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Abstract

This paper presents an ICP-based algorithm for tracking an articulated skele-
tal model of the human body (stick figure) in 3D. The data are 3D points dis-
tributed roughly around the limbs’ medial axes. The algorithm fits each stick
to a limb in a hierarchical fashion, traversing the body’s kinematic chain,
while preserving the connection of the sticks at the joints. Experimental re-
sults illustrate the algorithm.

1 Introduction
Tracking or capturing the motion of a human body is a problem that has a long his-
tory in Computer Vision (see [11] for a survey) and several real-world application, such
as human-computer interfaces, motion transfer, animation of virtual characters, activ-
ity/gesture/gait recognition, biomechanical studies. Marker-based commercial systems
are available that works at very high frame rates and very high precision. While it is
out of doubt that such speed/accuracy combination is necessary in biomechanics, it is
questionable whether it is needed when animating a virtual character in a videogame or
building a user-interface. There is therefore a niche for less expensive systems that work
markerless at a reduced speed (up to 100 Hz). In this paper we present part of an ongoing
project aimed at building a system with those characteristics.

The literature on markerless body tracking in three dimensions can be broadly split
into two groups: those using a stick model for the human body [5, 9], roughly correspond-
ing to its skeleton, and those using a full 3D model of the body’s shape, in the form of
a polygonal mesh or a volumetric model [2, 8, 12]. Since we aim at a real-time system,
we are forced to work with a stick model. Indeed, a stick (or skeletal) model has fewer
dependencies on anthropometric parameters than a shape model and can be tracked much
faster because of its simplicity.

We use an approach based on the well-known Iterative Closest Point (ICP) algorithm
[4]: the model is an articulated stick figure representing the body and it’s kinematics,
the data are 3D points distributed roughly around the medial axes of the limbs. The data
are registered to the model using a hierarchical approach that proceeds by traversing the
kinematic chain.

Differently from [12] we do not enforce joints constraints a-posteriori (thereby in-
terfering with the result of ICP) but during the registration process. To the best of our
knowledge this is the only ICP-based approach with this feature. Other approaches based



on the EM algorithm enforce the joint constraints, but they are much more computation
intensive than ICP.

2 Background

2.1 Human Body Model
In this section we describe the articulated model representing the human body pose we
used in the paper. It consists of a kinematic chain of ten sticks and nine joints, as depicted
in Figure 1. The torso is at the root of tree, children represents limbs, each limb being
described by a fixed-length stick and the corresponding rotation from its parent. Hence,
the motion of one body segment can be described as the motion of the previous segment
in the kinematic chain and an angular motion around a body joint. Only the torso contains
a translation that accounts for the translation of the whole body. Rotations are represented
with 3× 3 matrices. For the sake of simplicity, each joint has three degrees of freedom
and there are no limits on the angles.
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Figure 1: The stick figure body model.

2.2 Iterative Closest Point
The Iterative Closest Point (ICP) [6, 4] is customary used for registration of 3D sets of
points. The standard algorithm estimates the rigid motion between a given set of 3D data
points and a set of 3D model points. In summary:



Algorithm 1 ICP

Input: two sets of p 3D points, the data {ai}i=1...p and the model {bi}i=1...p
Output: the rigid motion T that brings the data onto the model

1. For each point ai of the data set find the closest point bi in the model set.

2. Given these putative correspondences, estimate the global motion transformation T
between all the points by solving an Extended Orthogonal Procrustes Problem (see
below).

3. Apply the transformation T to the data points.

4. If the distance between the two sets is less than a given threshold then quit, other-
wise repeat from step 1.

The Extended Orthogonal Procrustes Problem (EOPP) [13] can be stated as follows:
transform a given matrix A into a given matrix B by a similarity transformation (rota-
tion, translation and scale) in such a way to minimize the sum of squares of the residual
matrix. For reason that will be clear in the following, we consider instead the Weighted
Extended Orthogonal Procrustes Problem (WEOPP) problem, with weights on the points.
In formulae:

argmin
R

∥∥∥(cRA+ tu>−B)W
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where matrices A and B are (3× p) matrices containing p corresponding point in 3-D
space, R is (3× 3) orthogonal rotation matrix, t is a (3× 1) translation vector, c is scale
factor, u is a p×1 vector of ones, W is a (p× p) diagonal matrix weighting the p points,
and ‖·‖F denotes the Frobenius norm.

The solution to the the problem (derived in [1]) is based on the Singular Value De-
composition (SVD). Let

UDV> = Aw

(
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)
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be the SVD decomposition of the matrix on the right-hand side1, where Aw = AW , Bw =
BW , and uw = Wu. The sought transformation is given by (we omit the scale c that is not
needed in our case):

R = V
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U> (3)

t = (Bw−RAw)
uw

u>w uw
(4)

The diagonal matrix in (3) is needed to ensure that the resulting matrix is a rotation [7]
The Weighted Orthogonal Procrustes Problem (WOPP) problem is a special case of

WEOPP and the solution can be derived straightforwardly by setting u = 0.

1Please note that A uwu>w
u>w uw

is a matrix of the same size as A with identical columns, each of them equal to the
centroid of the points contained in A.



3 Hierarchical Articulated ICP
This section describes our contribution, namely the Hierarchical Articulated ICP algo-
rithm for registering an articulate stick model to a cloud of points. We assume that the
data are 3D points distributed roughly around the medial axes of the body’s segments.
They can reasonably come from the skeletonisation of a volumetric reconstruction of the
body, as in [9, 5, 10]

The data are registered to the model using a hierarchical approach that starts from the
torso and traverse the kinematic chain down to the extremities. At each step ICP computes
the best rigid transformation of the limb that i) fits the data and ii) satisfy the kinematic
constraints (namely, that the limb is connected to its ancestor through the joint) .

The closest point search works from the data to the model, by computing for each data
point its closest point on the body segments. Only the matches with the current segment
are considered, all the other should be – in principle – discarded.

However, the rotation in 3D space of a line segment cannot be computed unambigu-
ously, for the rotation around the axis is undetermined. In order to cope with this problem
we formulate a Weighted Extended Orthogonal Procrustes Problem and give a small but
non-zero weight also to points that match the descendants of the current segment. In this
way they contribute to constrain the rotation around the segment axis. Think, for example,
of the torso: by weighting the points that match the limbs as well, even if they are still to
be aligned, the coronal (aka frontal) plane can be recovered.

This is the complete algorithm described step by step:

Algorithm 2 HIERARCHICAL ARTICULATE ICP

Input: The model S composed by segments and the data set A of 3D points
Output: a set of rigid motions (referred to the kinematic chain) that brings the model
onto the data

1. Traverse the body model tree structure using a level-order or a preorder traversal
method.

2. Let s j ∈S be the current body segment.

3. Compute the closest points:

(a) For each data point ai ∈A and for each segment s` ∈S compute its projec-
tion pi` onto the line containing s` ;

(b) if pi` ∈ s` then add pi` to M (the set of the closest-point candidates), otherwise
add the endpoint of s` to M .

(c) Find bi, the closet point to ai in M .

4. Weight the points: If bi belongs to s j than its weight is 1, otherwise it is ε (chosen
heuristically) for all the descendant and 0 for all the others.

5. If the distance of bi to ai is above a given threshold then the weight is set to 0.

6. Solve for the transformation of s j with ICP using WEOPP for the torso and WOPP
(only rotation) for the limbs.



The output of the algorithm represents the pose of the body. In a tracking framework,
the pose obtained at the previous time-step is used as the initial pose for the current frame.

4 Experimental Results
The body tracker presented in section 4 has been implemented and tested on sequences
taken from the HumanEva-I dataset [14]. All the sequences in HumanEva-I have been cal-
ibrated using the Vicon’s proprietary software and the motion data saved in the common
c3d file format. The dataset contains multiple subjects performing a variety of actions like
walking, running, boxing, etc. In particular we used the sequences called “S1 Box 3”,
“S2 Throwcatch 3” and “S3 Jog 1”.

Figure 2: Sample frames of the synthetic data used in the experiments.The ground-truth
stick figure and the data points corrupted by noise are shown.

The synthetic input data for our experiments has been created as follows (see Fig. 2).
First the sequences have been sub-sampled at 40 f ps instead of the original 120 f ps. Then,
from each frame of the c3d file, reference points have been extracted and used to fit
the skeletal model. The segments of the model are then sampled uniformly to obtain
about 300 3D points. These points are finally perturbed using a Gaussian noise with an
amplitude of half the hips distance.

Validation of the tracking is done by comparing the angles of the ground-truth with
the angles of the computed model. Figure 3 reports the ground truth and estimated joint
angles of the torso, right shoulder and right elbow in the three sequences. It can be
seen that the estimated angles follows closely the ground truth, even without temporal
smoothing. No significant mistracking occours.

For a quantitative comparison we computed the following angular error for each joint,
in each frame of the sequence:

e(R1,R2) = 6 (R1R>2 ) (5)

where 6 (·) denotes the angle of the axix-angle representation of the rotation, and can be
computed with 6 (R) = arccos((tr(R)−1)/2).

Mean and standard deviation of the error are shown in Table 1. The magnitude of
the error is comparable with results reported in the state-of-the art literature [3, 15]. For
the “leaves” limb, as head, lower arm and calf the angles error is usually bigger than the
other, as expected.

The algorithm has been implemented in MATLAB, hence the performances are far
from the desired real-time: it takes about 3.5 seconds to process a frame on a laptop with
an Intel Core Duo Processor T2250.
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Figure 3: Plots comparing ground truth and estimated joint angles of the torso, right
shoulder and right elbow in the three sequences used for the experiments (the sequence
name is on the right).

5 Conclusions and Future Work
This paper has proposed a new ICP-based algorithm for tracking articulated skeletal
model of a human body. The proposed algorithm takes as input 3D data points distributed
around the torso and limbs medial axes. It fits the skeletal body model in each frame using
a hierarchic tree traversal version of the ICP algorithm that preserves the connection of
the segments at the joints. The proposed approach uses only the kinematic constraints
and no other assumptions are made on the position of the body. This implies that we can
recognized potentially all the body configuration.

The synthetic results presented here demonstrate the feasibility of the approach, which
is is intended to be used in complete system for vision-based markerless human body
tracking. Therefore, future work will consider improving performances by including a
Kalman filter to smooth the estimates and provide a better prediction of the body’s pose
(which should allow ICP to converge in less iterations) and implementing the front-end
of the pipeline, i.e., the shape from silhouette and skeletonisation modules that feeds the
algorithm presented here.
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Box Throwcatch Jog

Torso Mean 0.032 0.024 0.029
Std. dev. 0.017 0.012 0.014

Neck Mean 0.152 0.207 0.232
Std. dev. 0.078 0.110 0.268

Left shoulder Mean 0.074 0.071 0.063
Std. dev. 0.039 0.041 0.030

Right shoulder Mean 0.102 0.073 0.061
Std. dev. 0.051 0.067 0.029

Left hip Mean 0.181 0.120 0.111
Std. dev. 0.126 0.089 0.075

Right hip Mean 0.376 0.088 0.105
Std. dev. 0.308 0.060 0.089

Left elbow Mean 0.070 0.056 0.049
Std. dev. 0.045 0.038 0.028

Right elbow Mean 0.064 0.060 0.049
Std. dev. 0.040 0.040 0.027

Left knee Mean 0.061 0.049 0.052
Std. dev. 0.035 0.028 0.030

Right knee Mean 0.066 0.043 0.052
Std. dev. 0.055 0.025 0.032

Table 1: Mean and standard deviation of the errors (in radians) for each joint of the body
nfor the three sequences used in the experiments.
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