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Abstract

In this paper we propose a patch-based technique for robust background initialization that exploits

both spatial and temporal consistency of the static background. The proposed technique is able to cope

with heavy clutter, i.e, foreground objects that stand still for a considerable portion of time. First the

sequence is subdivided in patches that are clustered along the time-line in order to narrow down the

number of background candidates. Then, a tessellation is grown incrementally by selecting at each step

the best continuation of the current background. The method rests on sound principles in all its stages,

and only few, intelligible parameters are needed. Experimental results show that the proposed algorithm

is effective and compares favorably with existing techniques.

Index Terms

Background initialization, Bootstrapping, Background modelling, Motion segmentation, Content-

based representation

I. INTRODUCTION

Segmenting moving objects from a static background is a relevant issue in areas such as video surveil-

lance [1], [2], perceptual interfaces [3], and content-based video encoding (MPEG4) [4]. Foreground

objects can be extracted effectively by subtracting the background in the image frames, provided that

an updated model of the background is available at any time. This is achieved by initialization (also

called bootstrapping) of the background followed by its maintenance. Therefore it is assumed that a

short segment at the beginning of the sequence is reserved for initialization.
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It is clear that initialization is crucial to allow a proper maintenance. Nevertheless, there has been a

large amount of work addressing the issues of background model representation and maintenance [2],

[1], [3], [5], [6], [7], [8], [9], [10] but not as much focusing on model initialization [11], [12], [13]. The

main reason is that often the assumption is made that initialization can be achieved by exploiting some

clean frames at the beginning of the sequence. Obviously this assumption is hardly met in real scenarios,

because of continuous clutter presence.

In this paper we address the background initialization problem, which is defined as follows: Given a

video sequence taken with a stationary camera, in which any number of moving occluders (clutter) can

be present, output a single image of the scene without clutter, even if such an image has never been

captured.

Consider a video sequence taken with a stationary camera: Starting from a single pixel in one frame,

a temporal line (or time-line) piercing all the aligned frames will intersect both pixels that correspond to

the background and pixels belonging to foreground. The goal is to reconstruct a background image by

picking the correct color (or gray-level) from each time-line.

Some assumptions are customary, that make this task feasible:

i) the background has to be globally stationary, i.e. only small local motion may occur (e.g. waving

trees);

ii) in each pixel, or small region, the background is revealed for at least a short interval of the sequence;

iii) the processing occurs after the end of the sequence.

The second hypothesis implies that no object can occlude the background for the entire sequence. This

is necessary for we want to use only observed values to fill the background at each location, as opposed

to video inpainting [14], [15], [16], where plausible values are used for filling holes.

If hypothesis ii) were stronger, requiring that clutter has to rest on each pixel location for less than

50% of the entire sequence length, the background could be easily obtained as the median of each pixel

color distribution [17].

Other techniques [1], [3], [6] have been proposed which, like the median, operate at pixel-level, making

decisions independently for each pixel. The Adaptive Smoothness Method [5], for example, finds intervals

of stable intensity in the time-line. Then the longest stable value for each pixel is selected and used as

the value that most likely represents the background.

Better performances can be obtained if the spatial support of a pixel is taken into account. The

Local Image Flow algorithm [11], for instance, considers also information generated by the neighboring

locations of a pixel. Background values hypotheses are generated by locating intervals of relatively
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constant intensity, which are weighted with local motion information gathered from the optical flow.

The algorithm that is closer in spirit to ours is [13]. The main difference is that [13] relies on temporal

stability, whereas we do not. It applies a rough segmentation of the input sequence into foreground and

background blocks. Segmentation aims to find stable intervals of time for each block, i.e. intervals with

low motion energy. This is done block by block using an iterative process that minimizes a cost function

proportional to the motion energy. The stable interval of a block is used to initialize the stable interval

of the adjacent blocks, thereby exploiting the spatio-temporal continuity of the sequence. F

All the techniques based on temporal stability, however, are doomed to fail in presence of very persistent

clutter, which eventually becomes part of the background. This is also referred to as the waking person

or sleeping person problem [2].

The algorithms proposed in [12] and [18] solve the sleeping person problem, borrowing some ideas

from video inpainting. They are based on the same scheme: (i) identifying an initial background region and

then (ii) filling-in the remaining unknown background incrementally by choosing values from the same

time-line. At each step, the patch that maximizes a likelihood measure with respect to the surrounding

zone, already identified as background, is selected. This entails that the background should be self-similar

(like a building facade) and that the starting region should be large enough to provide sufficient structure

information.

In summary, our algorithm proceeds as follows. First the sequence is subdivided in patches that are

clustered along the temporal line in order to narrow down the number of background candidates. Then the

background is grown incrementally by selecting at each step the patch that provides the best continuation,

according to the same continuity measure implemented by the spatial graph-cuts [19] segmentation.

With respect to the state of the art, our approach i) is more effective in dealing with the sleeping

person problem than techniques based on the notion of temporal stability, such as [11]; ii) it needs not

to assume a self-similar background like [12], [18]; iii) it makes only mild assumptions, unlike [13], for

example, which requires that the top left block of the sequence be clear of clutter. A preliminary version

of this work appeared in [20].

The paper is organized as follows. In Sec. II our continuity-based method is explained step by step and

summarized in Sec. II-D. Experimental results are shown in Sec. III: Our algorithm is directly compared

with the one proposed in [13] and with those evaluated in [2] for the specific case of the bootstrapping

sequence. Finally, conclusions are drawn in Sec. IV.
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II. METHOD

We model the video sequence as a 3D array vx,y,t of pixel values. Each entry contains a color value,

which is a triplet (R,G,B). A spatio-temporal patch vS is a sub-array of the video sequence, defined in

terms of the ordered set of its pixel coordinates: S = Ix × Iy × It, where Ix, Iy, It are set of indices.

The window W = Ix × Iy is the spatial footprint of the patch. An image patch vR is a spatio-temporal

patch with a singleton temporal index: R = W × {t} or R = (W, t).

Our method for background initialization is based on the following hypothesis:

i) the background is constant;

ii) in each spatio-temporal patch (of a given footprint size) the background is revealed at least once;

iii) foreground objects introduce a color discontinuity with the background.

The first hypothesis implies that the same background point is imaged always onto the same pixel

with the same intensity (if visible), and it implicitly defines the background model: an image with single

valued pixels, as opposed to models that represent disjoint set of values at each pixel, as in [1], [2].

Small camera motion can be modelled by a global projective transformation compensated as in [21],

while little intensity changes can be taken into account as noise.

The second hypothesis differs from the corresponding one stated in the introduction: We require

visibility at patch level instead of pixel level – which is stronger, but we relax it along the time dimension.

Indeed, the technique presented here can deal, in principle, with sequences where the background is

revealed exactly once, differently from [13], [5], [11].

The third hypothesis (also used in [22]) excludes camouflage and makes possible to grow the back-

ground by continuity. In other words, it expresses a bias toward a continuous background.

A. Estimating camera noise

The first step is to estimate the noise affecting pixel values in the video sequence. In the following we

shall assume that the three color channels (R,G,B) are statistically independent, therefore we will consider

here one color channel at a time. Albeit questionable, this is a simplifying assumption that many authors

made, including [1].

Assuming that noise is i.i.d. Gaussian with zero-mean N (0, σ2
n), differences of pixel values along the

time-line nx,y,t = vx,y,t − vx,y,t+1 are distributed as N (0, 2σ2
n) plus outliers due to moving foreground

objects. The noise standard deviation σn is then estimated robustly from nx,y,t. In order to get more

statistics, we consider not only the differences between consecutive pixel values but also between frames

of distance two and three.
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A robust estimator of the spread of a distribution is given by the Median Absolute Difference (MAD):

MAD = medi{|ni −medi{ni}|}. (1)

It is proven [23] that, for symmetric distributions, the MAD coincides with the inter-quartile range, hence,

in our case:

MAD = 1
2(Φ−1(3

4)− Φ−1(1
4))
√

2σn = Φ−1(3
4)
√

2σn (2)

where Φ−1(α) is the αth quantile of the cumulative normal distribution.

B. Temporal clustering

The spatial indices are subdivided into windows Wi of size N ×N , overlapping by half of their size

in both dimensions as shown in Fig. 1.

W4 W2

W3

W1

W0

Fig. 1. Each footprint Wo has four overlapping neighbors: W1,W2,W3 and W4.

In order to reduce temporal redundancy, in each spatio-temporal patch, we cluster image patches that

depict the same static portion of the scene with single linkage agglomerative clustering [24]. Starting

from all singletons, each sweep of the algorithm combines two clusters into a single cluster according

to the simple linkage rule which says that the two clusters that achieve the smallest inter-group distance

between any pair of objects are linked. A cutoff distance, i.e., a distance behind which two clusters are

not linked, is set.

Let vS , S = Wi×{1 · · ·L}, be a spatio-temporal patch with footprint Wi which extends in time from

the first to the last frame. In our case, the distance between two image patches v(W,t1) and v(W,t2) is

given by the Sum of Squared Distances (SSD):

SSD(W, t1, t2) =
1

2σ2
n

∑

x,y∈W
||vx,y,t1−vx,y,t2 ||2 (3)

The cutoff distance should prevent clustering together image patches that do not have the same content.

It is obtained from a statistical test, based on the expected distribution of the SSD between two image
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patches that depict the same static portion of the scene. The SSD has a Chi-square distribution with 3N2

degrees of freedom, which is evident if we re-write (3) as a Mahalanobis distance:

SSD(W, t1, t2) = (v̄W,t1− v̄W,t2)
> I

2σ2
n

(v̄W,t1− v̄W,t2) (4)

where v̄W,t is the 3N2-dimensional vector obtained by “vectorizing” vW,t (because N2 = |W|, and 3

is the number of color channels).

Therefore, given a desired confidence level α, we deem that image patches vW,t1 and vW,t2 depict

the same static portion of the scene (hence they can be linked in the clustering) if:

SSD(W, t1, t2) < χ−1
3N2(α) (5)

where χ−1
n (α) is αth quantile of the cumulative Chi-square distribution with n d.o.f.

Although clusters are made of image patches instead of pixels, the clustering phase implements the

same idea as the intervals of stable intensity defined in [5], except for the fact that clusters do not need

to form a connected temporal interval, and tricky thresholds are avoided.

The resulting clusters are spatio-temporal patches, with possibly not consecutive temporal indices. Let

W×Tk denote cluster k over spatial footprint W , a representative image patch for that cluster is obtained

by averaging pixel values along the time-line:

ux,y,k =
1
|Tk|

∑

t∈Tk

vx,y,t ∀x, y ∈ W. (6)

As a consequence, the noise affecting the values ux,y,k is i.i.d. N (0, σ2
k) with σ2

k = σ2
n/|Tk|.

In each spatial footprint W we now have a variable number of cluster representatives uW,k1 . . .uW,k`

(see Fig. 2). The assumption ii) that we made implies that (at least) one of them depicts only static

background: The subsequent stage is devoted to find out which one.

Motion energy heuristic: A heuristic that demonstrated helpful to cull the clusters consists of rejecting

those of size one (i.e., composed by one frame) provided that this do not eliminate all the clusters with

a given footprint. This corresponds to the practice of discarding patches with high motion energy [18],

[13], [11], computed with optical flow or temporal differencing. Indeed, image patches containing fast

moving objects tend to form size-one clusters. In order to obtain the correct result, however, we ought to

strengthen the hypothesis: in each spatio-temporal patch the background must be revealed at least twice.

C. Background tessellation

The background is constructed with a sequential approach: starting from seed patches, a tessellation

is grown by choosing, at each site, the best continuation of the current background.
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Fig. 2. Some cluster representatives over the same footprint: The first one depicts the background, whereas the others contain

clutter. The “people&foliage” sequence is depicted in Fig. 6

The background seeds are the patches that represent the largest clusters. Since we assume that no

foreground object is stationary in all the frames, if the largest clusters have size L (maximal), they are

fully reliable. Otherwise, mistakes are possible as they could represent a persistent foreground object.

The growing proceeds as follows. Let W be a spatial footprint where a background patch has not been

assigned yet, but it has been assigned to at least one of its neighbors, W0. This means that W overlaps

with some background. The algorithm assigns the background patch to W by choosing one from the

cluster representatives with footprint W .

The selected patch has to fulfill two requirements:

1) Seamlessness. In the part that overlaps with W0 it has to depict the same content as the background

patch, so that it can be stitched seamlessly to it;

2) Best continuation. In the non-overlapping part it has to represent the “best continuation” of the

current background, meaning that, among several candidates, the patch that introduces the least

discontinuity is chosen.
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This procedure is repeated for all the footprints, until all the background has been assigned (Fig. 3).

Details on how 1) and 2) are implemented are given in the next two subsections.

Time-intersection heuristic: Another requirement, drawn from [13], that might be considered before 1)

and 2) as a culling heuristic consists in requiring that the intersection of the temporal indices of adjacent

clusters that are selected to represent the background is not empty. This is related to a general implicit

assumption of spatio-temporal continuity of the foreground motion.

Fig. 3. Snapshots of the background as the tessellation proceeds.

1) Seamlessness: As for the first requirement, the discrepancy of a candidate image patch u(W,k) with

the background patch u(W0,k0) in the overlapping part is measured with:

SSD(W0∩W, k0, k) = 1
σ2

k0
+σ2

k

∑

W0∩Wi

||ux,y,k0 − ux,y,k||2. (7)

By the same token as before (in (5)), u(W,k) is considered for inclusion in the background with confidence

α if

SSD(W0 ∩W, k0, k) < χ−1
3M (α) (8)

where M = |W0 ∩W|.
If W happens to overlap with other footprints thanW0 where the background has already been assigned,

the same test is applied, mutatis mutandi, to the entire area of overlap.

2) Best continuation: As for the second requirement, we propose here a method to compare two

candidates (if there are more candidates a round robin tournament is used), based on the principles

of visual grouping [25]. The approach rests on the assumption iii) that foreground objects introduce
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a discontinuity with the background. When a pure background patch is compared to an image patch

containing foreground, their binarized difference defines a partitioning of the pixels into two groups

(Fig. 4), i.e., a segmentation. The previous observation implies that the score of this segmentation

according to the principles of visual grouping (similarity, proximity, and good continuation) must be

higher in the patch containing foreground than in the one containing background. This links the problem

of selecting the best continuation of the background to the visual grouping theory.

Fig. 4. From left to right: two cluster representatives (background candidates) and their binarized difference.

Graphs cuts have been proposed in [19] as a general computational framework for grouping. The image

is represented as a complete weighted undirected graph G = (V,E), by taking each pixel as a node and

connecting each pair of pixels by an edge. The weight on that edge reflects the likelihood that the two

pixels belong to the same region. Grouping is cast as the problem of partitioning the vertices into disjoint

sets, where the similarity among the vertices in a set is high and across different sets is low. The edge

weight connecting the two nodes i and j is defined as [19]:

wij = e−(fi−fj)>(2Λ)−1(fi−fj) (9)

where fi is a feature vector containing the spatial position of a pixel i, xi and yi, and its RGB color

values, Ri, Gi, Bi: fi = [xi, yi, Ri, Gi, Bi]. The diagonal matrix Λ contains normalizing values, which

are approximately (the square of) 1/4 of the range of variability of the respective component: Λ1/2 =

diag(N/4, N/4, σn, σn, σn).

The graph can be partitioned into two disjoint sets, A and B, A ∪ B = V , A ∩ B = ∅, by simply

removing edges connecting the two parts. This set of edges constitutes a cut. The cost of the cut, which

measures the degree of similarity between the two regions A and B, is the sum of all its edge weights:

cut(A, B) =
∑

i∈A,j∈B

w(i, j). (10)

The optimal segmentation is the cut with the minimal cost.

November 3, 2009 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 10

Going back to the problem of choosing between two image patches the one that yields the best

continuation of the background, consider the cut (A,B) defined by their binarized difference:

A = {(x, y) : 1
σ2

k1
+σ2

k2

||ux,y,k1− ux,y,k2 ||2 < χ−1
3 (α)}. (11)

Let us assume that one of the two patches contains only background, while the other contains also some

foreground clutter; the cost cut(A,B) is more likely to be lower in the second, because it runs along the

discontinuity, whereas in the background patch the same cut is likely to contain more expensive edges.

Our method, inspired by graph-cuts1, can be seen as a principled way of applying the same continuity

criterion as in [22], where a heuristic based on the comparison of the inner and outer boundaries of the

difference region is employed.

D. Summary of the algorithm

1) Estimate the camera noise σ2
n as the sample variance of frames difference, using the MAD as in

(2).

2) Subdivide the spatial domain into overlapping windows W or footprints.

3) On each footprint W , cluster image patches vW,t with single linkage agglomerative clustering using

SSD (3) as the distance and a cutoff based on the Chi-square test (5).

4) Compute cluster representative by averaging with (6).

5) Select the clusters of maximal length, insert their representatives in the background B.

6) Select a footprint W which is only partially filled in B.

7) For each cluster representative uW,k evaluate the discrepancy with B using (7) and select candidates

patches for insertion in B according to (8).

8) The candidate patches enter a round robin tournament, where the comparison between any two of

them is done according to cost of the cut (10) defined by their binarized difference (11). The higher

cost wins. The winner of the tournament in inserted in B.

9) Repeat from Step 6 until the background image is complete.

As the footprints are overlapping, up to four pixels from the original sequence might rest on a single

pixel (x, y) in the final background image. Let T be the set of temporal indices of the frames that

contributed to the background value at (x, y), via the cluster representatives. The output of the algorithm

1Please note that we do not actually perform segmentation. We simply rely on the graph-cuts paradigm to compute the cost

of a given segmentation.
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is an estimate of the background bx,y and its variance σ2
b,x,y obtained as the sample mean and variance

– respectively – of the values vx,y,T . A variance image is shown in Fig. 5.

Fig. 5. Gray level visualization of the per-pixel variance of the “people&foliage” background (values are normalized in [0,255]).

The culling heuristics described previously, namely motion energy and time intersection, do not affect

significantly the quality of the result, rather they reduce the computing time, as they cut the number

of cluster candidates. Occasionally, however, they might discard the true background cluster, thereby

preventing the algorithm to produce the correct result. For this reason we prefer to consider them as

optional features that can be turned on if one is willing to trade off speed for quality of the result.

The complexity of the algorithm is dominated by the round robin tournament, in the background

tessellation step. The worst case is when all clusters have dimension one and all of them enters the

tournament, thus requiring L×(L−1)
2 = O(L2) trials for each footprint, where L is the number of images.

Computing the cost of the cut costs O(N4) in the worst case, where N is the footprint size. Hence, the

algorithm complexity is O(M×L2×N4), where M is the number of footprints. Since M ≈ 4 Q
N2 , where

Q is the total number of pixels, the complexity can be rewritten as O(Q× L2 ×N2).

Our unoptimized MATLAB implementation takes around 6 hours on a 2GHz Pentium IV with 2Gb of

RAM to process a 300 frames long sequence with a resolution of 240× 320 and a patch size of 39x39.

III. EXPERIMENTAL RESULTS

In the following we will refer to the method presented in this paper as PBI (Patch-based Background

Initialization).

The experiments are organized into three parts. In the first part we used the sequence “people&foliage”

that we constructed on purpose with heavy clutter in order to challenge the PBI algorithm. The ground

truth for the sequence is known, hence a quantitative analysis was performed in terms of closeness to
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the true background (with PSNR). The sequence is available on the web2 for comparison.

In the second part we compared PBI with the technique proposed in [13] (henceforth referred to as

RBE), using the same data. Comparison is only visual for one sequence and quantitative (PSNR) for the

other.

Finally, in the third part, we tested PBI on the “bootstrapping” sequence, that was used in [2] to

compare several background modelling algorithms. Unfortunately the ground truth is provided only for the

segmentation, and not for the background itself. As a consequence, we were able to compare performances

of PBI only through the results of segmentation. It turns out that PBI algorithm perform better than the

ones evaluated in [2].

The only critical parameter in the algorithm is the window size, which must be small enough to be

clear of clutter at least once in the sequence, but large enough for the overlap test to be reliable. We used

N = 39 with images 240× 320 (scaled proportionally with other image sizes). The confidence level was

α = 0.99999 in all the tests.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Results on the “people&foliage” sequence. (a), (b), (c) are some sample frames, (d) is the median, (e) is the true

background, and (f) is the background produced by PBI.

The “people&foliage” sequence (240×320) was obtained starting with a clean background sequence

2http://profs.sci.univr.it/∼fusiello/demo/bkg/
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TABLE I

COMPARISON AGAINST THE GROUND TRUTH FOR “PEOPLE&FOLIAGE”.

Algorithm PSNR # wrong pixels

average 14.12 47860

median 13.64 24015

PBI 44.89 5

onto which we pasted, with chroma-keying, two other sequences: One made by waving leaves, and another

depicting some people (sample frames are shown in Fig. 6). The clutter (leaves and people) is present in

every frame, and it is fairly persistent, as testified by the median background, also reported in Fig. 6 as

a baseline case. The numerical comparison with the ground truth, reported in Tab. I, demonstrates that

PBI recovers the correct background with negligible errors.

The number of wrong pixels in the background image was computed as follows. First the true

background g and the camera noise σg were obtained by computing average and standard deviation

(resp.) of the the clean background sequence. Then, using again the Mahalanobis distance, two pixels

gx,y and bx,y belonging to the true background and to the computed background respectively are deemed

to come from the same Gaussian distribution (i.e, the pixel is correctly classified as background) with

confidence α if:
1

σ2
b,x,y+ σ2

g,x,y

||bx,y − gx,y||2 < χ−1
3 (α). (12)

In this case the background pixel is correct, otherwise it is wrong.

Fig. 7 shows the results of RBE and PBI on the “VQEG-17” sequence (from Video Quality Experts

Group Test Sequences3). As a baseline, the median background is also shown. By visual comparison

(for the ground truth is not available) both algorithms produce a reasonably clean background and both

perform better than the median, which is corrupted by small artifacts.

A quantitative comparison with RBE can be obtained on the “hall&monitor” sequence (Fig. 8), for

which a ground truth background was computed as the average of the first four clean frames as written

in [13]. Table II shows that PBI produces a background closer to the ground truth. As the reader can

notice, the main difference between PBI results and RBE is the black suitcase that is not present at the

beginning, it is left behind by a person and then remains in the same position until the end. Whether the

3http://www.vqeg.org/
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(a) (b) (c)

(d) (e) (f)0

Fig. 7. Results on the “VQEG-17” sequence. (a), (b), (c) are some sample frames, (d) is the median, (e) is the output of RBE,

and (f) is the output of PBI.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Results on the “hall&monitor” sequence. (a), (b), (c) are some sample frames, (d) is the median, (e) is the output of

RBE, and (f) is the output of PBI.
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TABLE II

COMPARISON AGAINST THE GROUND TRUTH FOR “HALL&MONITOR”.

Algorithm PSNR

average 29.86

median 30.89

RBE 35.15

PBI 41.88

background should include the suitcase or not is clearly disputable. PBI solves the dilemma by favoring

the most continuous background, hence the solution without suitcase is preferred. Albeit arbitrary, this

behavior is consistent, i.e., it does not depend on how long the suitcase has been still.

This remark opens the question of defining the background (or at least what PBI consider to be

background). Any definition based on temporal stability incurs in the “sleeping person” problem, and we

avoided it on purpose. On the other hand, spatial continuity cannot be used alone: a white sheet waving

in front of the camera would otherwise obtain a white background. A non-operarational characterization

of the background produced by PBI is an unsettled issue.

In order to overcome the “sleeping person” problem, temporal persistence cannot be considered, so

“background is the most persistent object” is not a valid answer. Also “background is the most continuous

image that can be composed using all the available patches” is not a good definition, because it discards

the notion of object stationariety (a white sheet that is seen in turn in all the patches would produce a

white background). We must admit that we do not have a general definition of background that can cope

with the suitcase example. In this paper we are assuming that the background is implicitly defined by

the algorithm itself, by its hypothesis and behaviour.

Fig. 9 shows results obtained on the “bootstrapping” sequence, that was used in [2] specifically to

evaluate (in terms of foreground segmentation) the initialization phase of background modeling algorithms.

It consists of 3054 frames, the first 200 were used for initialization and testing occurs at the 299th frame,

for which a ground truth segmentation is provided (manually).

As we did before, foreground/background segmentation is cast as a statistical test using the Mahalanobis

distance: A pixel vx,y,t of the video sequence is deemed to belong to the background with confidence α
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. The top row shows the first (a) and the 299th frame (b) of the “bootstrapping” sequence: (c) is he median, (d) is the

output of PBI. The ground truth segmentation for frame #299 is shown in (e) and (f) is the result of PBI & Mahalanobis.

if:
1

σ2
n+σ2

b,x,y

||vx,y,t − bx,y||2 < χ−1
3 (α) ; (13)

otherwise it is assigned to the foreground. We will refer to this segmentation algorithm as “PBI &

Mahalanobis”.

This is a challenging sequence, and the recovered background by PBI & Mahalanobis has some

errors in the area of the condiment bar, because the corresponding patches were permanently occluded.

Consequently, the segmentation is far from perfect; nevertheless it turns out that it is better than the one

obtained with other state-of-the-art algorithms.
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Fig. 10. Comparison of several background initialization algorithms on the “bootstrapping” sequence (see [2] for the description

of the algorithms)

(a) (b) (c) (d)

Fig. 11. Background recovery from two frames. (a) and (b) are the original pictures, (c) depicts the clusters of length two,

and (d) is the output of PBI.

Fig. 10 reports the number of false positives and false negatives for the algorithms considered in [2]

with the addition of RBS [10] and PBI & Mahalanobis (this paper). As the reader can notice, our method

achieves the lowest total error (sum of false positives and false negatives).

Finally, the example shown in Fig. 11 demonstrate that our algorithm is not limited to videos, but can

work with as few as two pictures, where time statistics are not available.

IV. CONCLUSIONS

We illustrated an incremental, patch-based method for background initialization in a video sequence,

founded on the idea of continuation. The method is robust, as it can cope with serious occlusions caused

by moving objects. It is scalable, as it can deal with any number of frames greater or equal than two. It is

effective, as it always recovers the background when the assumptions are satisfied. Moreover, our method

rests on sound principles in all its stages, and only few, intelligible parameters are needed, namely the

confidence level for the tests and the patch size. The latter can be tuned manually or automatically by

November 3, 2009 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 18

a multiresolution approach. Experimental results show that our algorithm compares favorably with the

state-of-the-art.

Acknowledgments: We would like to thank Andrea Prati for providing the code of the RBS algorithm

[10] and for pointing us to some interesting papers. Dirk Farin kindly provided data and results of [13].

Stefano Fiore performed some of the experiments.

REFERENCES

[1] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using real-time tracking,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2000.

[2] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: Principles and practice of background maintenance,” pp.

255–261, 1999.

[3] I. Haritaoglu, D. Harwood, and L. Davis, “W4: Who? When? Where? What? a real time system for detecting and tracking

people,” in Proceedings of the 3rd International Conference on Face and Gesture Recognition, 1998.

[4] P.Nunes, P.Correia, and F.Pereira, “Coding video objects with the emerging mpeg-4 standard,” in I Conferência Nacional

de Telecomunicações, April 1997.

[5] W. Long and Y. Yang, “Stationary background generation: An alternative to the difference of two images,” Pattern

Recognition, vol. 23, pp. 1351–1359, 1990.

[6] C. Wren, A. Azarbayehani, T. Darrell, and A. Pentland, “Pfinder: Real-time tracking of the human body,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 19, pp. 780–785, 1997.

[7] N. Paragios and V. Ramesh, “A mrf-based approach for real-time subway monitoring,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, pp. 1034–1040.

[8] O. Javed, K. Shafique, and M. Shah, “Hierarchical approach to robust background subtraction using color and gradient

information,” in Workshop on Motion and Video Computing, 2002, pp. 22–27.

[9] L. Li and M. K. H. Leung, “Integrating intensity and texture differences for robust change detection,” IEEE Transactions

on Image Processing, vol. 11, no. 2, pp. 105–112, February 2002.

[10] S. Calderara, R. Melli, A. Prati, and R. Cucchiara, “Reliable background suppression for complex scenes,” in Proceedings

of the 4th ACM international workshop on Video surveillance and sensor networks, 2006, pp. 211–214.

[11] D. Gutchess, M. Trajkovic, E. Cohen-Solal, D. Lyons, and A. Jain, “A background model initialization algorithm for video

surveillance,” in Proceedings of the IEEE International Conference on Computer Vision, 2001, pp. 733–740.

[12] A. Colombari, M. Cristani, V. Murino, and A. Fusiello, “Exemplar-based Background Model Initialization,” in Proceedings

of the 3rd ACM International Workshop on Video Surveillance & Sensor Networks, 2005.

[13] D. Farin, P. H. N. de With, and W. Effelsberg, “Robust background estimation for complex video sequences,” in Proceedings

of the IEEE International Conference on Image Processing, vol. 1, 2003, pp. 145–148.

[14] Y. Wexler, E. Shechtman, and M. Irani, “Space-time video completion,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, vol. 1, 2004, pp. 120–127.

[15] K. A. Patwardhan, G. Sapiro, and M. Bertalmio, “Video inpainting of occluding and occluded objects,” in Proceedings of

the IEEE International Conference on Image Processing, vol. 2, 2005, pp. 69–72.

[16] J. Jia, T. Wu, Y. Tai, and C. Tang, “Video repairing: Inference of foreground and background under severe occlusion,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2004.

November 3, 2009 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 19

[17] B. Gloyer, H. Aghajan, K. Siu, and T. Kailath, “Video-based freeway monitoring system using recursive vehicle tracking,”

in Proceedings of the IS&T/SPIE Symposium on Electronic Imaging: Science & Technology – Image and Video Processing,

vol. 2421, 1995, pp. 173–180.

[18] C. Rasmussen and T. Korah, “Spatiotemporal inpainting for recovering texture maps of partially occluded building facades,”

in Proceedings of the IEEE International Conference on Image Processing, vol. 3, 2005, pp. 125–128.

[19] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[20] A. Colombari, A. Fusiello, and V. Murino, “Background initialization in cluttered sequences,” in 5th Workshop on Perceptual

Organization in Computer Vision, 2006, in conjunction with CVPR 2006.

[21] ——, “Video objects segmentation by robust background modeling,” in International Conference on Image Analysis and

Processing (ICIAP 2007). Modena, Italy: IEEE Computer Society, 10-14 September 2007, pp. 155–164.

[22] C. Herley, “Automatic occlusion removal from minimum number of images,” in Proceedings of the IEEE International

Conference on Image Processing, vol. 2, 2005, pp. 1046–1049.

[23] F. Hampel, P. Rousseeuw, E. Ronchetti, and W. Stahel, Robust Statistics: the Approach Based on Influence Functions, ser.

Wiley Series in probability and mathematical statistics. John Wiley & Sons, 1986.

[24] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264–323,

1999.

[25] M. Wertheimer, “Laws of Organization in Perceptual Forms,” in A Source Book of Gestalt Psychology, Ellis Willis D.,

Ed., Harcourt Brace, New York, 1939, pp. 71–88.

November 3, 2009 DRAFT


