute
the AIF image can be broadly organized into four main fami-
lies: methods based on the spatial frequency, image pyramids,
defocus modeling and wavelet transforms. Methods based on
the spatial frequency usually apply a sharpness measure or
focus measure in order to identify the pixels with higher
information content in each frame [1]. The methods based on
image pyramids usually perform a multi-scale decomposition
of the image in order to identify the pixels or image regions
with higher information content at different scales [2], [3].
Alternatively, the methods based on defocus modeling recover
the AIF image under the assumption of a known point spread
function model and then apply a filter designed to reverse its
effect [4]–[6]. In order to work appropriately, these methods
rely on an estimation of the parameters of the point spread
function. Finally, the methods based on the wavelet transform
carry out a wavelet decomposition of the focus sequence. The
image fusion is then performed in the wavelet domain by
selecting the wavelet coefficients according to some criterion
[1], [7]. The wavelet transform can also be considered to be
as an instance of a multi-scale decomposition, resembling the
approaches based on image pyramids, although the coefficients
are selected in the wavelet domain instead of in the spatial
domain.

In general, most all-in-focus methods, with the exception
of defocus modeling-based methods, can be described through
the following energy maximization scheme [6]:

1) An image stack, Ik(x, y), is acquired, where (x, y) de-
notes the spatial coordinates and k is the frame number.
Each Ik corresponds to an image captured at a certain
in-focus distance.

2) Either a high frequency measure or a focus measure is
applied to each frame of the image stack in the space
domain, the scale-space domain or the wavelet domain
depending on the method applied in order to compute
the AIF image.

3) An index map is generated such that each position (x, y)
keeps the index z of the frame with the largest frequency
or focus measure for that position.

4) The all-in-focus image is generated based on the previ-
ous index map. In the particular case of pyramid-based
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or wavelet-based methods, an inverse transformation is
usually required.

An important drawback of the scheme described above is
that, in the presence of noise, the maximization of the focus
measure will also add noise to the final result. The effect of
noise can be attenuated by applying a low-pass filter in either
a pre- or post-processing step at the expense of image contrast.

In this paper, an alternative robust algorithm for computing
the AIF image in the presence of noise is presented. The
algorithm consists of three stages: focus measure, selectivity
measure and image fusion. This algorithm takes advantage of
the effect of noise in the third dimension of the image stack in
order to perform a selective fusion of images. An extensive set
of experimental tests has been carried out in order to identify
its advantages and weaknesses. In addition, a comparative
study with state-of-art algorithms shows the benefits of the
proposed approach.

This paper is organized as follows: the next section de-
scribes the proposed selective all-in-focus algorithm (SAF).
In section III, the proposed method is compared with state-of-
the-art algorithms using synthetic and real focus sequences.
Finally, a discussion of the obtained results and conclusions
are presented in sections IV and V, respectively.

II. PROPOSED APPROACH

According to the theory of defocus, the irradiance of a point
spreads as it departs from the in-focus position [8]. Therefore,
focus measure algorithms estimate the local energy of the
processed images. This principle is valid for the detection of
the in-focus position in autofocus [4], shape recovery in shape-
from-focus [9] and all-in-focus computation in image fusion.

The maximization of energy for detecting maximum focus
remains valid in the ideal case of noiseless images. Notwith-
standing, the relationship between signal strength and noise
level in real images is critical in order that changes in focus
be detectable by traditional methods.

In this section, a new methodology to recover the all-in-
focus image from a focus sequence is presented. The proposed
selective image fusion algorithm adapts the fusion rule to the
strength of the signal with respect to noise. This allows for
a selective noise filtering in the spatial domain that preserves
image features in highly textured areas. The selective fusion
is performed in three main steps: focus measure, selectivity
measure and image fusion.

A. Focus Measure

An important step in image fusion is the application of an
activity measure or focus measure. Focus measurement has
been an intensive research field for 3D shape recovery in
shape-from-focus and autofocus. Focus measure operators of-
ten work by applying a transformation to the original image in
order to enhance its sharpness. The energy of the transformed
image over a region of interest is then used as a focus level
estimator. Many focus measure algorithms that operate in both
the spatial and frequency domains have been proposed. In the
case of spatial domain operators, images are usually divided
into blocks of fixed size (e.g., [10]). The aim of a block is to

capture enough image information in order to detect changes
in focus. The block size should be large enough to allow an
accurate measurement of the focus level and small enough to
only encompass regions with a similar focus degree [11].

A different approach to block-wise computation is the
application of pixel-wise measures (e.g., [12]). In this case, a
focus measure operator is computed for every pixel by taking
into account a small neighborhood around that pixel as a
support region. A focus measure matrix, Fk, is computed for
each image Iz of the stack. The values of the focus measure
for a pixel at coordinates (x, y) over all the image frames
are referred to as focus function (or focus measure vector):
fx,y = (F1(x, y), ...Fk(x, y), ...FN (x, y)), where Fk(x, y) is
the focus measure of that pixel at the k-th frame and N is the
total number of frames.

In the literature, several focus measure operators have been
proposed based on different working principles, such as the
image gradient (gradient energy [9] and Tenengrad algorithm
[13]), image Laplacian (the modified Laplacian [14] and
energy of Laplacian [4]), and image statistics (the gray-level
variance [15]), among others.

A comparison of different focus measure operators for aut-
ofocus can be found in [13]. Any of the aforementioned focus
measure operators could be applied to the present application.
In particular, a pixel-wise measure, the gray-level variance has
been used as a focus measure in this work:

Fk(x, y) =
∑

(i,j)∈Ω(x,y)

(I(i, j)− µ)2, (1)

where Ω(x, y) is the r×r neighborhood of (x, y) and µ is the
mean gray-level of pixels within ω(x, y). The selection of r is
a trade-off between robustness to noise and spatial resolution
[16] and is, hence, application-dependent. A radius r = 9 has
experimentally been defined in this work.

B. Selective measure

As all focus measures, the measure in (1) is also sensitive
to noise. In order to perform a selective image fusion for
generating a low-noise all-in-focus image, the aforementioned
focus measure is complemented with a selection scheme that
allows the system to determine if the focus measurement is
reliable or not. The proposed approach is illustrated in Fig.
1, where the focus functions corresponding to different image
regions are plotted. From those curves, it can be appreciated
that the focus functions corresponding to regions with different
texture patterns exhibit different behaviors. On the one hand,
the image features in Fig. 1(a) are “weak” when compared
to the noise present in the sequence. On the other hand, the
image texture in Fig. 1(b) stands out over the existing noise,
leading to a clear response with a maximum at the position of
highest focus.

Let the focus function for a pixel at coordinates (i, j) be a
signal that varies according to both the degree of focus of this
pixel and some additive noise:

fi,j = Gi,j +Ni,j , (2)

where fi,j is the computed focus function for that pixel, Gi,j

the associated ideal focus function and Ni,j a noise signal
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Fig. 1. Behavior of focus measures for different texture patterns. (a) Low-
textured patterns. (b) Highly-textured patterns

that represents the departure of the focus function from the
ideal behavior. Ni,j may be explained by image noise, lack
of texture and limitations of the focus measure operator. By
studying the behavior of the focus function, it is reasonable to
model Gi,j as a Gaussian function. This assumption is often
applied in shape-from-focus for the computation of topology
maps or depth-maps from focus sequences (e.g., [14]).

Let the ideal Gaussian function corresponding to the pixel
at coordinates (i, j) be defined as:

Gi,j(z) = A exp
(
−(z − µ)2/(2σ2)

)
, (3)

where A is the maximum value of the Gaussian function, µ
its mean value and σ its standard deviation. Following [14],
A, µ and σ are found by interpolation as a function of the
depth value z. As shown in Fig. 2(a), three points around
the maximum value of fi,j are used in order to fit the above
Gaussian. Once Gi,j has been estimated, the noise signal Ni,j

is readily computed from (2). The selectivity measure for the
pixel at coordinates (i, j), namely S(i, j), is obtained from
Gi,j and Ni,j as the PSNR:

S(i, j) = 20 log(max(fi,j)/RMS(Ni,j)). (4)

This selectivity measure is intended to describe how well
the focus measure adjusts to the ideal behavior, and determines
if the image fusion at the next step should give priority either
to the preservation of image features or to the reduction of the
effects of noise. The PSNR of fi,j will yield low values for
pixels corresponding to regions with weak features where the
focus measure operator fails to measure focus accurately and,
thus, where the effects of noise are not negligible.

The Gaussian fit illustrated in Fig. 2 corresponds to an
idealized focus profile. The focus profile refers to the shape
of the focus function and is an important concept studied in
autofocus and shape-from-focus. On the one hand, it depends
on the intensity distribution of the image, as a function
of the amount of defocus and the response of the focus
measure operator to those intensities. Therefore, the real focus
profile depends on both the scene luminance and the focus
operator. On the other hand, it depends on the characteristics
of the imaging device (in terms of the focal length, numerical
aperture and resolution) and the scene geometry. Thus, without
prior knowledge about these variables, it is difficult to derive
the exact shape of the focus profile. In addition to the Gaussian
fit [14], some researchers have also proposed quadratic or
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Fig. 2. Decomposition of the focus measure function. (a) Function sampling
for Gaussian fit. (b) Decomposition into Gi,j (signal) and Ni,j (noise)
components.

polynomial fits [4]. Recently, Mannan and Choi [17] proposed
a new focus profile model by only considering the intensity
distribution of the focused image along the optical axis; and
Tsai and Chen [18] derived a focus profile model for a
particular focus measure operator based on the horizontal
gradient of the image.

Gaussian interpolation has been used in this work for its
generality (without assumptions on the applied focus measure
operator, the luminance of the scene or the configuration of
the acquisition device) and since it correctly describes well the
desired behavior of the focus profile: a sharp and noiseless
peak. Whenever the focus profile departs from this ideal
behavior, either due to the presence of noise or the acquisition
conditions, the selective measure in (4) will respond accord-
ingly. The suitability of the proposed fit for this particular
application is experimentally assessed in section III.

C. Image fusion

A straightforward solution to the image fusion problem is
to compute the intensity of a pixel in the all-in-focus image
ψ at coordinates (x, y) as a weighted average of the pixels
in the original sequence. The weights will be proportional to
the activity of the image pixels (the focus measure value):
ψ(x, y) =

∑K
k=1 F̃k(x, y)Ik(x, y), where F̃k is the focus

measure normalized so that
∑

k F̃k = 1. Notwithstanding, this
approach has two drawbacks: first, a linear combination of all
frames yields a low-contrast, all-in-focus image. Second, the
sensitivity of all focus measure operators to high-frequency
components in the images will yield a low-quality all-in-focus
image in the presence of noise. Bearing this in mind, in the
final step of the proposed SAF algorithm, an image fusion
process is performed according to the activity of image pixels,
the later estimated by means of both the focus measure (1)
and the relevance of the image features estimated through the
selectivity measure (4):

ψ =
1

Ω

K∑
k=1

ω(k)Ik, (5)

where Ω =
∑K

k=1 ωk and ω(k) are weighting coefficients
adaptively computed based on the image content by applying
a transfer function to the focus measure. This transfer function
is modulated by the selectivity measure. Thus, the overall
transformation will adapt to the image content. The definition
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Fig. 3. Selective weighting. (a) Weighting for an ideal focus function. (b)
Weighting for a noisy focus function.

of those coefficients is fully described below. For simplicity,
sub-indices (x, y) have been omitted in (5). In the sequel, all
symbols and equations refer to pixels at coordinates (x, y)
unless otherwise is indicated.

The intensities in the AIF image corresponding to pixels
that exhibit a strong visual pattern (nearly ideal behavior)
are generated by giving a larger weight to the intensities of
those pixels with a higher focus measure. In other words, the
energy maximization scheme is held for pixels with a high
selectivity measure. In contrast, the intensities of the pixels that
exhibit weak visual patterns and hence have a greater noise
influence are generated by averaging the original intensities
over the whole focus sequence, thus giving preference to noise
reduction. The objective of the transfer function is to provide a
smooth continuous transition between these two extreme cases.

For illustration purposes, Fig.3 shows the desired weights in
(5) as a function of the normalized focus measure value for two
different cases. Fig. 3(a) shows the weights for an idealized
focus measure function f(x, y) that gives preference to those
pixels with the highest focus values (Fk → 1). In contrast,
Fig. 3(b) shows the weights for a non-ideal focus function. In
this case, pixels with lower focus value still have a significant
contribution on the computation of the AIF image.

The behavior of ω in Fig. 3 is analogous to a high-pass filter
in the frequency domain. In this work, this analogy has been
exploited in order to propose a definition of ω. Digital filters
are designed to cope with certain desired characteristics in
the frequency domain while keeping an efficient time domain
representation. Alternatively to traditional FIR and IIR filters,
the hyperbolic tangent-based filters allow easy control of the
cut-off frequency and the transition band [19], [20]. A general
pass-band hyperbolic tangent-based filter is defined in the
frequency domain of f as :

H(f) =
tanh(φ(f ± fc)) + 1

2
, (6)

where fc determines the band-pass frequency and φ controls
the transition band (slope).

Equation (6) is suitable for the sought weighting in (5)
since it has a fast exponential decay (e−f ) for points away
from the cut-off frequencies and can be easily parameterized
as a function of φ. In particular, since the normalized focus
measure is between 0 and 1, ω is defined as a high-pass filter
with a cut-off frequency of 1 [20]:
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Fig. 4. (a) Effect of α on the strength of selectivity. (b) Transfer function
for different values of S.
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Fig. 5. Working principle of the proposed SAF algorithm. (a) Defocused
frame. (b) Selectivity measure S(x, y). (c) Sharpening parameter φx,y

ω(k) =
1

2
+

1

2
tanh(φ(Fk − 1)). (7)

Equation (7) is a logistic function that provides a continuous
transition between the minimum and maximum values of Fk.
The speed of that transition is modulated by the sharpening
parameter φ which, in turn, is a sigmoid function of the
selectivity:

φ =
1

2α
(1 + tanh(α(S − Sth))). (8)

The transformation described in (7) and (8) depends on two
parameters: a selectivity threshold (in decibels), Sth ∈ [0,∞],
and a selectivity constant, α ∈ (0, 1]. These parameters can
be described as follows (see Fig. 4): the selectivity threshold
indicates the inflexion point at which preference is given either
to the preservation of image features (S � Sth) or to the
suppression of artifacts (S � Sth). The selectivity constant
allows the user to specify the strength of the selectivity in
the fusion process. A value of α → 0 will lead to a higher
selectivity. The sensitivity of the SAF algorithm to these
parameters is assessed in section III.

D. Working principle

The key principle of the SAF algorithm is its capability to
adapt the image fusion process to both the image content and
the amount of noise without changing its parameters Sth and
α. For instance, Fig. 5(a) shows a frame from two synthetic
sequences corresponding to the same scene but with different
noise levels. The corresponding values of S and φx,y are
shown in Fig. 5(b) and (c), respectively.
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In Fig. 5, the first row corresponds to a low-noise focus
sequence. In this case, the selectivity measure, S, is high
all over the image, meaning that the pixel intensities and
their corresponding focus measures are reliable. This leads
to high values of φx,y . Thus, the image fusion process is
mostly performed through an energy maximization scheme. In
contrast, the second row of Fig. 5 corresponds to a sequence
with high levels of noise. The sharpening parameter φx,y has
high values only for those pixels where image features are
strong enough to compensate for the effects of noise. The low
values of φx,y in areas where the image patterns are weak will
lead to a stronger smoothing, hence suppressing noise.

The main conceptual difference between the proposed ap-
proach and previous works is that, instead of applying the
same smoothing rule to the whole image (by means of low
pass filters, Gaussian pyramids or by removing wavelet coef-
ficients), the image fusion is performed adaptively by taking
into account the local features of the scene and the response of
the focus operators to those features. This leads to a reduction
of both noise and artifacts while preserving image texture.

III. EXPERIMENTS

Several experiments have been conducted in order to assess
the performance of the proposed approach with either low
noise or high noise for real and synthetic focus sequences.
Details regarding the generation of the synthetic sequences
are also provided, as well as on the acquisition of real focus
sequences with varying levels of noise.

A. Defocus simulation

A defocused image is often considered in the literature as
a filtered version of a focused one. Thus, a defocused image
Id can be described as the convolution of the focused image
I with a blurring function h:

Id = I ∗ h. (9)

Function h is referred to as a Point Spread Function (PSF),
since it is the response of the camera to a unit point source
[21]. In diffraction limited optics with incoherent illumination,
the PSF can be simplified as a Gaussian [21] with variance σh,
which is assumed to be proportional to the degree of defocus of
the image. Following [22], it is possible to derive an expression
that interrelates the blur parameter σh, the distance between
the imaged point and the in-focus position, δ, and fixed camera
parameters such as the lens focal length fL, the f-number N
and the pixel size κ:

σh =
κf2

L

N

δ

u(uf − fL)
, (10)

where uf is the in-focus position (the distance at which the
camera is focusing).

The convolution in (9) is only valid under the assumption
of a spatially invariant blurring function within the evalua-
tion window (isoplanatism). Therefore, in order to avoid the
isoplanatism assumption for the synthetic data used in this
work, a blurred image Bx,y is obtained for every scene point
at coordinates (x, y) by convolving it with its corresponding
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Fig. 6. Simulation of a focus sequence. (a) Synthetic textured surface. (b)
Blur width of the 15-th frame.

PSF: Bx,y = I(x, y) ∗ hx,y , where hx,y denotes the PSF
corresponding to pixel I(x, y) according to its depth. In turn,
the defocused image for the pixel located at (x0, y0) given a
W×H image is obtained by adding the contributions of every
defocused point:

Id(x0, y0) =

W−1∑
i=0

H−1∑
j=0

Bi,j(i− x0, j − y0). (11)

Image noise must be taken into account for a more ac-
curate simulation of the defocus process. A CCD camera
has several primary noise sources, which can be grouped
into irradiance-dependent and irradiance-independent sources.
In that way, a noisy image In can be modeled as [23]:
In = f(I+ns +nc) +nq , where I is the original image, f(·)
is the camera response function (CRF), ns is the irradiance-
dependent noise component, nc is the independent noise,
and nq is the additional quantization and amplification noise.
According to [23], nq is neglected, ns and nc are assumed to
have zero mean and variances Var(ns) = I · σ2

s and Var(nc) =
σ2
c , respectively.
In this work, all simulated sequences consist of 30 images of

different sizes. The textures mapped on the synthetic surfaces
were selected in order to cope with a variety of features and
intensities. For illustration purposes, Fig. 6 shows a surface
with a texture mapped on it and the blur width of each pixel in
one of the resulting simulated frames. The continuous shape of
the conic surface in Fig. 6 yields frames with different degrees
of blur (0 < σh < 15).

B. Tests on simulated data

The focus sequences synthetically generated as described
in the previous section allow the availability of a ground truth
for an objective estimation of the performance of the image
fusion process. Based on a thorough review of the literature,
five algorithms were selected for comparison:

1) Helicon Focus: an image fusion software produced by
HeliconSoft [24].

2) Zerene Stacker: a fusion software produced by Zere-
neSystems [25].

3) Extended depth of field (EDF): a fusion algorithm based
on wavelets presented in [7].

4) 3D extended depth of field (3D EDF): a fusion algorithm
based on defocus modeling presented in [6].

5) The algorithm proposed by Tian et al. [26] based on the
spatial frequency.
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Fig. 7. Synthetic focus sequences used for comparison

Fig. 9. Image fusion for synthetic focus sequences obtained with different
algorithms. From top to bottom: Zerene Stacker [25], Algorithm of Tian. et al.
[26], EDF [7], Helicon Focus [24], 3D EDF [6] and proposed SAF algorithm.

Figure 8 shows the mean performance of the differ-
ent algorithms in terms of signal-to-noise ratio: SNR =
20 log(Σx,yI(x, y)/Σx,y|I(x, y) − φ(x, y)|), the peak-signal-
to-noise ratio PSNR = 10 log(Σx,y2552/Σx,y(I(x, y) −
φ(x, y))2) and the universal quality index (UQI) originally
proposed in [27]. The i-th noise level corresponds to noise
variances σ2

c = σ2
s = 0.06i. In this figure, Ref corresponds to

the mean performance of the original focus sequence used to
generate the AIF image with respect to the associated noiseless
focus sequence. Fig. 7 shows a frame from three different
synthetic focus sequences, whereas Fig. 9 shows details of
the all-in-focus images obtained from the previous sequences
using the evaluated algorithms. For high noise levels, the
difference in quality of the AIF image obtained with the
different methods tends to increase in favor of the proposed
SAF algorithm. The images shown in Fig. 9 correspond to the
first noise level (i = 1)1.

1A full resolution version of all the images shown in this work and the
parameters of each stacking algorithm can be found online at http://www.
sayonics.com/research/focus fusion.html

TABLE I
NOISE LEVELS FOR REAL SEQUENCES

Noise level Gain [dB] Shutter speed [s]
0 0 1/12
1 +16 1/75
2 +20 1/120
3 +22 1/150
4 +26 1/215
5 +28 1/300

Fig. 10. Real scene at increasing noise levels. Left to right: 0th, 2nd and
5th noise level.

C. Tests on real data

Real focus sequences of 33 images of 640 × 480 pixels
were acquired with a Sony SNC-RZ50P camera. In order
to increase the noise level, the shutter speed was reduced.
Since the intensity of an image pixel is proportional to the
integration time (inversely related to the shutter speed), the loss
of intensity is then compensated by the gain of the camera.2

This leads to an increase of the amplification noise. The
procedure for capturing real sequences with different noise
levels can be summarized as follows:

1) The camera is adjusted to obtain the best-quality image
of the scene and a focus sequence is captured. This
sequence corresponds to noise level 0.

2) The gain of the camera is increased in order to raise
the amplification noise. The shutter speed is increased
in order to compensate for the illumination change. This
sequence corresponds to noise level 1.

3) Since the camera gain and shutter speed can only be
set to discrete predefined values, the histograms of the
captured images must be equalized as necessary.

4) Steps 2 and 3 are repeated to compute the sequence
corresponding to the i-th noise level.

Table I summarizes the camera configuration used for the
acquisition of real sequences at different noise levels. Fig. 10
shows a frame of a particular scene with different noise levels.

Tests have been conducted on both color and gray scale
images. For the color images, each frame was converted to
gray scale in order to compute both the focus measure (1) and
the selectivity measure (4). Then, the fusion rule in (5) was
independently applied to each color channel.

For the real sequences, it is not possible to compute an
objective quantitative performance measure since the ground-
truth is not available and the quality of the results must be
subjectively determined by simple observation. However, it is
possible to assess the impact of noise over the fusion process
by comparing the AIF image obtained from a noisy sequence
against the AIF image obtained from the sequence with the

2The lens aperture must remain unchanged in order to keep the same depth
of field.

http://www.sayonics.com/research/focus_fusion.html
http://www.sayonics.com/research/focus_fusion.html
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Fig. 8. Performance comparison for synthetic focus sequences.

Fig. 12. Image fusion for a real focus sequence obtained with different
algorithms. From top to down: first row, Helicon Focus software [24]; second
row, 3D EDF algorithm [6]; third row, proposed SAF algorithm; fourth row,
φx,y .

lowest noise level. Thus, in Fig. 11, the SNR is computed
using the all-in-focus image obtained from the sequence with
the lowest noise level as a reference. For an algorithm to be
robust to noise, the AIF images of sequences with higher noise
will be less corrupted and will, therefore, have a higher SNR.
Fig. 12 shows details of the all-in-focus images obtained from
a color focus sequence using Helicon Focus, 3D EDF and SAF.
In addition, this figure shows the sharpening parameter, φx,y ,
in order to illustrate how the fusion process is performed. Fig.
13 is an example for a gray-scale sequence.

D. Algorithm’s performance

As shown in section II, the proposed algorithm depends
on two parameters. The values of the parameters used in
the results shown in this work for both synthetic and real
sequences correspond to Sth = 11 dB and α = 0.2. These pa-
rameters have been selected experimentally using the synthetic
sequences and recording the mean SNR for each parameter
pair.

As shown in Fig. 14, the parameters were selected in
order to maximize the performance in the synthetic sequences

Fig. 13. Image fusion for a gray-scale real focus sequence with different
algorithms. From top to down: first row, Helicon Focus software [24]; second
row, 3D EDF algorithm [6]; third row, Proposed SAF algorithm; fourth row,
φx,y .
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Fig. 14. Level plot of the mean SNR of synthetic sequences as a function of
the parameters α and Sth. The best performance is obtained for Sth = 11
and α = 0.2 .

(in terms of SNR). In order to assess the sensitivity of the
proposed approach to these parameters, the synthetic focus
sequences corresponding to noise level 1 were processed
with variations of those parameters of ±15%. The maximum
variation observed in the SNR was −1 dB (3.1%). With
this variation, the SAF algorithm still outperforms the closest
competing algorithm (3D EDF). The variation of SNR for real
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Fig. 15. Three frames from real sequence (fL = 42 mm, N = 1.6). Left
to right: 1st, 10th and 30th frame. The color rectangles in the first image
highlight the first (red), second (green) and third (blue) region of interest.

sequences was 1.5%.
According to (10), the factors that most influence the

amount of blur (and hence the performance of any focus mea-
sure operator) are the parameters of the acquisition process.

Although it is difficult to evaluate the performance of image
fusion algorithms under all possible imaging conditions, the
following experiment was conducted in order to identify the
limitations of the proposed approach: Fig. 15 shows three
frames of a real focus sequence. For this particular scene, a
focal length of fL = 42 mm was used and the different objects
placed in order to cover a long distance range (between 0.5
m and 3.5 m from the camera). According to (10), the object
position u influences the shape of the focus function. Fig. 15(a)
highlights three different regions of interest corresponding to
objects at different depths. In addition, the same scene was
captured using three different f-numbers.

The response of the selective all-in-focus to different object
distances and lens f-number is illustrated in Fig. 16. In Fig.
16(a), the weighting ω (low row) has a high slope and is the
least sensitive to the change in f-number. This behavior is
sound since the focus function (top row) has a sharp peak
around the in-focus position. Therefore, the all-in-focus pixels
should be constructed by giving a high weight to the pixels
with high focus value in the original sequence. The focus
functions in Fig. 16(b) (top row) show that the corresponding
object is rapidly focused (frames 1 to 5) but it defocuses
very slowly, leading to a flat focus profile. This yields a
weighting function with a low slope that composes the all-in-
focus image using more images from the original sequence.
Notwithstanding in this particular case, the contrast is not
affected since many images of the original sequence have a
high focus value (from the fifth frame to the last). Finally
in Fig. 16(c), the focus function increases slowly and the
weighting ω is the most sensitive to changes in the f-number.

Fig. 17 shows the AIF images and some details for se-
quences of the same scene shown in Fig. 15 captured with
different f-numbers. Since the f-number changes the amount

Fig. 17. Details of image fusion for objects with different focus functions
and different f-number. From left to right: f-number = 1.6, 4.0 and 8.0,
respectively.

of light that reaches the camera’s sensor, the change in
illumination has been compensated by changing either the
shutter speed or the gain. Therefore, it is possible to observe
differences in the image balance.

In the second and last rows of Fig. 17, it is possible to
observe some areas with low contrast mainly due to two
reasons: first, the composition of images with high variations
of defocus may be deficient if the weighting function ω is
not sharp enough and fails to select only the pixels with
highest focus value in regions with rich texture. Secondly, the
Gaussian fit used to model the peak of the focus function
adapts to the image content poorly when the depth-of-field is
large and the focus variation slow.

IV. DISCUSSION

The results presented in section III show that the proposed
method outperforms the other tested algorithms for synthetic
sequences even at the lowest noise levels (i = 1). For
instance, in the first column of Fig. 9, the face has a smoother
appearance, whereas highly-textured areas, such as the hat’s
feathers, are sharply recovered. In the image of the camera-
man, the sky shows a cleaner appearance, whereas the contours
of the man are well defined.
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Fig. 16. Selective weighting for different focus profiles. First row: focus functions. Second row: weighting function. First region of interest (a), Second
region of interest (b) and third region of interest (c) of Fig. 15.

In real sequences, the results show that the SAF algorithm is
the most insensitive to noise, confirming the results obtained
with synthetic sequences. For example, in the detail images
of Fig. 12 and 13, the background always presents a cleaner
appearance, whereas edges, letters and contours are sharply
defined even for thin and small characters. However, a white
halo can be observed near the edges of the white letters within
the detail image in Fig. 12. This effect is barely noticeable and
is observed at higher noise levels around bright white areas
surrounded by a dark background. This halo can be due to
the fact that bright spots have a larger spread than dark ones
when defocusing, and the radiance of these spots may “leak”
into darker areas during the image fusion process.

From the results obtained for a same scene with different
noise levels, it is evident that the proposed approach responds
to the image content selectively. Therefore, as the noise level
increases, the fusion process provides a smooth low-noise
response in areas of low PSNR, while reducing the negative
impact on image features. From the results obtained using
non-Gaussian focus profiles, the proposed approach yielded
acceptable results. Notwithstanding, the results may be im-
proved with a more accurate model for the focus profile.

The need for parameters is common in the evaluated AIF
algorithms. Notwithstanding, the results in the previous section
show that the proposed method is reasonably insensitive to
its parameterization. The fact that the transfer function of (7)
and (8) is defined in terms of sigmoids guarantees that the
intensity of a given pixel of the AIF image will always be
a combination of the pixel intensities of the focus sequence.
This has a positive impact on the stability of the algorithm.

In terms of computational cost, the least complex all-in-
focus methods are those based on the spatial frequency. These
methods usually imply the application of a focus measure
to each image of the focus sequence, followed by a fusion
rule. In the second place, the pyramid-based and wavelet-based
approaches usually require a forward transform, a combination
step applied to the obtained sub-images or sub-bands, and
an inverse transform. The cost of the forward and inverse
transforms increases with the number of levels of the pyramid.

The methods with the highest computational costs are those
based on defocus modeling (e.g., 3D EDF).

The different methods compared in this work were ob-
tained from different sources and platforms (e.g., Java, Mat-
lab, C). Therefore, an objective quantitative comparison in
terms of computation time is not provided. Notwithstanding,
the efficiency of the proposed approach is between that of
spatial-based methods and wavelet-based methods. Similarly
to spatial-based methods, the SAF algorithm requires the
application of a focus measure followed by a fusion rule.
However, the computation of the selectivity measure represents
an additional cost. In spite of that, the computation of both the
focus measure (1) and the selectivity measure (4) is simple
and fast. In particular, the computational complexity of the
proposed algorithm is O(NKh2), where K is the number of
images, N the number of pixels in each image and h the radius
in (1). The Matlab implementation of the proposed algorithm
fuses a sequence of 50 gray-scale images of 640× 480 pixels
in approximately 7.0 s running on an Intel 2 Quad processor
at 2.5 GHz and 4GB of RAM.

V. CONCLUSIONS

A new method to generate the all-in-focus image from a
focus sequence has been presented. The proposed approach
selectively fuses the different frames of the focus sequence
in order to reduce noise while preserving image features. The
selective fusion is performed in three steps: focus measure,
selectivity measure and image fusion. The proposed algorithm
has been compared to state-of-the-art methods upon both
synthetic and real focus sequences. A Matlab toolbox for
the computation of the all-in-focus image using the SAF
algorithm has been implemented and will be available on-
line. The proposed method has been applied to gray-scale
images and extended to color images by applying the fusion
rule independently to each color plane.

The performance of the algorithm depends on the model
selected for the focus profile. Future work will compare
different models, such as those proposed in [17] and [18].
In addition, the final results are expected to improve if the
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algorithm is applied with a pre-processing that compensates
for the image shift observed in focus sequences.
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