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Abstract

This thesis addresses computer vision techniques estimating geometric properties of
the 3-D world from digital images. Such properties are essential for object recogni-
tion and classification, mobile robots navigation, reverse engineering and synthesis
of virtual environments.

In particular, this thesis describes the modules involved in the computation of the
structure of a scene given some images, and offers original contributions in the

following fields.

Stereo pairs rectification. A novel rectification algorithm is presented, which
transform a stereo pair in such a way that corresponding points in the two
images lie on horizontal lines with the same index. Experimental tests prove
the correct behavior of the method, as well as the negligible decrease of the

accuracy of 3-D reconstruction if performed from the rectified images directly.

Stereo matching. The problem of computational stereopsis is analyzed, and a
new, efficient stereo matching algorithm addressing robust disparity estima-
tion in the presence of occlusions is presented. The algorithm, called SMW,
is an adaptive, multi-window scheme using left-right consistency to compute
disparity and its associated uncertainty. Experiments with both synthetic and
real stereo pairs show how SMW improves on closely related techniques for

both accuracy and efficiency.

Features tracking. The Shi-Tomasi-Kanade feature tracker is improved by intro-
ducing an automatic scheme for rejecting spurious features, based on robust
outlier diagnostics. Experiments with real and synthetic images confirm the

improvement over the original tracker, both qualitatively and quantitatively.
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Uncalibrated vision. A review on techniques for computing a three-dimensional
model of a scene from a single moving camera, with unconstrained motion
and unknown parameters is presented. The contribution is to give a critical,
unified view of some of the most promising techniques. Such review does not

yet exist in the literature.

3-D motion. A robust algorithm for registering and finding correspondences in two
sets of 3-D points with significant percentages of missing data is proposed.
The method, called RICP, exploits LMedS robust estimation to withstand the
effect of outliers. Experimental comparison with a closely related technique,

ICP, shows RICP’s superior robustness and reliability.
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Riassunto

Questa tesi, intitolata Visione Tridimensionale per la Stima di Struttura e
Moto, tratta di tecniche di Visione Artificiale per la stima delle proprieta geometri-
che del mondo tridimensionale a partire da immagini numeriche. Queste proprieta
sono essenziali per il riconoscimento e la classificazione di oggetti, la navigazione di
veicoli mobili autonomi, il reverse engineering e la sintesi di ambienti virtuali.

In particolare, saranno descritti i moduli coinvolti nel calcolo della struttura della
scena a partire dalle immagini, e verranno presentati contributi originali nei seguenti

campi.

Rettificazione di immagini steroscopiche. Viene presentato un nuovo algorit-
mo per la rettificazione, il quale trasforma una coppia di immagini stereosco-
piche in maniera che punti corrispondenti giacciano su linee orizzontali con
lo stesso indice. Prove sperimentali dimostrano il corretto comportamento
del metodo, come pure la trascurabile perdita di accuratezza nella ricostru-
zione tridimensionale quando questa sia ottenuta direttamente dalle immagini

rettificate.

Calcolo delle corrispondenze in immagini stereoscopiche. Viene analizzato
il problema della stereovisione e viene presentato un un nuovo ed efficien-
te algoritmo per I'identificazione di coppie di punti corrispondenti, capace di
calcolare in modo robusto la disparita stereoscopica anche in presenza di occlu-
sioni. L’algoritmo, chiamato SMW, usa uno schema multi-finestra adattativo
assieme al controllo di coerenza destra-sinistra per calcolare la disparita e
I'incertezza associata. Gli esperimenti condotti con immagini sintetiche e rea-
li mostrano che SMW sortisce un miglioramento in accuratezza ed efficienza

rispetto a metodi simili .



Inseguimento di punti salienti. L’inseguitore di punti salienti di Shi-Tomasi-
Kanade viene migliorato introducendo uno schema automatico per lo scarto di
punti spuri basato sulla diagnostica robusta dei campioni periferici (outliers).
Gli esperimenti con immagini sintetiche e reali confermano il miglioramento

rispetto al metodo originale, sia qualitativamente che quantitativamente.

Ricostruzione non calibrata. Viene presentata una rassegna ragionata dei me-
todi per la ricostruzione di un modello tridimensionale della scena, a partire
da una telecamera che si muove liberamente e di cui non sono noti i parametri
interni. Il contributo consiste nel fornire una visione critica e unificata delle

piu recenti tecniche. Una tale rassegna non esiste ancora in letterarura.

Moto tridimensionale. Viene proposto un algoritmo robusto per registrate e cal-
colare le corrispondenze in due insiemi di punti tridimensionali nei quali vi
sia un numero significativo di elementi mancanti. Il metodo, chiamato RICP,
sfrutta la stima robusta con la Minima Mediana dei Quadrati per elimina-
re l'effetto dei campioni periferici. Il confronto sperimentale con una tecnica

simile, ICP, mostra la superiore robustezza e affidabilita di RICP.
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Chapter 1
Introduction

Among all sensing capabilities, vision has long been recognized as the one with the
highest potential. ~Many biological systems use it as their most powerful way of
gathering information about the environment, and relatively cheap and high-quality

visual sensors can be connected to computers easily and reliably.

The achievements of biological visual systems are formidable: they record a band of
electromagnetic radiation and use it to gain knowledge about surrounding objects
that emit and reflect it. The effort to replicate biological vision exactly is maybe
pointless; on the other hand, “airplanes do not have feathers”. However, trying to

emulate some of its functions is a practicable but challenging task [28, 33].

The processes involved in visual perception are usually separated into low-level and
high-level [152]. Low-level vision is associated with the extraction of certain physical
properties of the environment, such as depth, 3-D shape, object boundaries. They
are typically spatially uniform and relatively independent of the task at hand, or
of the knowledge associated with specific objects. High-level vision, in contrast,
is concerned with problems such as the extraction of shape properties and spatial
relations, and with object recognition and classification. High-level vision processes
are usually applied to selected portions of the image, and depend on the goal of the
computation and the knowledge related to specific objects.

Low-level Computer Vision can be thought of as inverse Computer Graphics [125,
40]. Computer Graphics is the generation of images by computer starting from
abstract descriptions of a scene and a knowledge of the laws of image formation.

Low-level Computer Vision is the process of obtaining descriptions of objects from
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images and a knowledge of the laws of image formation. Yet, graphics is a feed-
forward process, a many-to-one activity, whereas (low level) Computer Vision is an
inverse problem [115], involving a one-to-many mapping. When a scene is observed,
a 3-D environment is compressed into a 2-D image, and a considerable amount of

information is lost.

1.1 Scope and motivations

Computer Vision is therefore a very demanding engineering challenge, that involves
many interacting components for the analysis of color, depth, motion, shape and
texture of objects, and the use of visual information for recognition, navigation and
manipulation. T will deal in this thesis with some of these aspects only, the scope
of this thesis being the low-level processes related to the extraction of geometric
properties of the 3-D world from digital images. The most important property is
shape, being the dominant cue used by high-level vision processes (such as object
recognition and classification) [152]. Moreover, 3-D geometric properties are essen-
tial for tasks such as mobile robots navigation, reverse engineering, and synthesis of

virtual environments.

1.2 Synopsis

This thesis presents techniques for extracting 3-D descriptions of a scene from im-
ages. Depending on the information available about the acquisition process, different
techniques are applicable. I will start from those assuming the maximum amount of
knowledge possible, and move on to techniques relaxing this assumption to increas-
ing degrees.

I endeavored to make this dissertation self-contained. Hence Chapter 2 is devoted to
introducing the fundamental laws of image formation. An image is the projection of
the 3-D space onto a 2-D array, and it contains two types of visual cues: geometric
and radiometric. The former are related to the position of image points, the latter
to their brightness. In this work I will deal mainly with the geometric aspect of
Computer Vision, and to this purpose the geometric camera model will be described

in detail.
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In Chapters 3 and 4 I will address the structure from stereo problem: given two
pictures of a scene taken with a calibrated rig of two cameras, and a set of matched
points, which are all images of points located in the scene, reconstruct the 3-D

coordinates of the points.

In Chapter 3 I will discuss the geometric issues of structure from stereo. First, I will
describe a simple, linear calibration algorithm, that is, a procedure for measuring the
camera’s extrinsic parameters (i.e., its position and pose) and its intrinsic parameters
(i.e., its internal characteristics). In photogrammetry, camera calibration is divided
into the exterior orientation problem and the interior orientation problem. Second,
a linear triangulation technique will be described, which allows one to actually
reconstruct the 3-D coordinates of the points. Then, I will concentrate on the
epipolar geometry, i.e., the relationship between corresponding points in the two
images, and in particular on rectification, an operation meant to obtain a simple
epipolar geometry for any calibrated stereo pair. The main original contribution of
this chapter is to introduce a linear rectification algorithm for general, unconstrained

stereo rigs.

In Chapter 4 T will address the problem of matching points, that is detecting pairs of
points in the two images that are projection of the same points in the scene, in order
to produce disparity maps, which are directly connected to 3-D positions in space. I
propose a novel stereo matching algorithm, called SMW (Symmetric Multi-Window)

addressing robust disparity estimation in the presence of occlusions.

In Chapter 5 and 6 and I will address the structure from motion problem: given
several views of a scene taken with a moving camera with known intrinsic paramet-
ers, and given a set of matched points, recover camera’s motion and scene structure.
Compared to the structure from stereo problem, here we have a single moving cam-
era instead of a calibrated rig of two cameras, and the extrinsic parameters (i.e.,
the relative camera displacements) are missing. The output reconstruction differs
from the true (or absolute) reconstruction by a similarity transformation, composed
by a rigid displacement (due to the arbitrary choice of the world reference frame)
plus a a uniform change of scale (due to depth-speed ambiguity). This is called a

Fuclidean reconstruction.

Chapter 5 is devoted to study the problem of estimating the motion of the cameras,

assuming that correspondences between points in consecutive frames are given. This
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is known in photogrammetry as the relative orientation problem.

In Chapter 6 I will address the problem of computing correspondences by tracking
point features in image sequences. The main original contribution of this chapter is
to extend existing tracking techniques by introducing a robust scheme for rejecting
spurious features. This is done by employing a simple and efficient outlier rejection
rule, called X84.

In Chapter 7 another bit of a-priori information is removed, and the intrinsic para-
meters are assumed unknown: the only information that can be exploited is con-
tained in the video sequence itself. Starting from two-view correspondences only,
one can still compute a projective reconstruction of the scene points, that differ
from the true one (Euclidean) by an unknown projective transformation. Assuming
that the unknown intrinsic parameters are constant, the rigidity of camera motion
can be used to recover the intrinsic parameters, hence falling back to the case of
structure from motion again. This process is called autocalibration. Very recently,
new methods have been proposed which directly upgrade the projective structure to
the Euclidean structure, by exploiting all the available constraints. This is the idea
of stratification. The contribution of this chapter is to give a unified view of some
of the most promising techniques. Such unified, comparative discussion has not yet
been presented in the literature.

Finally, Chapter 8 addresses the 3-D motion problem, where the points correspond-
ences and the motion parameters between two sets of 3-D points are to be recovered.
This is used to register 3-D measures obtained with different algorithms for struc-
ture recovery or different depth measuring devices, related by an unknown rigid
transformation. The existence of missing points in the two sets makes the problem
difficult. The contribution here is a robust algorithm, RICP, based on Least Me-
dian of Squares regression, for registering and finding correspondences in sets of 3-D
points with significant percentages of missing data.

Figure 1 represents the layout of this thesis at a glance. The process described is
image in — structure out. Depending on the amount of information available, the
output structure is related in a different way with the true (absolute) structure.
Each rectangle represent a module, that will be described in the section or chapter

reported close to it. In summary, the modules are:
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e calibration (exterior and interior orientation) (Section 3.2) ;
e triangulation (Section 3.3);

e rectification (Section 3.5);

e stereo matching (Chapter 4);

e motion analysis (relative orientation) (Chapter 5);

e feature tracking (Chapter 6);

e projective reconstruction (Section 7.4);

e autocalibration (Section 7.6);

e stratification (Section 7.7);

e 3-D motion (absolute orientation) (Chapter 8).

Demonstrations and source code for most of the original algorithms proposed here

are available from the author’s WWW page: http://www.dimi.uniud.it/ fusiello.
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Figure 1: Thesis layout at a glance. A represents the intrinsic parameters, R,t

represent the extrinsic parameters, N is the number of images.
represent a module, with the section where it is described close to it.
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Chapter 2
Imaging and Camera Model

Computer Vision techniques use images to obtain information about the scene. In
order to do that, we have to understand the process of image formation (imaging).
In this chapter we will introduce a model for this process and, in more detail, a

geometric model for the camera upon which all the other chapters rely.

2.1 Fundamentals of imaging

A computer vision device works by gathering light emitted or reflected from objects
in the scene and creating a 2-D image. The questions that a model for the imaging
process needs to address is “which scene point project to which pixel (projective

geometry) and what is the color (or the brightness) of that pixel (radiometry)?”.

2.1.1 Perspective projection

The simplest geometrical model of imaging is the pinhole camera.
Let P be a point in the scene, with coordinates (X, Y, Z) and P’ be its projection on
the image plane, with coordinates (X', Y’, Z'). If f is the distance from the pinhole

to the image plane, then by similar triangles, we can derive the following equations:

X Y
= Z and f = (1)
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‘Y
X
image |
plane :
:
image ! / z
I ................... ‘..._. A .'.—...- .
<I7 TR 5 SRR,
[ pinhole

Figure 2: The pinhole camera.

hence
—fX
X' =—
Z
—fY
y/ =1 (2)
Z
Z'=—f

These equations define an image formation process known as perspective projection,
or central projection. Perspective was introduced in painting by L. B. Alberti [1] in
1435, as a technique for making accurate depictions of three-dimensional scenes.
The process is non-linear, owing to the division by Z. Note that the image is inverted,
both left-right and up-down, with respect to the scene, as indicated in the equations
by the negative signs. Equivalently, we can imagine to put the projection plane at
a distance f in front of the pinhole, thereby obtaining a non-inverted image.

If the object is relatively shallow compared to its average distance from the camera,
we can approximate perspective projection by scaled orthographic projection or weak
perspective. The idea is the following. If the depth Z of the points on the object
varies in the range Zy + AZ, with AZ/Zy << 1, then the perspective scaling factor
f/Z can be approximated by a constant f/Zy. Leonardo da Vinci recommended to

use this approximation when AZ/Zy < 1/10. Then (2) become:
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X'=—X Y ==Y (3)

This is the composition of an orthographic projection and a uniform scaling by f/Z,.

2.1.2 Optics

In the pinhole camera, for each scene point, there is only one light ray that reaches
the image plane. A normal lens is actually much wider than a pinhole, which is
necessary to collect more light. The drawback is that not all the scene can be in
sharp focus at the same time. It is customary to approximate any complex optical
systems with a thin lens. A thin lens has the following basic properties (refer to

Figure 3):

Figure 3: Thin lens.

1. any ray entering the lens parallel to the axis on one side goes through the focus
F on the other side;

2. any ray going through the lens center C is not deflected.

The distance from the focus F to the lens center C is the focal length. It depends on

the curvature of both sides of the lens and on the refraction index of the material.
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Zl

Figure 4: Construction of the image of a point.

Let P be a point in the scene; its image P’ can be obtained, thanks to the two
properties of thin lenses, by the intersection of two special rays going through P: the

ray parallel to the optical axis and the ray going through C (Figure 4).

Thanks to this construction and by similar triangles, we obtain the thin lens equa-

tion:

e (4)

The image of a scene point with depth (distance from the lens center) Z will be
imaged in sharp focus at a distance Z' from the lens center, which depends also
on the focal length f. As the photosensitive elements in the image plane (rods and
cones in the retina, silver halides crystals in photographic films, solid state electronic
circuits in digital cameras) have a small but finite dimension, given a choice of Z’,
scene points with depth in a range around Z will be in sharp focus. This range is
referred as the depth of field.

In order to focus objects at different distances, the lens in the eye of vertebrates

changes shape, whereas the lens in a camera moves in the Z direction.
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2.1.3 Radiometry

The perceived brightness I(p) of a small area p in the image is proportional to the
amount of light directed toward the camera by the surface patch S, that project to
p. This in turn depends on the reflectance properties of S, the type and position
of light sources.

Reflectance is the property of a surface describing the way it reflects incident light.
It can be described by taking the ratio of the radiance! (L) and irradiance (E),
for each illuminant direction (0., ¢.) and each viewing angle (84, ¢), obtaining the
Bidirectional Reflectance Distribution Function (BRDF):

L(6y, d1)
BRDF(0 3] =
( lvd)la evd)e) E(ee,d)e) (5)
light
/ source )
PN image
g plane
n
irradiance radiance

surface

Figure 5: Radiometry of image formation.

Ideally, the light reflected from an object is characterized as being either diffusely
or specularly reflected.

Specularly reflected light is reflected from the outer surface of the object. The energy
of reflected light is concentrated primarily in a particular direction, such that the
reflected and the incident rays are in the same plane and the angle of reflection is

equal to the angle of incidence. This is the behavior of a perfect mirror.

1The radiance (irradiance) of a surface is the power per unit area of emitted (incident) light
radiation. The irradiance of a surface is the power per unit area of incident light radiation.
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Diffused light has been absorbed and re-emitted. The BRDF for a perfect diffusor

is given by the well-known Lambert’s law:
L =pEcosd (6)

where L is the radiance in S, E is the irradiance (the intensity of the light source),
p is the albedo, which varies from 0 (black) to 1 (white), and 0 is the angle between
the light direction i and the surface normal n (refer to Figure 5). In the real world
objects exhibit a combination of diffuse and specular properties.

In a simplified model of the photometry of image formation it is always assumed
that the radiation leaving the surface S, is equal to the radiation incident in p (no

losses), hence the brightness 1(p) is given by:

I(p) =L(S,). (7)

2.1.4 Digital images

A digital image acquisition system consists of three hardware components: a viewing

camera, a frame grabber and a host computer (Figure 6).

optics
pixel
(0,0) (511,0)
Al
A/D frame-
grabber
analogic
video signal
(0,511) (511,511)

Figure 6: Digital image acquisition system.

The camera is composed by the optical system — which we approximate with a thin
lens — and by a CCD (Charged Coupled Device) array that constitute the image

plane. This can be regarded as a n x m grid of rectangular photosensitive cells
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(typically, a CCD array is 1 x 1 cm and is composed by about 5 x 10° elements),
each of them converting the incident light energy into a voltage. The output of the
CCD is an analog electric signal, obtained by scanning the photo-sensors by lines
and reading the cell’s voltage.

This video signal is sent to a device called frame grabber, where it is digitized into a
2-D rectangular array of N x M (typically, 512 x 512) integer values and stored in
a memory buffer. The entries of the array are called pizel (picture elements). We
will henceforth denote by I(u,v) the image value (brightness) at the pixel u,v (row
Vv, column u).

The host computer acquires the image by transferring it from the frame buffer to
its internal memory. Typical transfer rates are about 25 Hz (1 frame every 40 ms).
The dimensions of the CCD array (n x m) are not necessarily the same as the
dimension of the image (array of N x M pixels): this implies that the position of a
point in the image plane is different if measured in CCD elements or in pixels (the
latter is what we can measure from images). There is a scale factor relating the two

measures:

n

Upix = NuCCD (8)
m
Vpix = MVCCD (9)

It is customary to assume that the CCD array is composed by N x M rectangular
elements, whose size is called the effective pizel size (measured in m - pixel ).
The process of sampling the image plane and transforming the image in digital

format, performed by digital image acquisition system, is called pizelization.

2.2 Camera model

In this section we will give a more detailed description of the geometric model of
the pinhole camera. In particular, following [33], we will draw the mathematical
relationship between the 3-D coordinates of a scene point and the coordinates of its
projection onto the image plane.

A pinhole camera is modeled by its optical center C and its retinal plane (or image

plane) R. A 3-D point W is projected into an image point M given by the intersection
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of R with the line containing C and W (Figure 7). The line containing C and
orthogonal to R is called the optical azis (the Z axis in Figure 7) and its intersection
with R is the principal point. The distance between C and R is the focal distance
(note that, since in our model C is behind R, real cameras will have negative focal

distance).

Figure 7: The pinhole camera model, with the camera reference frame (X)Y,Z)
depicted.

Let us introduce the following reference frames (Figure 8):

e the world reference frame x,y,z is an arbitrary 3-D reference frame, in which
the position of 3-D points in the scene are expressed, and can be measured

directly.

e the image reference frame u,v is the coordinate system in which the position

of pixels in the image are expressed.

e the camera standard reference frame X\Y,Z, is a 3-D frame attached to the
camera, centered in C, with the Z axis coincident with the optical axis, X

parallel to u and Y parallel to v.

Let us consider first a very special case, in which the world reference frame is taken
coincident with the camera reference frame, the focal distance is 1, the effective pixel

size is 1, and the u,v reference frame is centered in the principal point.
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World reference frame
X z w -

Image reference frame

e

Figure 8: Reference frames.

Let w = (x,y,z) the coordinates of W in the world reference frame and m the
coordinates of M in the image plane (in pixels). From simple geometrical consider-

ations, as we did in Section 2.1.1, we obtain the following relationship:

1 u v
__—=_2 10
. X (10)
that is
1
u=—-x
12 : (11)
v=-1y
z

This is the perspective projection. The mapping from 3-D coordinates to 2-D co-
ordinates is clearly non-linear; using homogeneous coordinates, instead, it becomes
linear. Homogeneous coordinates are simply obtained by adding an arbitrary com-
ponent to the usual Cartesian coordinates (see Appendix A). Cartesian coordinates
can be obtained by dividing each homogeneous component by the last one and re-
moving the “1” in last position. Therefore, there is a one to many correspondence
between Cartesian and homogeneous coordinates. Homogeneous coordinates can
represent the usual Euclidean points plus the points at infinity, which are points

with the last component equal to zero, that does not have a Cartesian counterpart.
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Let
X
u
- - y
m=| v and w= , (12)
z
1
1

be the homogeneous coordinates of M and W respectively. We will henceforth use
the superscript ~ to denote homogeneous coordinates. The projection equation, in

this simplified case, writes:

X
KU X 1000
wl=luvl=lo100]|]" (13)
Z
” z 0010

Note that the value of k is equal to the third coordinate of the W, which — in this
special reference frame — coincides with the distance of the point to the plane XY.
Points with k = 0 are projected to infinity. They lie on the plane F parallel to R

and containing C, called the focal plane.

Hence, in homogeneous coordinates, the projection equation writes

km = Pw. (14)
or,

m ~ Pw. (15)

where ~ means “equal up to an arbitrary scale factor”.
The matrix P represent the geometric model of the camera, and is called the camera

matriz or perspective projection matriz (PPM). In this very special case we have

1000
P=|010 0]|=I[10].
0010
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2.2.1 Intrinsic parameters

In a more realistic model of the camera, the retinal plane is placed behind the

projection center at a certain distance f. Projection equations become

—f
u = 77(

2 (16)
vV=—Y,

z

where f is the focal distance in meters.
Moreover, pixelization must be taken into account, by introducing a translation of
the principal point and a scaling of u and v axis:
—f
u= ku7x + Uy
- (1)
V= k\;?U +wv
where (1, Vo) are the coordinates of the principal point, k, (k,) is the inverse of the
effective pixel size along the horizontal (vertical) direction, measured in pixel -m~'.

After these changes, the PPM writes:
—fk, 0 uo O
P=| 0 —fk, v 0| =AM0] (18)
0 0 1 0

where
—fk, 0 wg
A= 0 —fky, v |- (19)
0 0 1

If the CCD grid is not rectangular, u and v are not orthogonal; if 8 is the angle they

form, then the matrix A becomes:
—fky fkycot® g
A=| 0 —fk,/sin® v, |. (20)
0 0 1
Hence, the matrix A has — in general — the following form:
Xy Y Uo
A= 0 o, v |, (21)
0 0 1
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where o, = —fky, &, = —fk,/sin0 are the focal lengths in horizontal and ver-
tical pixels, respectively, and vy = fky,cot 0 is the skew factor. The parameters

Xy, Xy, Y, W, and vy are called intrinsic parameters.

Normalized coordinates

It is possible to undo the pixelization by pre-multiplying the pixel coordinates by
the inverse of A, obtaining the so called normalized coordinates, giving the position

of a point on the retinal plane, measured in meters:
p=A"m. (22)

The homogeneous normalized coordinates of a point in the retinal plane can be
interpreted (see Appendix A) as a 3-D vector centered in C and pointing toward the
point on the retinal plane, whose equation is z = 1. This vector, of which only the

direction is important, is called ray vector.

2.2.2 Extrinsic parameters

Let us now change the world reference system, which was taken as coincident with
the camera standard reference frame. The rigid transformation that brings the
camera reference frame onto the new world reference frame encodes the camera’s
position and orientation. This transformation is defined in terms of the 3 x 3 rotation
matrix R and the translation vector t. If wgq and wy., are the Cartesian coordinates

of the scene point in these two frames, we have:
Wstd = RWpew + t. (23)
Using homogeneous coordinates the latter rewrites:
Wstd = GWhew (24)

where

R t
a2 .

The PPM yielded by this reference change is the following:

P = A[1|0]G = A[R|t] = [ARJALt]. (26)
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The three entries of the translation vector t and the three parameters? that encodes
R are the extrinsic parameters.

Since Wpew = G~ ' Wgiq, with

» RT -R't
G'= : (27)
0 1

the columns of R are the coordinates of the axis of the standard reference frame
relative to the world reference frame and —R "t is the position of the optical center

C in the world reference frame.

2.2.3 Some properties of the PPM

Let us write the PPM as

qr di1a
P=|aqf|ax | =Qd. (28)
qu qza

Projection in Cartesian coordinates

From (14) we obtain by substitution:

KU Qi W+ qua
Kv | = | aJw+qu (29)
K a3 W+ qza

Hence, the perspective projection in Cartesian coordinates writes

ai W+ qua
U= —=——
d; W+ (34

_ W+ qoa
a3 W+ qza

(30)

Optical center

The focal plane (the plane XY in Figure 7) is parallel to the retinal plane and contains

the optical center. It is the locus of the points projected to infinity, hence its equation

2A rotation in the 3-D space can be parameterized by means of the three Euler angles, for
example.
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is @3 W+ (34 = 0. The two planes defined by q w + q14 = 0 and q; w + 24 = O in-
tersect the retinal plane in the vertical and horizontal axis of the retinal coordinates,

respectively. The optical center C is the intersection of these three planes, hence its

P[]]:O, (31)

c=-Q'g. (32)

coordinates ¢ are the solution of

then

From the latter a different way of writing P is obtained:
P =[Q| — Qcl. (33)

Optical ray

The optical ray associated to an image point M is the locus of the points that are
projected to M, {w : m = Pw}, i.e., the line MC. A point on the optical ray of M
is the optical center, that belongs to every optical ray; another point on the optical

ray of M is the point at infinity, of coordinates

%)

indeed:
p Q;mleQ‘m:m.
The parametric equation of the optical ray is therefore (in projective coordinates):
w=| | +A ng] AeR (34)

In Cartesian coordinates, it re-writes:

w=c+AQ 'm AER (35)
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Factorization of the PPM

The camera is modeled by its perspective projection matrix P, which has the form
(26), in general. Vice versa, a PPM can be decomposed, using the QR factorization,

into the product

P = ARIt] = [ARJAt]. (36)

Indeed, given P = [Q|q], by comparison with (36) we obtain Q = AR, that is
Q' = R'TA". Let Q' = UB be the QR factorization of Q', where U is
orthogonal and B is upper triangular. Hence R = U~! and A = B~'. Moreover
t=A"q=Bq

Parameterization of the PPM

If we write
t I‘]T
t=|t,| and R=|r] (37)
t3 I‘;’r

from (20) and (26) we obtain the following expression for P as a function of the

intrinsic and extrinsic parameters

Xy oo
O(,ur;r — mr; + U,OI';— O(u_t] — tan erthz + u0t3
X Xy
P= r, +Vvory t2 +vot 38
sin@ 2 03 sin® > 03 (38)
I‘;— t3

In the hypothesis, usually verified in practice with good approximation, that 8 =

71/2, we obtain:

ocur]T + uor3T oty + upts
P = OLVI‘; + \/’01‘;,r Xyt + vots (39)

I‘;— 13

A generic PPM, defined up to a scale factor, must be normalized in such a way that

lgs/| = 1 if it has to be parameterized as (38) or (39).
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Projective depth

The parameter Kk that appear in (14) is called projective depth. If the PPM is
normalized with ||qs|| = 1, it is the distance of W from the focal plane (i.e., its
depth). Indeed, from (29) and (38) we have:

K=r;w+ts. (40)

Since Wgq = GWyew, K is the third coordinate of the representation of W in the

camera standard reference, hence just its distance from the focal plane.

Vanishing points

The perspective projection of a pencil of parallel lines in space is a pencil of lines in
the image plane passing through a common point, called the vanishing point. Let us
consider a line whose parametric equation is w = a + An, where n is the direction.

Its projection on the image plane has parametric equation:

qi (a+An) + 4
q; (a+An) + qa4

(41)
_ q; (a+An) 4 gy
L q; (a+An) + qs4
The vanishing point (s, Vo) is obtained by sending A to infinity:
(u, _ qja+Aqin+qu _ qn
¥ AMeoqjatAqin+dy qin
(42)
v — qya-+Aq;n+ gy _ qn
| ¥ MwqjatAgin+dy  gin

2.3 Conclusions

An image is the projection of the 3-D space onto a 2-D array, and it contains two
types of visual cues: geometric and radiometric. The former is related to the posi-

tion of image points, the latter to their brightness. In this work we will deal mainly
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with the geometric aspect of Computer Vision, and to this purpose we described in
detail the geometric model of the pinhole camera (the missing topics are covered for
instance in [149]), that establishes the relationship between the world coordinates
of a scene point and the image coordinates of its projection. From a geometrical
standpoint, the camera is full modeled by a 3 x 4 matrix, in homogeneous coordin-
ates. We described some useful properties of this matrix, that will be needed in the

following chapters.






Chapter 3
Structure from Stereo

In this chapter and in the next one, we will address the following problem: given
two pictures of a scene (a stereo pair) taken with a calibrated rig of two cameras, for
which intrinsic and extrinsic parameters have been measured, and a set of matched
points, which are all images of points located in the scene, reconstruct the 3-D
coordinates of the points.

We will discuss here the geometrical issues of stereo reconstruction. The computa-
tion of corresponding points is treated in the next chapter.

After describing simple linear calibration and reconstruction algorithms, we will
concentrate on the epipolar geometry, i.e., the relationship between corresponding
points and in particular on rectification, an operation meant to insure a simple
epipolar geometry for a stereo pair. The main original contribution of this chapter
is to introduce a linear rectification algorithm for general, unconstrained stereo rigs.
The algorithm takes the two perspective projection matrices of the original cameras,
and computes a pair of rectifying projection matrices. We report tests proving the
correct behavior of our method, as well as the negligible decrease of the accuracy of

3-D reconstruction if performed from the rectified images directly.

3.1 Introduction

The aim of structure from stereo [16, 30] is to reconstruct the 3-D geometry of a scene
from two views, which we call left and right, taken by two pinhole cameras. Two

distinct processes are involved: correspondence (or matching) and reconstruction.

25
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The former estimates which points in the left and right images are projections of the
same scene point (a conjugate pair). The 2-D displacement vector between conjugate
points, when the two images are superimposed, is called disparity. Stereo matching
will be addressed in the next chapter. Reconstruction (Section 3.3) recovers the full
3-D coordinates of points, using the estimated disparity and a model of the stereo
rig, specifying the pose and position of each camera and its internal parameters. The
measurement of camera model parameters is known as calibration (Section 3.2).
The coordinates of conjugate points are related by the so-called epipolar geometry
(Section 3.4). Given a point in one image, its conjugate must belong to a line in
the other image, called the epipolar line. Given a pair of stereo images, rectifica-
tion determines a transformation of each image plane such that pairs of conjugate
epipolar lines become collinear and parallel to one of the image axes. The rectified
images can be thought of as acquired by a new stereo rig, obtained by rotating
the original cameras. The important advantage of rectification is that computing
correspondences is made much simpler.

In Section 3.5 we present a novel algorithm for rectifying a calibrated stereo rig of
unconstrained geometry and mounting general cameras. The only input required is
the pair of perspective projection matrices (PPM) of the two cameras, which are
estimated by calibration. The output is the pair of rectifying PPMs, which can
be used to compute the rectified images. Reconstruction can also be performed
directly from the rectified images and PPMs. Section 3.5.1 derive the algorithm
for computing the rectifying PPMs and Section 3.5.2 expresses the rectifying image
transformation in terms of PPMs. Section 3.5.3 gives the compact (20 lines), working
MATLAB code for our algorithm. A formal proof of the correctness of our algorithm
is given in Section 3.5.4. Section 3.5.5 reports tests on synthetic and real data.
Section 3.6 is a brief discussion of our work.

A “rectification kit” containing code, examples data and instructions is available on
line (http://www.dimi.uniud.it/ " fusiello/rect.html).

3.2 Calibration

Calibration consist in computing as accurately as possible the intrinsic and extrinsic

parameters of the camera. These parameters determine the way 3-D points project
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to image points. If enough correspondences between world points and image points
are available, it is possible to compute camera intrinsic and extrinsic parameters
by solving the perspective projection equation for the unknown parameters. In
photogrammetry these two problem are known as interior orientation problem and
exterior orientation problem! respectively. Some direct calibration methods cast
the problem in terms of the camera parameters [38, 150, 22, 134], others solve for
the unknown entries of P [33, 121]. They are equivalent since, as we already know,
parameters can be factorized out from P. In our experiments we used the algorithm
(and the code) developed by L. Robert [121]. In this section we will describe a simple
linear method for camera calibration, which, in practice, requires a subsequent non-

linear iterative refinement, as in [121].

Figure 9: Picture of the calibration jig, with superimposed the world reference
system.

In particular the exterior orientation problem is relevant in the so-called CAD-based Vision
[21], in which one has a model of an object, a camera with known intrinsic parameters and wants
to recognize the image of the object by aligning it with the model [152]. One method to perform
alignment is to estimate camera’s pose, solving the exterior orientation problem, project the model
accordingly, and then match the projection with the image to refine the estimate [88].
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Linear-LS method

Given N reference points, not coplanar, each correspondence between an image point

m; = [u;,vi] ', and a reference point w; gives a pair of equations, derived from (30):

-
. . —Wda =0
{ (a1 —uig3) 'wi + q1a — Wiqsa (43)

(@2 —via3) "Wi + q2a —Vviqza =0

The unknown PPM is composed by 12 elements, but being defined up to a scale
factor (homogeneous coordinates) it depends on 11 parameters only. We can choose

qs3s = 1, thereby reducing the unknown to 11, obtaining the following two equations:

-
0 w, 1 —vlw

T T

!wi (1) 0 0 —uww ] a7, d1a, a4y, dos, a3 1T = [::] : (44)
For N points we obtain a linear system of 2N equations in 11 unknowns: 6 non
coplanar points are sufficient. In practice more points are available, and one has to
solve a linear least-squares problem. Singular Value Decomposition (SVD) can be
used to solve the linear least-square problem Lx = b (see [50]). Let L = UDV ' the
SVD of L. The least-squares solution is b = (VD*U")x where D™ is constructed
by substituting the non-zero elements of D with their inverse.

Please note that the PPM yielded by this method needs to be normalized with
lasl| = 1, if it has to be interpreted like (38).

The previous approach has the advantage of providing closed-form solution quickly,
but the disadvantage that the criterion that is minimized does not have a geometrical
interpretation. The quantity we are actually interested in minimizing is the distance

in the image plane between the points and the reprojected reference points:

Q) Wi + doa B

a;wi+q 2
] i 14
—u 45
H ’%TWVFCIM (45)

q3 Wi + dsz4

This lead to a non-linear minimization, but results are more accurate, being less
sensitive to noise.

Robert’s calibration method [121] take a slightly different approach: the basic idea
is to replace the distance by a criterion computed directly from the gray-level image,

without extracting calibration points m; explicitly. It proceeds by first computing
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a rough estimate of the projection matrix, then refining the estimate using a tech-
nique analogous to active contours [81]. The initialization stage use the linear-LS
algorithm. It takes as input a set of 6 non-coplanar 3-D anchor points, and their
2-D images, obtained manually by a user who clicks their approximate position.
The refinement stage requires a set of 3-D model points which should project in the
image onto edge points. Using non-linear optimization over the camera parameters,
the program maximize the image gradient at the position where the model points

project.

Figure 10: Screen shot of Calibtool, the interface to the calibration program. The
user must simply select with the mouse six predefined points on the calibration
pattern and then choose “Calibra”. The PPM is returned in a file.

3.3 Reconstruction

In the contest of structure from stereo, reconstruction consists in computing the
Cartesian coordinates of 3-D points (structure) starting from a set of matched points
in the image pair, and from known camera parameters. Given the PPMs of the two
cameras and the coordinates of a pair of conjugate points, the coordinates of the
world point of which they both are projection can be recovered by a simple linear
algorithm. Geometrically, the process can be thought as intersecting the optical rays

of the two image points, and for this reason it is sometimes called triangulation.
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Figure 11: Triangulation.

Linear-Eigen method.

Let w = [x,y, z, t] T the sought coordinates of the world point?, and let m = [u,v] "

and m’ = [u’,V']T the image coordinates of a conjugate pair. Let

q1T dia ql1T Q{4
P = qu d2a and P' = qlzT %4 (46)
Q3T qz4 qlsT 34
From (15) we obtain an homogeneous linear system of four equation in the unknown
X, Y, z,t:
(a1 —uqs)" + g4 — uqsa
—va3)T 4 g —v i
(a2 ,qf) q?4 Cllszt =0 (47)
(q —wa3)" +aq, —u'as,
(a3 *VIQQ +d —V'dy

These equations defines w only up to a scale factor, i.e., the system matrix L is
rank-deficient. In order to avoid the trivial solution w = 0, we solve the following

constrained minimization problem

min |[Lw|  subject to |w|| =1, (48)

2We use the parameter t instead of 1 as the homogeneous component of W in order to accom-
modate for points at infinity (in practice, far from the camera) that have t = 0.
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whose solution is the unit eigenvector corresponding to the smallest eigenvalue of
the matrix LTL. SVD can be used also to solve this problem. Indeed, if L = UDV "
is the SVD of L, then the solution is the column of V corresponding to the smallest

singular value of L.

As in the case of calibration, a cause of inaccuracy in this linear method is that
the value being minimized (||Lx||) has no geometric meaning. A minimization of
a suitable cost function, like the error in the image plane, should be performed to
achieve better accuracy [33, 64, 168|:

x = |m — Pw| + [m’' — P'w/|. (49)

where W is the sought estimate of the coordinates of W. See [65] for a discussion

about algebraic versus geometric error minimization in gometric Computer Vision.

3.4 Epipolar geometry

Let us consider a stereo rig composed by two pinhole cameras (Figure 12). Let C;
and C, be the optical centers of the left and right cameras respectively. A 3-D point
W is projected onto both image planes, to points M; and M,, which constitute a
conjugate pair. Given a point M; in the left image plane, its conjugate point in the
right image is constrained to lie on a line called the epipolar line (of My). Since My
may be the projection of an arbitrary point on its optical ray, the epipolar line is the
projection through C, of the optical ray of M;. All the epipolar lines in one image
plane pass through a common point (E; and E, respectively.) called the epipole,

which is the projection of the conjugate optical center.

The fundamental matrix

Given two camera matrices, a world point of coordinates Wy, is projected onto a

pair of conjugate points of coordinates m; and ms:

m; ~ Pyw
Ihz >~ sz”v
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1

SR

R2

Figure 12: Epipolar geometry. The epipole E; of the first camera is the projection

of the optical center C, of the second camera (and vice versa).

The equation of the epipolar line of m; can be easily obtained by projecting the

optical ray of m;

w=|"|+a Q‘%‘]
1 0
with ].52. From
P, ? ] =P, [ _Q;]Q] ] =& Qa1 =e
and
P, Q];Ih] ] = QZQT]Ihl

we obtain the equation of the epipolar line of m;:

m, = e, + A\Q,Q; 'my.

(50)

(51)
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This is the equation of a line going through the points e; (the epipole) and QZQ]’] mj.
The collinearity of these two points and m, is expressed in the projective plane by

the triple product (see Appendix A):
h; (e; A QuQ, 'iiny) =0, (54)
which can be written in the more compact form
m, Finy = 0, (55)
by introducing the fundamental matriz F:

F =[] Q.Q; ", (56)

where [e;]x is a skew-symmetric matrix acting as the external product® with e,.
The fundamental matrix relates conjugate points; the role of left and right images

is symmetrical, provided that we transpose F :
m; F'm, =0. (58)

Since det([ez]n) = O, the rank of F is in general 2. Moreover, F is defined up to
a scale factor, because (55) is homogeneous. Hence it depends upon seven para-
meters. Indeed, it can be parameterized with the epipolar transformation, that is
characterized by the projective coordinates of the epipoles (2 x 2) and by the three
coefficients of the homography (see Appendix A) between the two pencils of epipolar
lines [93].

3.5 Rectification

Given a pair of stereo images, rectification determines a transformation of each

image plane such that pairs of conjugate epipolar lines become collinear and parallel

31t is well-known that the external product t A x can be written as a matrix vector product
[t]Ax, with

0 —t3 1
tia=]ts 0 —ti]. (57)
—t, 1 0
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to one of the image axes (usually the horizontal one). The rectified images can be
thought of as acquired by a new stereo rig, obtained by rotating the original cameras.
The important advantage of rectification is that computing correspondences is made
simpler. Other rectification algorithm can be found in [5, 60, 123, 112].

When C; is in the focal plane of the right camera, the right epipole is at infinity,
and the epipolar lines form a bundle of parallel lines in the right image. A very
special case is when both epipoles are at infinity, that happens when the line C;C,
(the baseline) is contained in both focal planes, i.e., the retinal planes are parallel
to the baseline (see Figure 13). Epipolar lines then form a bundle of parallel lines
in both images. Any pair of images can be transformed so that epipolar lines are

parallel and horizontal in each image. This procedure is called rectification.

R1

Figure 13: Rectified cameras. Image planes are coplanar and parallel to the baseline.

3.5.1 Rectification of camera matrices

We will assume that the stereo rig is calibrated, i.e., the old PPMs P,; and P, are
known. This assumption is not strictly necessary [60, 123], but leads to a simpler

technique. The idea behind rectification is to define two new perspective matrices
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f’m and f’nz, that preserve the optical centers and with the baseline contained in
the focal planes. This ensures that epipoles are at infinity, hence epipolar lines are
parallel. In addition, to have a proper rectification, it is required that epipolar lines
are horizontal, and that corresponding points have the same vertical coordinate. We
will formalize analytically this requirements in Section 3.5.4, where we also show that
the algorithm given in the present section satisfies that requirements.

The new PPMs will have both the same orientation but different position. Positions
(optical centers) are the same as the old cameras, whereas orientation changes be-
cause we rotate both cameras around the optical centers in such a way that focal
planes becomes coplanar and contain the baseline.

In order to simplify the algorithm, the rectified PPMs will have also the same in-
trinsic parameters. The resulting PPMs will differ only in their optical centers. The
new camera pair can be thought as a single camera translated along the X axis of its
standard reference system. This intuitively satisfies the rectification requirements
(formal proof in Section 3.5.4).

Let us think of the new PPMs in terms of their factorization. From (36) and (33):

P, =AR| R, P.,=AR| Recyl. (59)

The optical centers ¢y and ¢, are given by the old optical centers, computed with
(32). The rotation matrix R is the same for both PPMs, and is computed as detailed
below. The intrinsic parameters matrix A is also the same for both PPMs, but can
be chosen arbitrarily (see MATLAB code, Figure 14). We will specify R by means of

1ts row vectors

R=|r] (60)

that are the X, Y and Z axes respectively, of the camera standard reference frame,
expressed in world coordinates.

According to the previous geometric arguments, we take:

1. the new X axis parallel to the baseline: r1 = (¢; — ¢3)/|ler — ¢|

2. the new Y axis orthogonal to X (mandatory) and to k: r; =k Ary
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3. the new Z axis orthogonal to XY (mandatory) : r3 =r; Ar;

where k is an arbitrary unit vector, that fixes the position of the new Y axis in the
plane orthogonal to X. We take it equal to the Z unit vector of the old left matrix,
thereby constraining the new Y axis to be orthogonal to both the new X and the old

left Z. The algorithm is given in more details in the MATLAB version, Figure 14.

3.5.2 The rectifying transformation

In order to rectify — let’s say — the left image, we need to compute the trans-
formation mapping the image plane of Po; = [Qo1/d01] onto the image plane of
P, = [Qnil@ni]l. We will see that the sought transformation is the collinearity
given by the 3 x 3 matrix T = Qu; ng. The same result will apply to the right
image.

For any 3-D point w we can write
(61)

According to (35) , the equations of the optical rays are the following (since recti-

fication does not move the optical center)

W =1 + Ao Qg; My (62)
W = 1 + AnQ,  ns;

Hence:
Ihn] - )\Qn] ng Iho] . (63)

where A is an arbitrary scale factor (it is an equality between homogeneous quant-
ities). This is a clearer and more compact result than the one reported in [5].

The transformation T; is then applied to the original left image to produce the
rectified image, as in Figure 17. Note that the pixels (integer-coordinate positions)
of the rectified image correspond, in general, to non-integer positions on the original
image plane. Therefore, the gray levels of the rectified image are computed by

bilinear interpolation.
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function [T1,T2,Pn1,Pn2] = rectify(Pol,Po2)

% RECTIFY: compute rectification matrices in homogeneous coordinate

% [T1,T2,Pn1,Pn2] = rectify(Pol,Po2) computes the rectified

% projection matrices "Pnl" and "Pn2", and the transformation
h of the retinal plane "T1" and "T2" (in homogeneous coord.)
% which perform rectification. The arguments are the two old
% projection matrices "Pol" and "Po2".

yA Andrea Fusiello, MVL 1998 (fusiello@dimi.uniud.it)

% factorize old PPMs
[A1,R1,t1] art (Pol);
[A2,R2,t2] art (Pol);

% optical centers (unchanged)
cl = - inv(Po1(:,1:3))*Pol1(:,4);
c2 = - inv(Po2(:,1:3))*Po2(:,4);

% new x axis (= direction of the baseline)

vl = (c1-c2);

% new y axes (orthogonal to new x and old z)

v2 = extp(R1(3,:)’,vl);

% new z axes (no choice, orthogonal to baseline and y)
v3 = extp(vl,v2);

% new extrinsic parameters (translation unchanged)
R = [v1’/norm(vl)

v2’/norm(v2)

v3’/norm(v3)];

% new intrinsic parameters (arbitrary)
A = (Al + A2)./2;
A(1,2)=0; % no skew

% new projection matrices
Pnl = A * [R -R*cl ];
Pn2 = A * [R -R¥c2 1

% rectifying image transformation
T1 = Pn1(1:3,1:3)% inv(Po1(1:3,1:3));
T2 = Pn2(1:3,1:3)* inv(Po2(1:3,1:3));

function [A,R,t] = art(P)
% ART: factorize a PPM as P=Ax[R;t]

Q = inv(P(1:3, 1:3));
[U,B] = qr(Q);

R = inv(U);
t = BxP(1:3,4);
A = inv(B);
A=A ./AC3,3);

Figure 14: Working MATLAB code of the rectify function.
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3.5.3 Summary of the RECTIFICATION algorithm

The RECTIFICATION algorithm can be summarized as follows:

e Given a stereo pair of images I1,I2 and PPMs Po1,Po2 (obtained by calib-

ration);
e compute [T1,T2,Pn1,Pn2] = rectify(Pol,Po2) (see box);
e rectify images by applying T1 and T2.

Reconstruction of 3-D position can be performed from the rectified images directly,
using Pn1,Pn2.
The code of the algorithm, shown in Figure 14 is simple and compact, and the

comments enclosed make it understandable without knowledge of MATLAB.

3.5.4 Rectification analysis

In this section we will (i) formulate analytically the rectification requirements, and
(ii) prove that our algorithm yields PPMs f’m and f’nz that satisfies such require-

ments.

DEFINITION 3.1
A pair of PPMs P,.; and P, are said to be rectified if, for any point m; = (uy,v;) "
in the left image, its epipolar line in the right image has equation v, = v¢, and, for
)T

any point my = (u,Vv,2)' in the right image, its epipolar line in the left image has

equation v; =v,.

In the following, we shall write P, and P, as follows:

S; | S1a dy | dis
Poi=|s]|sy | =IS8 Puo=|d]|dy |=DJdl. (64)

T T
S5 | 834 d; | dss
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PRrRoOPOSITION 3.2

Two perspective projection matrices Py and Py, are rectified if and only if

sic2 + 514 #0 dici +dys #0
S$>Cy» + Sx4 = 0 and dzC] + d24 =0 (65)
S3Cy + S34 = 0 d301 + d34 =0

and

S)W —+ Sy . dow + dyg
S3W —+ S34 ds;w + d34)

(66)

where P,,; and P,,, are written as in (64) and ¢y and c, are the respective optical

center’s coordinates.

Proof As we know, the epipolar line of m, is the projection of its optical ray onto

the left camera, hence its parametric equation writes:

m; =P

m2] — & +ASD ', (67)

where &;, the epipole, is the projection of the conjugate optical center c,: *

S1C2 + S14

- ~ C>

é =Py 1 ] = | s2c2+ 82 | - (68)
S3C2 + S34

The parametric equation of the epipolar line of m; in image coordinates becomes:

u:[m]]]_[é] ARl
[€1]3 + Aln]z

69

v = [m], — (€], + AlR], (69)
"2 [&4]5 + AlDls

where in = SD~'1h,, and [.]; is the projection operator extracting the ith component
from a vector.
Analytically, the direction of each epipolar line can be obtained by taking the de-

rivative of the parametric equations (69) with respect to A:

“In this section only, to improve readability, we omit the transpose sign in scalar products. All
vector products are scalar products, unless otherwise noted.
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116413 — [B]s3[éq];
(€115 + Aln]3)?
2[61]3 — M)y
[€1]3 + Alnl3)?

(70)

Note that the denominator is the same in both components, hence it does not affect
the direction of the vector. The epipole is rejected to infinity when [&;]3 = 0. In
this case, the direction of the epipolar lines in the right image doesn’t depend on n
and all the epipolar lines becomes parallel to vector [[€;]; [€1],]" . The same holds,
mutatis mutandis, for the left image.

Hence, epipolar lines are horizontal if and only if (65) holds. The vertical coordinate
of conjugate points is the same in both image if and only if (66) holds, as can easily

seen by plugging (64) into (30). O

PROPOSITION 3.3
The two camera matrices f’m and f’nz produced by the RECTIFICATION algorithm

are rectified.

Proof We shall prove that, if P,; and P, are built according to the RECTIFICA-
TION algorithm, then (65) and (66) hold.
From (59) we obtain

S14 = —S1€q diy = —dic; st =d4
$24 = —81Cq dyy = —dzes s; =dy (71)
834 = —S3Cq dzs = —dzc, s3 =d3

From the factorization (36), assuming y = 0, we obtain

s{ o r{ + Uors
s; | =AR = | o,ry + vors (72)
5] rs

From the construction of R, we have that ry, r, and r3 are mutually orthogonal and
r1 = B(c1 —c2) with B =1/[ler — 2.
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From all these facts, the following four identity are derived:

si(c1 —c2) =Psir1 = Blaurs + uers)ry = Boriry + uersry) = Poy, # 0(73
74
75
76

s2(c1 —c¢z) =Psory = B(oyrs + vorz)ry = B(arory + vorsry) =0
s3(c1 —cz) =Ps3r; =Pryr; =0

(
(
(
sy As3 =s; Arz3 =A(r Arsz) = Arg (

)
)
)
)

The parameter A in (76) is scalar taking into account that s; is a linear combination
of r, and rj.
Equation (65) follows easily from (73) (74)(75). Equation (66) is equivalent to

(52w + 524) (d3w + d34) = (S3W + 834) (dow + d24). (77)

Expanding, and using (74),(76) and properties of the external product we obtain

—s>(c1 — €2)s3W + (sz¢1)(s3€2) — (s2€2)(s3€9

(s2c1)(s3€2) — (s2€2)(s3¢7

)
)
(s2 /\'s3)(er1 Acz)
)
)

I
—

EN|

oo
~—

}\I‘] (C] A (65]
AB(er —c2)(c1 Acs

0.

OJ

3.5.5 Experimental results

We ran tests to verify that the algorithm performed rectification correctly, and
also to check that the accuracy of the 3-D reconstruction did not decrease when

performed from the rectified images directly.

Correctness

The tests used both synthetic and real data. Each set of synthetic data consisted
of a cloud of 3-D points and a pair of PPMs. For reasons of space, we report
only two examples. Figure 16 shows the original and rectified images with a nearly
rectified stereo rig: the camera translation was —[100 2 3] mm and the rotation

angles roll=1.5°, pitch=2°, yaw=1°. Figure 15 shows the same with a more general



42 Structure from Stereo

Left image Right image
600 600
-
400 4005 *
+
F
200 200 +
+
F
0 0
—//$j£//
-200 - - - - -200 - - - -
-400 -200 0 200 400 -400 -200 0 200 400
Rectified left image Rectified right image
800 8007
+ 4 F + + e
600 + AR 6001 + SR
4 H
+ +
400 + 400+ + i
F F
200 :* 200} *:
-+ o - *
0 G+ ## 0 &+ ‘Hf#
-200 -200
-1000 -500 0 -1000 -500 0

Figure 15: General synthetic stereo pair (top) and rectified pair (bottom). The
figure shows the epipolar lines of the points marked with a circle in both images.

geometry: the camera translation was —[100 20 30] mm and the rotation angles
roll=19° pitch=32° and yaw=>5°.

Real-data experiments used calibrated stereo pairs, courtesy of INRIA-Syntim. We
show the results obtained with a nearly rectified stereo rig (Figure 17) and with a
more general stereo geometry (Figure 18). The right image of each pair shows three
epipolar lines corresponding to the points marked by a cross in the left image. The
pixel coordinates of the rectified images are not constrained to lie in any special
part of the image plane, and an arbitrary translation were applied to both images to
bring them in a suitable region of the plane; then the output images were cropped
to the size of the input images. In the case of the “Sport” stereo pair (image size

768 x 576), we started from the following camera matrices:

9.7655352e 4+ 02 5.3829220e 4+ 01 —2.3984731e + 02 3.8754954e + 05
Po1 = |9.8498581e + 01 9.3334472e 4+ 02 1.5747888e + 02  2.4287923e + 05
5.7902862e — 01 1.1085118e — 01  8.0773700e — 01  1.118514%e + 03



3.5 Rectification

43

Left image Right image
600 600
500 s 500 —dgp——7
ORI +F o
+ + +
400 + 400 |
" +
300 + 300 +
o +
200 o 200 tor
i +
100 W%g\ 100 N +
0 A A 0 A A
0 200 400 600 0 200 400 600
Rectified left image Rectified right image
600 600
500 i 500 S
T ey B o
400 * 400 *
+ +
+ +
300 e 300 s
200 A 200 ot
+ +
100 ittt 100 L
0 0
0 200 400 600 0 200 400 600

Figure 16: Nearly rectified synthetic stereo pair (top) and rectified pair (bottom).
The figure shows the epipolar lines of the points marked with a circle in both images.

—2.4002435e 4+ 02 4.0034922e + 04
1.5678255e + 02  2.5173864e + 05
8.0897550e — 01  1.1743716e + 03

9.7670272e + 02 5.3761100e + 01
9.8682765e + 01 9.3104118e 402
5.7665530e — 01 1.1413953e — 01

Pol -

After adding the statement A(1,3) = A(1,3) + 160 to the rectify program,
to keep the rectified image in the center of the 768 x 576 window, we obtained the

following rectified camera matrices:

[1.0431495¢ + 03 7.4525523¢ + 01 —2.5850412¢ + 02 4.1246428e + 05|

P = [1.1652788¢ + 02 9.3389317e +02 1.4105910e +02  2.3883586¢ + 05
6.8550713¢ — 01 1.1391110¢ 01 7.1909960e — 01 1.1024013¢ + 03
[1.0431495¢ + 03 7.4525523¢ + 01 —2.5850412¢ + 02 4.0698457¢ + 04]

P, = |1.1652788¢ + 02 9.3389317e+02 1.4105910e +02 2.3883586¢ + 05
6.8550713¢ — 01 1.1391110e 01 7.1909960e — 01 1.1024013¢ + 03
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Leftimage Right image

ectified left image Rectified right image

Figure 17: “Sport” stereo pair (top) and rectified pair (bottom). The right pictures
plot the epipolar lines corresponding to the points marked in the left pictures.
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Left image Right image

Rectified left image Rectified right image

Figure 18: “Color” stereo pair (top) and rectified pair (bottom). The right pictures
plot the epipolar lines corresponding to the points marked in the left pictures.
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Accuracy

In order to evaluate the errors introduced by rectification on reconstruction, we
compared the accuracy of 3-D reconstruction computed from original and rectified
images. We used synthetic, noisy images of random clouds of 3-D points. Imaging
errors were simulated by perturbing the image coordinates, and calibration errors
by perturbing the intrinsic and extrinsic parameters, both with additive, Gaussian
noise. Reconstruction were performed using the Linear-Eigen method, described in

Section 3.3.
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Figure 19: Reconstruction error vs noise levels in the image coordinates (left) and
calibration parameters (right) for the general synthetic stereo pair. Crosses refer
to reconstruction from rectified images, circles to reconstruction from unrectified
images.
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Figure 20: Reconstruction error vs noise levels in the image coordinates (left) and
calibration parameters (right) for the nearly rectified synthetic stereo pair. Crosses
refer to reconstruction from rectified images, circles to reconstruction from unrecti-
fied images.
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Figures 19 and 20 show the average (over the set of points) relative error measured on
3-D point position, plotted against noise. Figure 19 shows the results for the stereo
rig used in Figure 15, and Figure 20 for the one used in Figure 16. Each point plotted
is an average over 100 independent trials. The abscissa is the standard deviation of

the relative error on coordinates of image point or calibration parameters.

3.6 Conclusions

Given two images and a set of matched points, the 3-D coordinates of the corres-
ponding world points can be reconstructed with a simple linear technique, if camera
parameters (intrinsic and extrinsic) are known. The process of measuring cam-
era parameters is called calibration. Epipolar geometry relates a point in one image
with the set of possible matches in the other, which constitutes a line, called epipolar
line. Matching is greatly simplified if the epipolar lines are parallel and horizontal
in each image, i.e., if the images are rectified. In this chapter we have developed a
simple and compact rectification algorithm. The correct behavior of the algorithm
has been demonstrated with both synthetic and real images. Interestingly enough,
reconstruction can be performed directly from the disparities of the rectified images,
using the rectifying PPMs. Our tests show that this process does not introduces

appreciable errors compared with reconstructing from the original images.






Chapter 4
Stereo Matching

In the previous chapter we assumed that we could identify conjugate pairs, that
is to say, pairs of points in the two images that are projection of the same points
in the scene. In this chapter we will address the problem of detecting conjugate
pairs in stereo images. We propose a novel stereo matching algorithm, called SMW
(Symmetric Multi-Window) addressing robust disparity estimation in the presence
of occlusions. The algorithm is an adaptive, multi-window scheme using left-right
consistency to compute disparity and its associated uncertainty. We demonstrate
and discuss performances with both synthetic and real stereo pairs, and show how
our results improve on those of closely related techniques for both accuracy and

efficiency.

4.1 Introduction

Detecting conjugate pairs in stereo images is a challenging problem known as the
correspondence problem, i.e., finding which points in the left and right images are
projections of the same scene point (a conjugate pair).

Several factors make the correspondence problem difficult: (i) its inherent ambiguity,
which requires the introduction of physical and geometric constraints; (ii)occlusions;
(iii) photometric distortions and (iv) figural distortion. In Section 4.2 these factors
are described, and the available constraints are introduced. Then, the existing
methods are outlined.

In Section 4.3 we present a new Symmetric, Multi-Window algorithm (henceforth

49
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SMW) for stereo matching, which addresses the problem mentioned in Section 4.1,
and outperforms closely related methods. SMW’s assumptions are clearly stated in
Section 4.3.1. SMW is based on the Block Matching algorithm (Section 4.3.2); it
employs an adaptive, multi-window scheme to cure distortions and yield accurate
disparities (Section 4.3.3), associated to uncertainty estimates. Robustness in the
presence of occlusions is achieved thanks to the left-right consistency constraint (Sec-
tion 4.3.4). A consistent uncertainty estimation mechanism (Section 4.3.5) guaran-
tees that the depth maps produced can be used by data fusion schemes like [148]. In
Section 4.3.6 we give a pseudo-code summary of the SMW algorithm. A detailed ex-
perimental evaluation, including a comparison with similar methods reported in the
literature, is reported in Section 4.4. Our results (stereo pairs and disparity maps)
are available on the web (http://www.dimi.uniud.it/ fusiello/demo-smw/smw.html)

where the source code for the SMW algorithm can be downloaded as well.

4.2 The correspondence problem

The correspondence problem (or matching problem) can be regarded as a search
problem, since for each element on the left image (a point, region, or generic feature),
a similar element is to be found in the right one, according to a given similarity
measure. The output of a stereo matching algorithm is a set of correspondences, or
a disparity map that gives the disparity for some or all points of a reference image.
To prevent ambiguous or false matches and avoid combinatorial explosion, the
search space must be suitably constrained. Geometric, physical and photometric
constraints imposed by both the observer (our stereo rig) and the scene, include the

following.

Similarity constraint [51]. Left and right images of a given scene element are

similar. This is often implicit.

Epipolar constraint (see Chapter 3). Given a point in the left image, the cor-
responding point must lie on a straight line (called epipolar line) in the right
image. This constraint reduces the search space from two-dimensional to one-
dimensional. It applies in every situation, provided that the epipolar geometry

is known.
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Smoothness constraint [96]. The distance of scene points from the cameras
changes smoothly almost everywhere, thereby limiting the allowable disparity

gradient. This fails, obviously, at depth discontinuities.

Uniqueness constraint [96]. Each image element has one and only one conjugate.

This fails if transparent objects are presents or in the presence of occlusions.

Ordering constraint [7]. If point m; in the one image matches point m; in the
other image, then the corresponding of a point m; that lies at the right (left) of
m; must lie at the right (left) of mj. This constraint hold for points belonging
on the surface of an opaque object. It fails at region known as forbidden zone
(See Figure 21).

Figure 21: Ordering constraint. Point Q , which lies behind an opaque object,
violates the ordering constraint. The shaded region is the forbidden zone of P;.

Major problems affecting machine stereo arise because the scene is viewed from two
different viewpoints, which is also the key feature of stereo. The larger the baseline

the more severe these effects, which include the following.
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Occlusions. Since the two images of the scene are slightly different, there are ele-
ments that are imaged only in one camera. Hence, there are image points
without a corresponding, or, stated in other words, not all points in one image

belongs to a conjugate pair.

Photometric distortion. A typical assumption is that the perceived intensity of
a surface patch does not depend on the viewing direction: light source is a
point at infinity and the surfaces are Lambertian (see Chapter 2). This is not
true in general, and the same world point takes different intensities in each

view.

Figural distortion. Owing to perspective projection, the same object appears dif-

ferent when projected in the left and right images.

4.2.1 Matching techniques

The techniques adopted for the stereo matching problem can be classified along two
dimensions: the kind of image element considered for matching (What to match),
and the techniques to compute matching (How to match). In addition, one can be
interested in the computational schemes adopted, especially when biological plaus-

ibility is of concern [15] .

What to match

Let us address the first issue. Some algorithms [26, 96] match individual pixels,
i.e., the atomic elements in an image. More robust methods, called area-based,
perform matching between gray levels of image patches (windows), by computing
some form of similarity or correlation. The disparity may then be computed for
every pixel [35, 41], for the centers of the windows [90, 162], or for selected points
of interest [56].

Since gray-levels are not identical in the two image, some problems arise with match-
ing raw intensities. They can be overcome by considering the output of a bandpass
filter, usually a Laplacian of Gaussian (LoG) filter [108]. One could also compute
the response of a bank of filters at a given image point, which defines a vector char-

acterizing the local structure of the image [78, 157]. A similar vector is estimated
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on the other image, in order to compute matching.

Matching image features is generally more robust; the related class of algorithms is
called feature-based. In the present context, the term “features” indicates physically
meaningful cues, such as edges [97, 52, 116, 7, 110], segments (collinear connected
edges) [102], and corners (where two edges cross) [8]. Features can be extracted by

bandpass filters, derivative operators or ad hoc non-linear operators.

The local phase of the image signal — computed via Fourier or Gabor transforms —
has also been used for matching [77, 76, 67]. As disparity should be less than one
pixel to avoid aliasing (according to the sampling theorem, or the “quarter cycle

limit” [96]), a multi-resolution scheme should be employed.

How to match

We now come to the second question: Once chosen the elements to be matched, how

to perform matching?

Correlation techniques consist in finding the amount of shifting that yields the
maximum similarity score between the left and the right elements. Although several
correlation measures have been proposed, the Sum of Squared Differences (SSD)
measure is regarded as a reasonable choice [2, 41, 35, 111, 74, 79, 47]. Recently,a
new approach based the local ordering of intensities have been presented [163] with

promising results.

With relaxation-based methods the elements are joined by weighted links; the initial
weights are iteratively updated by propagating constraints, until some equilibrium
configuration is reached [96, 97, 52, 116, §].

Dynamic programmaing techniques adopt a cost function, that embeds the constraints
and is minimized to get the best set of matches [110, 7, 74, 47, 11, 26]. The solution
is a curve in the match space [26, 47| or the disparity space [74]. Usually, the cost

functional is derived using Bayesian reasoning [47, 11, 26].

A novel approach to matching consists in representing image scan lines by means of
intrinsic curves [139], i.e, the paths followed by a descriptor vector as the scan line
is traversed from left to right. Intrinsic curves are invariant to image displacements,

and this property is exploited to compute matching.
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Computational schemes

As far as the computational scheme is concerned, algorithms can be classified into
cooperative, coarse-to-fine and feed-forward (see [15] for more details).

Cooperative models, pioneered by Marr and Poggio [96], exploit the properties of
recurrent nets, which perform relaxation to a minimum energy configuration.

In coarse-to-fine models, the disparities computed at different spatial scales are fused
to compute the final disparity estimate. In biological vision, coarse-to-fine models
identify a special class of algorithms using multiple spatial filters that simulate re-
ceptive fields [97, 108]. In machine vision, this paradigm is applicable to any scheme,
in order to get scale independence and data redundancy [84]. It is mandatory only
with phase-based methods.

Whereas the cooperative and the coarse-to-fine techniques require cooperative feed-
back or sequential disparity processing over the spatial scales, the feed-forward
scheme [162] operates in one shot, like most of the machine stereo algorithms.

For further details on machine stereo, the reader can consult the book [53] or the

surveys in [16, 30]; a review on human computational stereo is given in [15].

4.3 A new area-based stereo algorithm

In this section we present our new, efficient stereo algorithm addressing robust dis-
parity estimation in the presence of occlusions. The algorithm is an adaptive, multi-
window scheme using left-right consistency to compute disparity and its associated

uncertainty.

4.3.1 Assumptions

With no loss of generality, we assume that conjugate pairs lie along raster lines, that
is, the stereo pair has been rectified (Section 3.5) to achieve parallel and horizontal
epipolar lines in each image.

We also assume that the image intensities I(x,y) of corresponding points in the
two images are the same. If this is not true, the images can be normalized by a

simple algorithm [26] that computes the parameters «, 3 of the gray-level global
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transformation

Lix,y) =ali(x,y) +B  V(x,y)

by fitting a straight line to the plot of the left cumulative histogram versus the right
cumulative histogram. This normalization fails if images are taken from viewpoints

too far apart.
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Figure 22: Ten percentile points from “Shrub” histograms.

4.3.2 The Block Matching algorithm

The basic structure of the block matching algorithm can be outlined as follows.
For each pixel in the image chosen as reference (e.g., the left one, I;), similarity
scores are computed by comparing a fixed, small window centered on the pixel to
a window in the other image (here, I,), shifting along the raster line. Windows
are compared through the normalized SSD measure, that quantifies the difference

between intensity patterns:

D M+, y+n) — Lix+E+ d, y+n)I?
(&m)

> Lix+&y+n)? Y L{x+E+d,y+n)
(&n) (&m)

Clx,y,d) =
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Figure 23: Efficient implementation of correlation.

where & € [-m,n], n € [-m, m]. The disparity estimate for pixel (x,y) is the one

that minimizes the SSD error:
do(x,y) = argmin C(x,y, d). (80)

Sub-pizel accuracy can be achieved, for instance, by fitting a parabola to the SSD

error function C(d) in the neighborhood of the minimum do [2]:

] C(X»U»do*”*C(X»U»do‘f‘”

s(x,y) = 2C(x,y,do—1)—2C(x,Y, do)+C(x,y, do+1) &Y

The Simple Block Matching (henceforth SBM) algorithm is reported here.

Algorithm 1 SBM

let I, I} the right and left N x N images;
let W an x n window (with n < N);
for each pixel I (x,y)
for each disparity d = (dy, dy) in some range

Coxy,d)= ) [Mx+&y+n) —Lix+E&—d,y+n—dy)5
(En)ew
end

di(x,y) « argming C(x,y,d)

end

end
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Figure 24: Multiple windows approach. If one use windows of fixed size with different
centers, it is likely that one of them will cover a constant depth area.

SBM has an asymptotic complexity of O(N?nm), with N the image size. However,
we can observe that squared differences need to be computed only once for each
disparity, and the sum over the window needs not be recomputed from scratch when
the window moves by one pixel (see Figure 23). The optimized implementation that
follows from this observation [35] has a computational complexity of O(4N?), that

is independent of the window size.

4.3.3 The need for multiple windows

As observed by Kanade and Okutomi [79], when the correlation window covers a
region with non-constant disparity, area-based matching is likely to fail, and the
error in the depth estimates grows with the window size. Reducing the latter, on

the other hand, makes the estimated disparities more sensitive to noise.

EEEEE

mim

Figure 25: The nine correlation windows. The pixel for which disparity is computed
is highlighted.

To overcome such difficulties, Kanade and Okutomi proposed a statistically sound,

adaptive technique which selects at each pixel the window size that minimizes the



58 Stereo Matching

uncertainty in the disparity estimates.

In the present work we take the multiple-window approach, in the simplified version
proposed by [74, 47]. For each pixel we perform the correlation with nine different
windows (showed in Figure 25), and retain the disparity with the smallest SSD error
value. The idea is that a window yielding a smaller SSD error is more likely to cover
a constant depth region; in this way, the disparity profile itself drives the selection
of an appropriate window.

Figure 26 illustrates how the window size is adapted to the disparity profile. The
point x = 43 is a (left) disparity jump. Point x = 84 marks the beginning of
an occluded area extending to x = 91. Negative/positive window sizes refer to
the oriented extent of the window with respect to the pixel for which disparity is

computed.

window size [pixel]

L =

Figure 26: How the window size adapts to a disparity profile. The dashed lines show
the disparity profile computed along a raster line of the stereo pair of Figure 31.
Solid lines mark the window sizes.

4.3.4 Occlusions and left-right consistency

Occlusions create points that do not belong to any conjugate pairs. Usually, occlu-
sions involve depth discontinuities: indeed, occlusions in one image correspond to
disparity jumps in the other [47].

A key observation to address the occlusion problem is that matching is not a sym-
metric process: taking different images (right or left) as reference, one obtains, in

general, different sets of conjugate pairs, in which some points are involved in more
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than one conjugate pairs. Such pairs are not invariant to the choice of the reference
image. As each point in one image can have at most one corresponding point in
the other (the uniqueness constraint), such pairs can be discarded (left-right con-
sistency) [41, 35].

Figure 27: Left-right consistency. Matching left to right, point A is correctly
matched to A’. Point B is incorrectly given C’ as a match, but C' matches actually

C #B.

Consider for instance point B of Figure 27 and take the left image, I;, as reference.
Although B has no corresponding point in the right image, I; (its conjugate point
is occluded), the SSD minimization returns a match anyhow ( C’). If I, is taken as
reference, instead, C' is correctly matched to its conjugate point (C) in the left image.
Therefore the conjugate pairs (B,C’) and (C,C’) violate left-right consistency; in
other words, C’ does not satisfy the uniqueness constraint. Notice that the (C’,C)
pair allow us to recognize that point B is occluded (strictly speaking, its conjugate
point is occluded); our approach takes advantage of left-right consistency to detect
occlusions and suppress the resulting infeasible matches.

For each point (x,y) in the left image, the disparity di(x,y) is computed as described
in Section 4.3.2. The process is repeated with the right image as reference.

If di(x,y) = —d.(x + di(x,y),y) the point is assigned the computed disparity;
otherwise it is marked as occluded and a disparity is assigned heuristically. Following
[85], we assume that occluded areas, occurring between two planes at different depth,
take the disparity of the deeper plane.

It should be said that, in presence of large amount of noise or distortion, the left-
right consistency could fail for true conjugate pairs, and points could be wrongly
marked as occluded. A simple non-linear filtering of the occlusions map (a binary

image showing only occluded points) would discard those “outliers”.
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4.3.5 Uncertainty estimates

Area-based algorithms are likely to fail not only in occluded regions, but also in
poorly textured regions, which make disparity estimates more uncertain; it is there-
fore essential to assign confidence estimates to disparities. Several uncertainty es-
timation schemes have been proposed for SSD, mostly based on the shape of the
SSD error function [2, 148].

Our approach takes advantage of the multiple windows. Disparity estimation is
sensitive to window shape in two cases: first, near a disparity jump (as discussed
in Section 4.3.3) and, second, where the texture is poor, or the signal-to-noise ratio
(SNR) is low. Consequently, we define uncertainty as the estimated variance of the
disparity measures obtained with the various windows (see algorithm summary in
next section); occluded points are assigned infinite variance. Experimental results
show that such an uncertainty measure is consistent, i.e., it grows as the SNR

decreases (Section 4.4).

4.3.6 Summary of the SMW algorithm

We summarize our algorithm, called SMW (for Symmetric Multi-Window) in pseudo-
code. Let C(x,vy, d; I, I,,w) be the SSD error computed from I; to I, according to
(79) at point (x,y), with disparity d and window w. Let s; be the sub-pixel correc-
tion defined by (81). The y coordinate is omitted for the sake of simplicity, since

we assume horizontal epipolar lines.

Algorithm 2 SMW

let I, I} the right and left N x N images;
for all (x,y) in the left image I; do
for all windows w=1...K do
diw(x)—argming C(x,y, d; I, I, w)
dyw(x)—argming C(x,y, d; I;, I, w)
end
03 (%) = gy Loy (di(x) — diw (X))

d].(x')H arg minw C(Xa Yy, dl,w; Il) Irv W)
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d,(x)¢arg min,, C(x,y, drw; I+, I;, w)
d(x)d(x) + subpixel,(x)

end

for all (x,y) in I do
if (di(x) # —d,(x+ di(x)) then o5(x)+ + 00

end

end

It is worth noting that the only one SSD value per pixel needs to be computed.
Indeed, each off-centered windows for a pixel is the on-centered window for another

pixel.

4.4 Experimental results

This section reports the main results of experimental evaluation of SMW. The eval-

uation was aimed at assessing
e the accuracy of disparity computation,
e robustness against occlusion,

e the consistency of uncertainty estimation,

e the performance of SMW when compared to similar algorithms.

Figure 28: Square RDS. The right image  Figure 29: Computed disparity map
of the stereogram is computed by warp- by SBM for the square RDS with 3x3
ing the left one, which is a random tex-  window (left) and 7x7 window (right);
ture (left), according to a given disparity =~ MAE is 0.240 and 0.144, respectively.
pattern (right): the square has disparity

10 pixel, the background 3 pixel.
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We used synthetic data sets commonly found in the stereo literature and controlled
amounts of noise. We also reproduced patterns used for testing algorithms used in
our comparative evaluation. The next section reports the results as well as further

tests with real stereo pairs of size 128 x 128.

4.4.1 Random-dot stereograms

We first performed experiments on noise-free random-dot stereograms (RDS), shown
in Figure 28. In the disparity maps, displayed as images, the gray level encodes the
disparity, that is the depth (the brighter the closer); images have been equalized to
improve readability; sub-pixel accuracy values have been rounded to integers. The
estimated Mean Absolute Error (MAE), that is the mean of absolute differences

between estimated and ground true disparities, has been computed as a performance

index.

Figure 30: Computed disparity map (left) and uncertainty (right) by SMW for

the square RDS (top) and for the circle RDS (bottom). MAE is 0.019 and 0.026.
respectively.

The results of SBM applied to the random-dot stereogram of Figure 28 shows how
most of the problems outlined in Sections 4.3.3 and 4.3.4 affect disparity computa-
tion. Figure 29 shows the disparity maps computed by SBM with fixed windows
3x3 and 7x7. Both pictures show the effect of disparity jumps (near the left and
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Figure 31: MAE of SMW and SBM vs  Figure 32: Mean uncertainty vs SNR for
noise standard deviation for the square a constant disparity region of the square
RDS. Window is 7x7. RDS.

horizontal borders of the square patch) and of occlusions (near the right border of
the square patch). The SMW algorithm with a 7 x 7 window was applied to the
square RDS of Figure 28 and to a circular RDS (not shown here). Figure 30 show
the disparity maps computed by SMW and the estimated uncertainty maps (the
darker the lower) in both cases.

The MAE is negligible, and may be ascribed to sub-pixel estimation only. The
occluded points, shown in white in the uncertainty maps, are identified with 100%
accuracy in both cases. The circle RDS shows that the algorithm is not biased
toward square disparity patterns, as the shape of the SSD windows might suggest.
The reader could compare the present results to those reported in [26].
Experiments with various noisy RDSs show a graceful degradation when noise in-
creases. (Gaussian noise with zero mean and increasing variance was added inde-
pendently to both images of the square RDS. Figure 31 plots the MAE against the
standard deviation of the noise for SMW and SBM. Each point depicts the average
result of 20 independent trials. Images were 8-bit deep, monochrome.

In order to assess the uncertainty estimator incorporated in SMW, we plotted the
average uncertainty computed over a square patch of uniform disparity against the
SNR, defined as

Image variance

Noise variance
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The results (Figure 32) show that the computed uncertainty consistently increases
as the SNR decreases.

4.4.2 Gray-level ramp

We performed a systematic, quantitative comparison between SMW, our implement-
ation of the Adaptive Window (AW) algorithm [79] (perhaps the closest method to
SMW in the literature), and SBM with different window sizes. The evaluation was
based on the main test pattern used by [79]: an input stereo pair of an intensity
ramp in the horizontal direction, warped according to a given disparity pattern.
The left disparity jump creates a “disocclusion” area that is filled with random dots
(Figure 33). Gaussian noise with zero mean and unit variance (gray level) was added

to both images independently.

Figure 33: Gray-level ramp stereo pair.
The central square has disparity 5 pixel,
the background 2 pixel.

Figure 34 illustrates a comparison of the three algorithms using the gray-level ramp
stereo pair.

Figure 35 compares qualitatively the isometric plots of the absolute errors (absolute
differences of true and reconstructed depths) for AW and SMW. Further comparisons
are illustrated in Table 1, which summarizes the results of our comparison of the
MAE for SBM, AW, and SMW, using input pairs with different noise levels and
different window sizes.

Results with SBM (Figure 34) confirm that too small windows (e.g., 3x3) increase
sensitivity to noise, whereas larger windows (e.g., 7x7) act as low-pass filters and

are likely to blur depth discontinuities.
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Figure 34: Isometric plots of the disparity maps computed with: SBM 3x3 window
(top left) and 7x7 window (top right), AW (bottom left) and SMW 7x7 algorithms
(bottom right), with 0% = 1.0. The orientation is chosen to show occluded points.

150 O

Figure 35: Isometric plots of estimated errors, as differences between computed and
true disparities for the AW (left) and SMW algorithm (right).
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Algorithm MAE
0“=1.0]0°=3.0] ¢ =10.0
SBM 7x7 0.182 0.468 1.235
SBM 15x15 0.284 0.392 0.988
AW 0.101 0.244 1.045
SMW 7x7 0.082 0.318 0.979
SMW 15x15 0.059 0.235 0.819

Table 1: Comparison of estimated errors: mean absolute (MAE) for different noise
variances. Notice that 15x15 is the maximum window size allowed for AW.

More interestingly, Figure 34 shows that AW is the most accurate (since it reduces
simultaneously both random and systematic errors along the disparity edges), but
performs poorly within occluded areas, leading to large local errors (Figure 35),
as it does not exploit the uniqueness constraint. Sub-pixel corrections are smooth
since this algorithm is essentially a complex, iterative sub-pixel adjustment. SMW
yields a depth map that is globally more reliable, as it enforces left-right consistency:
occluded points are detected with 100% accuracy.

The slight amount of noise across the disparity surface (Figure 35) is due to the
simple sub-pixel accuracy method, the main source of errors for SMW. Further
experiments with larger disparities (not reported here) show that the improvement
in accuracy achieved by SMW with respect to AW increases with disparity, owing
to the increasingly large areas of occlusion®.

Another advantage of SMW with respect to AW is efficiency. Running on a SUN
SparcStation 4 (110MHz) under SunOS 5.5, our implementation of the SMW takes
8 seconds, on average, to compute the depth maps in Figure 34 (128 x128 input

images), whereas AW takes 32 minutes on average.

4.4.3 Real data

We report the results of the application of the SMW algorithm on standard im-
age pairs from the JISCT (JPL-INRIA-SRI-CMU-TELEOS) stereo test set, and
from the CMU-CIL (Carnegie-Mellon University—Calibrated Imaging Laboratory)
in Figure 37. In the disparity maps, the gray level encodes disparity, that is depth

!Notice that our implementation of AW failed to converge to a solution with RDSs, probably
because this algorithm relies on intensity derivatives, which are ill-defined for random dot patterns.
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(the brighter the closer). Images have been equalized to improve readability. Sub-
pixel accuracy values have been rounded to integer values for display. We also
report the estimated variance maps (the darker the lower). Small values cannot be
appreciated in spite of histogram equalization, due to the large difference between
high-uncertainty occlusion points and the rest of the image. Although a quantitative
comparison with other methods was not possible with real images, the quality of
SMW results seems perfectly comparable to that of the results reported, for example,
in [161, 47, 26].

Running on a Sun SparcStation 4 (110MHz) under SunOS 5.5, our current imple-
mentation takes 50 seconds, on average, to compute depth maps from 256x256

pairs, with a disparity range of 10 pixels.

Figure 36: Height field for the “Castle” stereo pair.

Reconstruction. If the camera parameters are known, the three-dimensional
structure can be computed from the disparity map (Chapter 3). As an example,
Figure 36 shows the height field computed from the “Castle” stereo pair, given the
focal length in pixels (2497) and the baseline (21mm). The values of the height field
are true distances (in mm) from an arbitrary reference plane placed at a 2300mm
from the focal plane. Since the disparity range is [21, 28], the corresponding depth

range is [1694mm, 2259mm], hence the reference plane is behind every scene object.
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Figure 37: Disparity (left) and uncertainty maps (right) for the “Castle”, “Parking
meter”, “Shrub” and “Trees” stereo pairs
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4.5 Conclusions

We have introduced a new, efficient algorithm for stereo reconstruction, SMW,
based on a multi-window approach, and taking advantage of left-right consistency.
Our tests have shown the advantages offered by SMW. The adaptive, multi-window
scheme yields robust disparity estimates in the presence of occlusions, and clearly
outperforms fixed-window schemes. If necessary, the slight amount of noise caused
by sub-pixel interpolation can be kept small by increasing the baseline, which does
not worsen performance significantly thanks to the robust treatment of occlusions.
This is an advantage over several stereo matching schemes, often limited by the
assumption of small baselines.

Left-right consistency proves effective in eliminating false matches and identifying
occluded regions (notice that this can be regarded as a segmentation method in
itself). In addition, disparity is assigned to occluded points heuristically, thereby
achieving reasonable depth maps even in occluded areas. Uncertainty maps are also
computed, allowing the use of SMW as a module within more complex data fusion
frameworks. As for any area-based correspondence method, SMW'’s performance is
affected adversely by poorly-textured regions, but areas of low texture are associated
consistently with high uncertainty values.

The efficiency of SMW is globally superior to that of similar adaptive-window meth-
ods, as shown by direct comparisons with [79] reported. The reason is that SMW
performs a one-step, single-scale matching, with no need for interpolation and op-
timization. The main disadvantage is that the window size remains a free parameter;
notice, however, that adaptive-window schemes are much slower in achieving com-
parable accuracies.

Possible developments are to embed the SMW module in a dynamic stereo sys-
tem. We have experimented with the integration of stereo with shape from shading

technique [165], with promising results [27].






Chapter 5
Structure from Motion

In this chapter we will address the structure from motion problem: given several
views of a scene taken with a moving camera with known intrinsic parameters and
given a set of matched points, recover the motion of the camera and the structure

of the scene. This is known in photogrammetry as the relative orientation problem.

In the previous sections we discussed the fully calibrated case, in which we had a
calibrated rig of two cameras and reconstruction was possible as long as correspond-
ences between images could be established. In this chapter we consider a single
moving camera; the intrinsic parameters are known but the camera motion is un-
known (i.e., the extrinsic parameters are missing). The problem of obtaining the

matches themselves which will be studied in detail in Chapter 6.

5.1 Introduction

The structure from motion problem has been studied extensively by the computer
vision community in the past decade (see [73] for a review). The approaches to mo-
tion estimation can be partitioned into differential [136, 130, 129, 153] and discrete
methods, depending on whether they use as an input image point velocities (the
motion field) or a set of matched points ([95] discuss the relationship between the
two approaches). Among the latter methods, orthographic or para-perspective ap-

proximations for the camera have been used [138, 114]. One of the most appealing

71
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approaches, using the full perspective camera model, was proposed by Longuet-
Higgins [86]. This method is based on the essential matriz, that describes the epi-
polar geometry of two perspective images. The so-called Longuet-Higgins equation,

which defines the essential matrix, will be derived in Section 5.2.

The essential matrix encodes the rigid displacement of the camera, and indeed a
theorem by Maybank and Faugeras [36] allows us to factorize it into a rotation and
a translation matrix (Section 5.3). As the intrinsic parameters are known, this is
tantamount to knowing the full camera matrices, and structure (i.e., the distance
of the points to the camera) follows easily by triangulation (as in Chapter 3). Note
that the translational component of displacement can be computed only up to a
scale factor, because it is impossible to determine whether a given image motion is
caused by a nearby object with slow relative motion or a distant object with fast
relative motion (this is known as the depth-speed ambiguity).

In Section 5.4 we deal with the problem of computing the essential matrix. A simple
linear method, called the 8-point algorithm [86, 61] is described.

In Section 5.5 a non-linear iterative algorithm that compute motion parameters
directly from correspondences in normalized coordinates [71, 72] is outlined.

Our implementation of the algorithm for computing structure and motion is de-
scribed in Section 5.6. Following [158, 167, 92], we use the results of the 8-point
algorithm as the initial guess for the iterative method.

Experimental results with synthetic and real images are reported in Section 5.7.

5.2 Longuet-Higgins equation

Let us assume that we have a camera, with known intrinsic parameters, that is
moving in a static environment, following some unknown trajectory. Let us consider
two images taken by the camera at two time instants and assume that we are given
a number of point matches between the images, in normalized coordinates. Let P
and P’ the camera matrices corresponding to two time instants, and p = A~ 'm,
p’ = A'"'m’ the normalized coordinates of two matched image points P and P’
respectively.

Working in normalized coordinates and taking the first camera reference frame as
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the world reference frame, we can write the following projection matrices:

P = [1/0] (83)

P’ = [1|0]G = [R]t] (84)

Let P = [Q|@]. The epipolar line of P is the line containing the epipole E’, whose

coordinates are

e =P = t, (85)

and the projection through P’ of the point at infinity of the optical ray of P:

Q'p
0

13/

] =Q'Q 'p =Rp. (86)

In the projective plane, the line joining two points is represented by the external
product (t A Rp), hence the P’, the conjugate point of P satisfies the following

equation, which is called the Longuet-Higgins equation:
P’ (t A (Rp)) = 0. (87)

In the collapsed vector space interpretation of the projective plane (see Appendix
A), the latter (a triple product) expresses the co-planarity of the three vectors
p’,t, (Rp).xf

By introducing the skew-symmetric matrix [t] for the external product with t, (87)

writes
p' [tIARD = 0. (88)
The matrix
E = [tI\R (89)

is called the essential matriz. Since det[t], = 0, E has rank 2. Besides, it is only

defined up to a scale factor, because (87) is homogeneous with respect to t. This
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Figure 38: Longuet-Higgins equation as the co-planarity of three ray vectors.

reflects the depth-speed ambiguity, i.e., the fact that we cannot recover the absolute
scale of the scene without an extra yardstick, such as knowing the distance between
two points. Therefore, an essential matrix has only five degrees of freedom (or, it
depends upon five independent parameters), accounting for rotation and translation
up to a scale factor.

The essential matrix and the fundamental matrix are linked, since they both encode
the rigid displacement between two views. The former links the normalized coordin-
ates of conjugate points, whereas the latter links the pizel coordinates of conjugate

points. It will be shown in Section 7.2 that

F=A""EA " (90)

5.3 Motion from the factorization of E

Let us assume that the essential matrix is given. The following theorem, by May-
bank and Faugeras [36] allows us to factorize the essential matrix into rotation and
translation. Unlike the fundamental matrix, the only property of which is to have
rank 2, the essential matrix is characterized by this theorem. Following [61], we will
give here a more compact proof than in [36], based on Singular Value Decomposition
(SVD).

THEOREM 5.1

A real matrix E 3 x 3 can be factorized as product of a nonzero skew-symmetric
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matrix and an orthogonal matrix if and only if E has two identical singular values

and a zero singular value.

Proof Let E = SR where R is orthogonal and S is skew-symmetric. Let S = [t]a
where |[t|| = 1. Then

EE' =SRR'S" =SST =1—tt'

Let U the orthogonal matrix such that Ut = [0,0,1]". Then

10
UEE'U'=U[I-tt")U'=I-Utt' U =1—100,0,117[0,0,11= [0 1
0 0

o O O

This demonstrate one implication. Let us now give a constructive proof of the
converse. Let E =UDV be the SVD of E, with D = diag(1,1,0) (with no loss of

generality, since E is defined up to a scale factor). The key observation is that

100 0 -1 0 0 10
D=|010l=]|1 0 0f|-1 0 0| =SR'
0 00 0 0 0 0 01
where S’ is skew symmetric and R’ orthogonal.

Hence
E=UDV' =US'R'V' = (US'U")(UR'V").

Taken S = US'U" and R = UR'V the sought factorization is E = SR. [

This factorization is not unique. We can obtain the same D matrix by changing
both sign of S’ and R’. Moreover, because of the ambiguity in the sign of E, we
can change the sign of D, either by taking opposite sign for S’ and R, or by taking
the transpose of R (because S'R'T = —D). In total, taking all the combinations of
+S,+R, +R ", we have eight possible factorizations. Since the sought R must be a

rotation matriz, there are only four possible factorizations, given by:

S~US'U" (91)
R~UR'V or R~UR''VT (92)
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where

0 -1 0
S'=11 0 0 R'=|-1 0 0f, (93)
0 0 O 0
with the constraint det R = 1.
As remarked by Longuet-Higgins, the choice between the four displacements is de-
termined by the requirement that the points location, which can be computed by
building the camera matrices (83) and (84), must lie in front of both cameras, i.e.,

their third coordinate must be positive.

5.4 Computing the essential (fundamental) mat-
rix

In this section we will address the problem of the estimation of E from points
correspondences.

We will consider the computation of the fundamental matrix F since this is a more
general problem; if we can compute F we are also able to compute E as long as
intrinsic parameters are known, either by using (90) or by switching from pixel to
normalized coordinates.

The problem of computing the fundamental matrix has been given a great amount
of attention in recent years (see [168] for a review). A variety of method have been

proposed and studied, ranging from fairly simple linear methods to robust non-linear
ones [142].

5.4.1 The 8-point algorithm

Given a (sufficiently large) set of point matches: {(mi,m{)[i=1,...,n}, in pixel

coordinates, the fundamental matrix is defined by the following equation:
m| Frn; = 0. (94)

which can be used to compute the unknown matrix F, since each point match gives

rise to one linear homogeneous equation in the nine unknown entries of the matrix



5.4 Computing the essential (fundamental) matrix 7

F = [Fi_]'] .

where

! ! ! ] ] ! T
u; = [uuy, viug, wi, wivy, vivi, vi, ui, vi, 1]

f = [Fi1, F12, F13, F21, Fa2, Fa3, F31, F32, F33] .

From m corresponding points we obtain an over-constrained linear system
U.f =0, (96)

where

Un: [111,...,11TL]T.

The solution vector f is defined up to a scale factor; in order to avoid the trivial

solution f = 0, it is customary to add the constraint
[ £=1. (97)

If we ignore that a proper fundamental matrix should have rank 2, it is possible to
find a solution to the system (5.4.1) with as few as eight point matches (excluding
degenerate configurations [36]). For this reason this is called the 8-point algorithm.
In practice, more than eight point matches are available, and we can compute the

entries of F by solving a linear least squares problem:
mfin | Unf ||* subject to: || £ ||=1. (98)

The solution is the unit eigenvector corresponding to the least eigenvalue of U] Uy,
which can be computed by SVD of U, (this is again the Linear-Eigen method that
we used in Section 3.3). Note that the matrix F found by solving this set of linear
equations will not in general have rank 2, as required for a proper fundamental

matrix.

Data standardization The 8-point algorithm has been criticized for being sens-
itive to noise [91], and hence useless for practical purposes. Consequently, many
iterative algorithms have been proposed for the computation of the fundamental

matrix, all more complicated than the 8-point algorithm (see [168] for a review).
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However, Hartley [63] showed that the instability is due mainly to bad conditioning
rather than to the linear nature of the algorithm. Indeed by using pixel coordinates
we are likely to obtain a bad conditioned system of linear equation, since homo-
geneous coordinates have very different magnitude: in a 256 x 256 image, a typical
image point will be of the form [128,128,1]. By preceding the 8-point algorithm
with a very simple standardization of the coordinates of the matched points, the
condition number is made smaller and results become comparable with iterative al-
gorithms. The standardization procedure is the following: the points are translated
so that their centroid is at the origin and are then scaled so that the average distance
from the origin is equal to v/2. Let T and T' the resulting transformation in the
two images and m* = Tm, m™* = T'm’ the transformed points. Using m* and m"*
in the 8-point algorithm, we obtain a fundamental matrix F* that is related to the

actual one by F* = T'FT', as it can be easily seen.

Enforcing constraints After computing E from F using (90), we need to enforce
the constraints arising from Theorem (5.3), namely that E has two identical singular
values and a zero singular value. This is done by replacing E with E, the closest
matrix in Frobenius norm that satisfies the two constraints. Let E be any 3 x 3
matrix and E = UDV ' its SVD with D = diag(r,s,t) and v > s > t. It can be
shown that B = UDVT where D = diag(22, 52,0).

In order to compute motion, Theorem (5.3) is used to factorize E. Note that it
is not necessary to recompute the SVD of E, which is already available from the
constraint enforcement step.

It may be worth noting that, although the linear algorithm we described needs at
least eight points for computing E, since the matrix depend on five parameters only,
it is possible to compute it with five linear equation plus the polynomial constraints

arising from Theorem (5.3). [36] proved that only ten solutions exist in this case.

5.5 Horn’s iterative algorithm

The direct method for computing motion from the factorization of E is linear, fast

and easy to implement. Yet, it has been shown to suffer from instability in the
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presence of noise. For optimal results, an iterative method is needed. In this section
we present one due to Horn [71, 72|, computing motion parameters directly from
correspondences in normalized coordinates. Being a non-linear minimization, the
method requires an initial guess close to the solution. This is provided by the
results obtained from the factorization method.

Given n corresponding points, the relationship (87) can be re-written using the triple
product notation!. For each conjugate pair, in normalized coordinates, (pi, p’;) we

have:
[tv Rpi» pli] - O (99)

We can formulate a least-squares solution to the relative orientation problem by

minimizing the sum of the square errors of deviations from (99):

x=Y [t,Rp,,p", (100)
i=1

subject tot 't = 1.

Given an initial estimate for the rotation and translation, it is possible to make
iterative adjustments of the motion parameters that reduce the error (100). Let
ot and dw be the infinitesimal changes in the translation and rotation respectively.
Since translation is represented by a unit vector, changes in translation must leave

its length unaltered, hence
tTot =0 (101)

The correction to the baseline and rotation will change the triple product for each

point to
[(t + ot), (Rp; + dw ARp;),p';] (102)

The corrections are obtained by minimizing

D (ei+¢f 5t +d] sw)? (103)

i=1

IThe triple product is defined as [x,y,z] =x' (y Az).
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subject to t' 5t = 0, where
e = [t,Rp;,p' (104)
¢ = Rp;Ap)
di = Rp;A(piAt)

The constraint can be added onto the minimization problem using the Lagrange mul-

tiplier A to get a system of linear equations for the baseline, the rotation increments,

and the Lagrange multiplier:

C F ¢t 5t c
F' D o||éw|=1]d (105)
tT 0 0 A 0
where
C = Zcicg— (106)
i=1
i=1
D = ) dd/ (108)
i=1
c = ) ec (109)

d = ) edf (110)

Once we have the corrections to the baseline and rotation, we have to apply them
in a way that preserves the constraint that the translation is a unit vector and that
rotation is represented correctly. Translation is updated by summing the increment
and the result is normalized by dividing by its magnitude. Rotation, represented by

an orthonormal matrix, is updated by multiplying it by the matrix

0 —6(1)3 6(1)2
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that is not exactly orthonormal for finite increments. Orthogonality is then enforced
by SVD as follows. Let R be the nearly orthonormal matrix obtained after updating
and R = UDVT its SVD. It can be shown that R = UV is the closest (in

Frobenius norm) orthonormal matrix.

5.6 Summary of the MOTION& STRUCTURE algorithm

In this section the summary of the MOTION& STRUCTURE algorithm is given. Note
that the output structure differs from the true (or absolute) structure by a similarity
transformation, composed by a rigid displacement (due to the arbitrary choice of
the world reference frame) plus a a uniform change of scale (due to depth-speed

ambiguity). This is called a Euclidean reconstruction.

1. given: intrinsic parameters A and point matches (pixels) (m,m’);

2. estimate F with the 8-point algorithm, using data standardization;
compute E with (90);

3. replace E with E, the closest matrix that satisfies Theorem 5.3;
4. compute the factorization E= SR, according to Theorem 5.3, with S = [t]A;
5. start Horn’s iterative algorithm from the estimated displacement (t, R).

6. using the rigid displacement as the extrinsic parameters, instantiate camera
matrices for the two views and compute 3-D points position by triangulation
(Section 3.3).

7. output: rigid displacement (t,R) between two camera positions (motion), 3-
D points coordinates (structure), in the standard reference frame of the first

camera.

5.7 Results

We tested the MOTION&STRUCTURE algorithm with both synthetic and real im-
ages. Synthetic images were generated by projecting a set of 3-D points (taken from

the model of the calibration jig of Section 3.2), with given camera matrices.
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Figure 39: Synthetic frames (top row) and estimated structure (bottom row) using
the 8-point algorithm only (left) and Horn’s algorithm (right). Crosses are the
reconstructed points, whereas the ground truth model is shown with circles.

In order to evaluate the benefit introduced by the iterative refinement, we computed

motion and structure first with the 8-point algorithm only, and then running the

iterative refinement.

Figure 39 shows the reconstructed points for the synthetic

pair. As expected, the reconstruction is more accurate after the iterative refinement.

The better accuracy in motion estimation can be appreciated in Table 2, where

the estimated motion parameters are compared with the ground-truth. Errors are

computed as follows. We represent rotation with a vector whose direction gives the

the axis of rotation and whose magnitude is the rotation angle. If & is the estimate

and a is the ground truth, errors are computed with
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rotation error | translation error
8-point 0.0167 0.0225
8-point + iterative 0.00340 0.00966

Table 2: Relative errors on motion parameters

As to real images, we used the “Stairs” sequence (512 x 768 pixels, 60 frames)
for which we know the intrinsic parameters of the camera and the ground truth

structure of the imaged object (courtesy of F. Isgro, Heriot-Watt University). Cor-

respondences between the first and last frame was obtained using our robust tracker,
described in Chapter 6.

Tt
+ + M ‘
+ * N |
+ - ++ ‘
+ + + 4
+ + ++ |
++ ++ ot ‘
+t ++ + +
+ + o+ |
N ++ +
++ N - |
++ + ++ |
++ ++ ++ 1
o+ + ++
M ++
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Figure 40: First and last frame of “Stairs” sequence, with tracked features super-
imposed (top row). Reconstructed object, from different viewpoints (bottom row).
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Figure 40 shows the reconstructed structure, up to a scale factor, from two different
points of view. The reconstruction appears to be visually correct. Indeed, the
average error on right angles is about 4%. Knowing the length of the object, we
recovered the unknown scale factor. By comparing the other dimensions with the
actual dimensions of the object, we measured an error of 1.8% on the height and of
5% on the depth.

5.8 Conclusions

Structure from motion consist in recovering scene structure from a sequence of pic-
tures of it taken with a moving camera of which we know the intrinsic parameters.
We take the so-called discrete approach to the problem. We implemented a structure
from motion algorithm composed from the following steps: compute the essential
matrix from point matches; factorize the motion out of the matrix; use the motion
parameters as the initial estimate of an iterative algorithm; use the estimated mo-
tion together with intrinsic parameters to reconstruct 3-D points coordinates. The
algorithm proved up to the task both in a synthetic and a real case. In the latter
we used the correspondences provided by our robust tracker, which is described in

the next chapter.



Chapter 6
Feature Tracking

In this chapter we will address the problem of tracking features over time, by ana-
lyzing a small number of snapshots taken at different time instants. In the previous
chapters we assumed that correspondences between points in consecutive frames
were given, and we studied the problem of estimating the displacement of the cam-
era. Here we address the problem of computing correspondences. We extend the
well-known Shi-Tomasi-Kanade tracker by introducing an automatic scheme for re-
jecting spurious features. We employ a simple and efficient outlier rejection rule,
called X84, and prove that its theoretical assumptions are satisfied in the feature
tracking scenario. Experiments with real and synthetic images shows the benefits

introduced by the algorithm.

6.1 Introduction

Much work on structure from motion has assumed that correspondences through a
sequence of images could be recovered, as we did in Chapter 5. Feature tracking
finds matches by selecting image features and tracks these as they move from frame
to frame. It can be seen as an instance of the general problem of computing the
optical flow, that is, the vector’s field that describes how the image is changing with
time, at relatively sparse image positions [104, 9, 20]. The methods based on the
detection of two dimensional features (such as corners) have the advantage that the
full optical flow is known at every measurement position, because they do not suffer

from the aperture problem effect (a discussion on this subject can be found in [149]).

85
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Works on tracking of two dimensional features include [89, 8, 23, 127, 170].

Robust tracking means detecting automatically unreliable matches, or outliers, over
an image sequence (see [103] for a survey of robust methods in computer vision).
Recent examples of such robust algorithms include [144], which identifies track-
ing outliers while estimating the fundamental matrix, and [143], which adopts a
RANSAC [39] approach to eliminate outliers for estimating the trifocal tensor. Such
approaches increase the computational cost of tracking significantly, as they are

based on iterative algorithms.

Motion of
p0| nt feature
Image
sequence

A
i
|
I
|
|
¢

Image motion

Figure 41: Feature tracking.

This chapter concentrates on the well-known Shi-Tomasi-Kanade tracker, and pro-
poses a robust version based on an efficient outlier rejection scheme. Building on res-
ults from [89], Tomasi and Kanade [137] introduced a feature tracker based on SSD
matching and assuming translational frame-to-frame displacements. Subsequently,
Shi and Tomasi [128] proposed an affine model, which proved adequate for region
matching over longer time spans. Their system classified a tracked feature as good
(reliable) or bad (unreliable) according to the residual of the match between the
associated image region in the first and current frames; if the residual exceeded a
user-defined threshold, the feature was rejected. Visual inspection of results demon-
strated good discrimination between good and bad features, but the authors did not
specify how to reject bad features automatically.

This is the problem that our method solves. We extend the Shi-Tomasi-Kanade

tracker (Section 6.2) by introducing an automatic scheme for rejecting spurious
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features. We employ a simple, efficient, model-free outlier rejection rule, called X84,
and prove that its assumptions are satisfied in the feature tracking scenario (Section
6.3). Our ROBUSTTRACKING algorithm is summarized in Section 6.4. Experiments
with real and synthetic images confirm that our algorithm makes good features
to track better, in the sense that outliers are located reliably (Section 6.5). We
illustrate quantitatively the benefits introduced by the algorithm with the example of
fundamental matrix estimation. Image sequences with results and the source code of

the robust tracker are available on line (http://www.dimi.uniud.it/~ fusiello/demo-

rtr/).

6.2 The Shi-Tomasi-Kanade tracker

In this section the Shi-Tomasi-Kanade tracker [128, 137] will be briefly described.
Consider an image sequence I(x,t), where x = [u,v]" are the coordinates of an
image point. If the time sampling frequency (that is, the frame rate) is sufficiently
high, we can assume that small image regions undergo a geometric transformation,

but their intensities remain unchanged:
I(x,t) = I(8(x),t+ 1), (112)

where 0(-) is the motion field, specifying the warping that is applied to image points.
The fast-sampling hypothesis allows us to approximate the motion with a transla-

tion, that is,
d(x) =x+d, (113)

where d is a displacement vector. The tracker’s task is to compute d for a number
of automatically selected point features for each pair of successive frames in the
sequence. As the image motion model is not perfect, and because of image noise,
(112) is not satisfied exactly. The problem is then finding the displacement d which

minimizes the SSD residual
e:Z [Ix+d,t+1) —I(x,t)]z, (114)
w

where W is a given feature window centered on the point x. In the following we will

solve this problem by means of a Newton-Raphson iterative search.
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Thanks to the fast-sampling assumption, we can approximate I(x + d, t 4+ 1) with

its first-order Taylor expansion:
[(x+d, t+1) ~ I(x,t) + VI(x,t)"d + L (x, t)T, (115)

where VIT = [I,,I,] = [01/0u,91/0v] and I, = 0I/0t. We can then rewrite the
residual (114) as

€~ Z(VI(x,t)Td + L (x, t)1)°. (116)
w

To minimize the residual (116), we differentiate it with respect to the unknown

displacement d and set the result to zero, obtaining the linear system:
Cd =g, (117)

where

2 LI,
C=) [ I o ] (118)
w v

LLIV

g=-T1) LILL]. (119)
w

If dp = C'g is the displacement estimate at iteration k, and assuming a unit time

interval between frames, the algorithm for minimizing (116) is the following:

dy=0
diyr =di +C'Y | (I(x, t) = I(x + dy, t+ 1)) VI(x, t)
w

6.2.1 Feature extraction

A feature is defined as a region that can be easily tracked from one frame to the
other. In this framework, a feature can be tracked reliably if a numerically stable
solution to (117) can be found, which requires that C is well-conditioned and its
entries are well above the noise level. In practice, since the larger eigenvalue is
bound by the maximum allowable pixel value, the requirement is that the smaller
eigenvalue must be sufficiently large. Calling A; and A, the eigenvalues of C, we

accept the corresponding feature if

min(7\1,7\2) > Ay (120)
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Figure 42: Value of min(Aq,A;) for the first frame of ‘Artichoke”. Window size is
15 pixels. Darker points have an higher minimum eigenvalue.

where A¢ is a user-defined threshold [128].

This algebraic characterization of “trackable” features has an interesting interpret-
ation, as they turns out to be corners, that is image features characterized by an
intensity discontinuity in two directions. Since the motion of an image feature can
be measured only in its projection on the brightness gradient (aperture problem),

corners are the features whose motion can be measured.

Discontinuity can be detected, for instance, using normalized cross-correlation, which
measures how well an image patch matches other portions of the image as it is
shifted from its original location. A patch which has a well-defined peak in its
auto-correlation function can be classified as a corner. Let us compute the change
in intensity, as the sum of squared differences, in the direction h for a patch W

centered in x = (u,v):

En(x) = ) (I(x+d)—I(x+d+h))’ (121)

dew



90 Feature Tracking

Using the Taylor series expansion truncated to the linear term:

En(x)~ Y (VI(x+d)h)’

dew
=) hT(VI(x+d))(VI(x+d)"h
dew
L, (122)
=> h , |h
= LI, I2

2 1.0,
—h' Z u h
(L B

The change in intensity around x is therefore given by
Fu(x)=h'Ch (123)

where C is just the matrix defined in (118). Elementary eigenvector theory tells us
that, since ||h|| = 1, then

A < En(x) < Ay, (124)

where A; and A, are the eigenvalues of C. So, if we try every possible orientation
h, the maximum change in intensity we will find is A;, and the minimum value
is A;. We can therefore classify the structure around each pixel by looking at the

eigenvalues of C:
e no structure: A\ & A, =~ 0;
e edge: \1 = 0, A\, > 0;
e corner: A; e A; both large and distinct.

Hence, the features selected according to criterion criterion (120) are to be inter-
preted as corners. Indeed, this method is very closely related to some classical corner
detectors, such as [105, 109, 57].

Figure 42 shows the value of the minimum eigenvalue for the first frame of the

“Artichoke” sequence (see Section 6.5).
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6.2.2 Affine model

The translational model cannot account for certain transformations of the feature
window, for instance rotation, scaling, and shear. An affine motion field is a more

accurate model [128], that is,

§(x) = Mx +d, (125)

where d is the displacement, and M is a 2 X 2 matrix accounting for affine warping,
and can be written as M = 1 + D, with D = [dy;] a deformation matrix and 1
the identity matrix. Similarly to the translational case, one estimates the motion

parameters, D and d, by minimizing the residual

e=) [IMx+d,t+1)—I(xt)]" (126)
w

By plugging the first-order Taylor expansion of I(Mx + d, t + 1) into (126), and
imposing that the derivatives with respect to D and d are zero, we obtain the linear

system
Bz =f, (127)

in which z = [dy; di2 d21 d» di dy]T contains the unknown motion parameters,

and

f=—1) Lful, ul, vI, vI, I, L],
w
with

)

U Vv
BZ%[VT C

212
usly

WL, 2wl I, w2

Wi, I, wlZ wl,l,

)

wlZ  wl, I, V12 VLI

wl, [, w2 VI, V12
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VT — ulz  ul,l, V2 v,
ul, I, ulZ VI, vI2

Again, (126) is solved for z using a Newton-Raphson iterative scheme.

If frame-to-frame affine deformations are negligible, the pure translation model is

preferable (the matrix M is assumed to be the identity). The affine model is used

for comparing features between frames separated by significant time intervals to

monitor the quality of tracking.

6.3 Robust monitoring

In order to monitor the quality of the features tracked, the tracker checks the resid-
uals between the first and the current frame: high residuals indicate bad features
which must be rejected. Following [128], we adopt the affine model, as a pure trans-
lational model would not work well with long sequences: too many good features
are likely to undergo significant rotation, scaling or shearing, and would be incor-
rectly discarded. Non-affine warping, which will yield high residuals, is caused by
occlusions, perspective distortions and strong intensity changes (e.g. specular reflec-
tions). This section introduces our method for selecting a robust rejection threshold

automatically.

6.3.1 Distribution of the residuals

We begin by establishing which distribution is to be expected for the residuals when
comparing good features, i.e., almost identical regions. We assume that the intensity
[(8(x),t) of each pixel in the current-frame region is equal to the intensity of the
corresponding pixel in the first frame I(x,0) plus some Gaussian noise n = 11(0, 1)

Hence
[(6(x),t) —I(x,0) =n(0,1).

Since the square of a Gaussian random variable has a chi-square distribution, we

obtain

[1(5(x),t) — I(x,0)]* = x*(1).

!= means that the variable to the left has the probability distribution specified to the right.
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The sum of n chi-square random variables with one degree of freedom is distributed
as a chi-square with n degrees of freedom (as it is easy to see by considering the
moment-generating functions). Therefore, the residual computed according to (114)

over a NxN window W is distributed as a chi-square with N2 degrees of freedom:

2
e=) [I(8(x),t) —I(x,0)]” = x*(N?). (128)
w

Figure 43: Chi-square density functions with 3,5,7,15 and 30 degrees of freedom
(from left to right).

As the number of degrees of freedom increases, the chi-square distribution ap-
proaches a Gaussian, which is in fact used to approximate the chi-square with more
than 30 degrees of freedom. Therefore, since the window W associated to each fea-
ture is at least 7 X 7, we can safely assume a Gaussian distribution of the residual

for the good features:

e =1(N2 2N?).

6.3.2 The X84 rejection rule

When the two regions over which we compute the residual are bad features (that is,

they are not warped by an affine transformation), the residual is not a sample from
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the Gaussian distribution of good features: it is an outlier. Hence, the detection
of bad features reduces to a problem of outlier detection. This is equivalent to the
problem of estimating the mean and variance of the underlying Gaussian distribution
from the corrupted data €;, the residuals (given by (114)) between the i-th feature
in the last frame and the same feature in the first frame. To do this, we employ a
simple but effective model-free rejection rule, X84 [55], which use robust estimates
for location and scale to set a rejection threshold. The median is a robust location
estimator, and the Median Absolute Deviation (MAD), defined as

MAD = med{|e; — med e;l}. (129)
i j

is a robust estimator of the scale (i.e., the spread of the distribution). It can be
seen that, for symmetric (and moderately skewed) distributions, the MAD coincides

with the interquartile range:

E3/a — &y

MAD =
2 ’

(130)

where & is the gqth quantile of the distribution (for example, the median is &;,,).

For normal distributions we infer the standard deviation from
MAD = ®'(3/4)0 ~ 0.67450. (131)

The X84 rule prescribes to reject values that are more than k Median Absolute
Deviations away from the median. A value of k=5.2, under the hypothesis of Gaus-
sian distribution, is adequate in practice, as it corresponds to about 3.5 standard
deviations, and the range [ — 3.50, 1+ 3.50] contains more than the 99.9% of a
Gaussian distribution . The rejection rule X84 has a breakdown point of 50%: any

majority of the data can overrule any minority.

6.3.3 Photometric normalization

Our robust implementation of the Shi-Tomasi-Kanade tracker incorporates also a
normalized SSD matcher for residual computation. This limits the effects of intensity
changes between frames, by subtracting the average grey level (uy, wr) and dividing

by the standard deviation (oy, o7) in each of the two regions considered:
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oy [Mxrd)—w 1 132)

where J(-)=I(-,t+ 1), I(-)=I(-, t).

It can be easily seen that this normalization is sufficient to compensate for intensity
changes modeled by J(Mx + d) = «lI(x) + . A more elaborate normalization is
described in [25], whereas [54] reports a modification of the Shi-Tomasi-Kanade

tracker based on explicit photometric models.

6.4 Summary of the ROBUSTTRACKING algorithm

The ROBUSTTRACKING algorithm can be summarized as follows:

1. given an image sequence;

2. filter the sequence with a Gaussian kernel in space and time (for the selection
of the scale of the kernel, see [18]);

3. select features to be tracked according to (120);

4. register features in each pair of consecutive frames in the sequence, using

translational warping (113);

5. in the last frame of the sequence, compute the residuals between this and the

first frame, for each feature, using affine warping (125);

6. reject outlier features according to the X84 rule (120).

The decision of which frame is deemed to be the last one is left open; the only,
obvious, constraint is that a certain fraction of the features present in the first
frame should be still visible in the last. On the other hand, monitoring cannot be

done at every frame, because the affine warping would not be appreciable.
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6.5 Experimental results

We evaluated our tracker in a series of experiments, of which we report the most
significant ones.

“Platform” (Figure 44, 256 x 256 pixels). A 20-frame synthetic sequence, courtesy of
the Computer Vision Group, Heriot-Watt University, simulating a camera rotating in
space while observing a subsea platform sitting on the seabed (real seabed acquired
by a sidescan sonar, rendered as an intensity image, and texture-mapped onto a
plane).

“Hotel” (Figure 45, 480 x 512 pixels). The well-known Hotel sequence from the
CMU VASC Image Database (59 frames). A static scene observed by a moving
camera rotating and translating.

“Stairs” (Figure 48, 512 x 768 pixels). A 60-frame sequence of a white staircase
sitting on a metal base and translating in space, acquired by a static camera. The
base is the platform of a translation stage operated by a step-by-step motor under
computer control (courtesy of F. Isgro, Heriot-Watt University).

“Artichoke” (Figure 49, 480 x 512 pixels). A 99-frame sequence, the most complex
one shown here (see later on). The camera is translating in front of the static scene.

This sequence was used by [138].

Figure 44: First (left) and last frame of the “Platform” sequence. In the last frame,
filled windows indicate features rejected by the robust tracker.

“Platform” is the only synthetic sequence shown here. No features become occluded,

but notice the strong effects of the coarse spatial resolution on straight lines. We
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Figure 45: First (left) and last frame of the “Hotel” sequence. In the last frame,
filled windows indicate features rejected by the robust tracker.
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Figure 46: Residuals magnitude against
frame number for “Platform”. The arrows

indicate the threshold set automatically
by X84 (0.397189).

Figure 47: Residuals magnitude against
frame number for “Hotel”. The arrows in-

dicate the threshold set automatically by
X84 (0.142806).
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Figure 48: First (left) and last frame of the “Stairs” sequence. In the last frame,
filled windows indicate features rejected by the robust tracker.

plotted the residuals of all features against the frame number (Figure 46). All fea-
tures stay under the threshold computed automatically by X84, apart from one that
is corrupted by the interference of the background. In “Stairs”, some of the features
picked up in the first frame are specular reflections from the metal platform, the in-
tensity of which changes constantly during motion. The residuals for such features
become therefore very high (Figure 50). All these features are rejected correctly.
Only one good feature is dropped erroneously (the bottom left corner of the internal
triangle), because of the strong intensity change of the inside of the block. In the
“Hotel” sequence (Figure 47), all good features but one are preserved. The one
incorrect rejection (bottom center, corner of right balcony) is due to the warping
caused by the camera motion, too large to be accommodated by the affine model.
The only spurious feature present (on the right-hand side of the stepped-house front)
is rejected correctly. All features involved in occlusions in the “Artichoke” sequence
(Figure 51) are identified and rejected correctly. Four good features out of 54 are
also rejected (on the signpost on the right) owing to a marked contrast change in

time between the pedestrian figure and the signpost in the background.

In our tests on a SPARCServer 10 running Solaris 2.5, the initial feature extraction
phase took 38s for “Platform” and 186s for “Artichoke”, with a 15x 15 window. The
tracking phase took on average 1.6s per frame, independently from frame dimensions.
As expected, extraction is very computationally demanding, since the eigenvalues
of the C matrix are to be computed for each pizel. However, this process can
implemented on a parallel architecture, thereby achieving real-time performances
(30Hz), as reported in [12].
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Figure 49: First (left) and last frame of the “Artichoke” sequence. In the last frame,
filled windows indicate features rejected by the robust tracker.
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Figure 50: Residuals magnitude against Figure 51: Residuals magnitude against
frame number for “Stairs”. The arrows in- frame number for “Artichoke”. The ar-
dicate the threshold set automatically by rows indicate the threshold set automat-
X84 (0.081363) . ically by X84 (0.034511).
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Quantifying improvement: an example

To illustrate quantitatively the benefits of our robust tracker, we used the feature
tracked by robust and non-robust versions of the tracker to compute the funda-
mental matrix (see Chapter 5) between the first and last frame of each sequence,
then computed the RMS distance of the tracked points from the corresponding epi-
polar lines, using the 8-point algorithm (Section 5.4.1): if the epipolar geometry is
estimated exactly, all points should lie on epipolar lines. The results are shown in
Table 3. The robust tracker brings always a decrease in the RMS distance. Notice
the limited decrease and high residual for “Platform”; this is due to the significant
spatial quantization and smaller resolution, which worsens the accuracy of feature

localization.

Artichoke | Hotel | Stairs | Platform
All 1.40 0.59 0.66 1.49
X84 0.19 0.59 0.15 1.49

Table 3: RMS distance of points from epipolar lines. The first row gives the distance
using all the features tracked (non-robust tracker), the second using only the features
kept by X84 (robust tracker).

6.6 Conclusions

We have presented a robust extension of the Shi-Tomasi-Kanade tracker, based on
the X84 outlier rejection rule. The computational cost is much less than that of
schemes based on robust regression and random sampling like RANSAC or Least
Median of Squares [103, 143], yet experiments indicate excellent reliability in the
presence of non-affine feature warping (most right features preserved, all wrong
features rejected). Our experiments have also pointed out the pronounced sensitivity

of the Shi-Tomasi-Kanade tracker to illumination changes.



Chapter 7
Autocalibration

This chapter provides a review on techniques for computing a three-dimensional
model of a scene from a single moving camera, with unconstrained motion and un-
known parameters. In the classical approach, called autocalibration or self-calibration,
camera motion and parameters are recovered first, using rigidity; then structure is
easily computed. Recently, new methods based on the idea of stratification have
been proposed. They upgrade a projective reconstruction, achievable from corres-

pondences only, to a Fuclidean one, by exploiting all the available constraints.

7.1 Introduction

In Chapter 5 we assumed that the intrinsic parameters of the camera (focal length,
image center and aspect ratio) were known, and showed how to compute camera
motion and scene structure.

However, there are situations wherein the intrinsic parameters are unknown (e.g.,
if the image sequence comes from a pre-recorded video tape) or off-line calibra-
tion is impracticable (e.g, if the camera is mounted on an unmanned vehicle which
cannot be distracted from operation if calibration is lost). In these cases the only
information one can exploit is contained in the video sequence itself.

Yet, some assumptions are necessary to make the problem tractable. We will focus
on the classical case of a single camera with constant but unknown intrinsic para-
meters and unknown motion. Other approaches restrict the motion [3, 59, 154] or

assume a rigidly moving stereo rig [169].

101
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In the next section (7.2), we will derive again the fundamental matrix and then
(Section 7.3) introduce the homography of a plane, which will be used later in this
chapter. In Section 7.4 the reconstruction problem will be formulated and some
highlights on projective reconstruction technique will be given. Section 7.5 will
introduce autocalibration and stratification methods for upgrading to Euclidean
reconstruction. In Section 7.6 the “classical” autocalibration approach, based on
Kruppa equations, will be outlined. Stratification methods will be described in some
details in Section 7.7. Applicability of the methods will be discussed in Section 7.8.

Finally (Section 7.9), conclusions will be drawn.

7.2 Uncalibrated epipolar geometry

In Section 3.4 we saw how epipolar geometry is used in the calibrated case to con-
straint the search for conjugate points. In Section 5.2 we derived the Longuett-
Higgins equation, which gives the epipolar geometry when intrinsic parameters are
known. Here we will derive again the epipolar geometry in the uncalibrated case.

Let us consider the case of two cameras. If we take the first camera reference frame
as the world reference frame, we can write the two following general camera matrices

(see Chapter 2):

P = A[I/0] = [A|0] (133)
P = A'Rlt] (134)
Let
X
u
- . Y
m=| v and W= , (135)
z
1
1
the projection equations are
ki = Pw, (136)
and
K'th' = P'w. (137)
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where k is the projective depth, that is the distance of points from the focal plane
of the camera, if P is suitably normalized (see Section 2.2.3).
From (136) and (134) we obtain:

X 0
0 X
«'m' = A'Ritlw = A'RIt | |Y] + of [ =AR [u] A, (138)
z
z
0 1
and from (137) and (133) we obtain:
X
KA ' = [1|0] w = |y (139)
z
Substituting the latter in (138) yields
K'm' = kA'RA'm + A't = kH1h + €’ (140)

where Hy, = A’'RA " (the reason for this notation will be manifest in the following),
and e’ = A't is the epipole in the second camera. Similarly, the epipole in the first
camera is e = —ARt.

Equation® (140) links the left and right projections of the same point w. If we know
the conjugate pair m and m’, we can solve for the depth k and «’. Vice versa, if k
e k' are known we can locate m'’ given m.

Equation (140) says that m’ lies on the line going trough e’ and the point Ho,m. In
projective coordinates the collinearity of these three points can be expressed with

the relation:

m'" (e AHym) =0, (141)
or
m' Fra = 0. (142)
where
F = [e'|\H (143)

!Compare to (53)



104 Autocalibration

is the fundamental matriz. From (55) we can see that m’ belongs to the line Fin
in the second image, which is called the epipolar line of m. It is easy to see that
e'"F = 0, meaning that all the epipolar lines contain the point €', which is called
the epipole.

Since Fe = F e’ = 0, the rank of F is in general two and, being defined up to a scale
factor, depends upon seven parameters. The only geometrical information that can
be computed from pairs of images is the fundamental matrix. Its computation from
point correspondences has been addressed in Section 5.4.1.

The essential matrix (Section 5.2) is linked to the fundamental matrix: it can be
obtained from the latter as long as the intrinsic parameters are known. Indeed,

(142) is equivalent to
m'[AtIN ARA'Mm =0 <
m' "det(AVA"THAATTA'RA T = 0

(144)
m A" Tt ARA T =0 &=
(A" 'm") Tt AR(A 'th) =0,
thanks to
[Aul = det(A)A T[u] AT,
From (144) it is easy to see that
F=A"TEA (145)

7.3 Homography of a plane

Equation (140) can be specialized to the case of 3-D points lying on a plane. Let us

take a plane TT with Cartesian equation n'w = d, that is

X
n' |y| —d=0 (146)

z

Substituting (139) in the latter yields:

kn' A"t —d =0 (147)
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from which an expression for k is obtained:
d

K—=—7"——.
n'A-'m

(148)

Let us divide (140) by «
! !

@ —Hom+ & (149)
K K

ol + —— (150)

Therefore, given two views of a scene, there is a linear projective transformation (an
homography, or collineation) relating the projection m of the point of a plane TT in
the first view to its projection in the second view, m’. This application is given by

a 3 x 3 invertible matrix Hyy such that:

' ~ Hyri. (151)
Hy is the homography matrix for the plane TT. Hence, from (150) :
o'
Hy,=H, + e’FA*]. (152)
Since, by definition,
H, = A'RA (153)

by substituting in (152)we obtain:

T

Hy, :A’(R+t%)A*‘. (154)

If one let d — oo in (150), it becomes clear that Hy, is just the homography mat-
riz for the infinity plane, that maps vanishing points to vanishing points (that is
the reason for the notation). Notice that it and depends only on the rotational
component of the rigid displacement.

The same result could be obtained by observing that if a point goes to infinity, its
relative depths k and k’ grow to infinity as well, but their ratio tends to a constant
value. Therefore in (149) the term with e’ vanishes. Moreover, if we take a point at

infinity as w = [x y z 0] " in (138), the term A't (the epipole) disappears.
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7.4 Projective reconstruction

Consider a set of three-dimensional points viewed by N cameras with matrices
(Phi_; . Let rh]? ~ Piw; be the (homogeneous) coordinates of the projection
of the j-th point onto the i-th camera. The reconstruction problem can be cast in
the following way: given the set of pixel coordinates {rh}}, find the set of camera

matrices {P') and the scene structure {W;} such that
! ~ Pl (155)

Without further restrictions we will, in general, obtain a projective reconstruction
[32] defined up to an arbitrary projective transformation. Indeed, if {P'} and {w;}
satisfy (155), also {P'T} and {’i‘*]fvj} satisfy (155) for any 4 x 4 nonsingular matrix
T.

In the next section we will see how a projective reconstruction is obtained starting

from the fundamental matrix, in the case of two cameras.

7.4.1 Reconstruction from two views

As seen in the previous section, the infinity plane homography gives rise to the

following factorization of F':
F = [e'|\Hy. (156)

Note the similarity with the factorization E = [t]AR, since e’ depends only on the
translation and H,, depends only on the rotation. Unfortunately the factorization is
not unique, making it impossible to recover H, from F directly. Indeed, if a matrix
M satisfies F = [e'| A\M, then also M +e'v' for any vector v yields a factorization,

since

eI N M+e'v)=[e M+ [e'|re'v =[e']\M.

If a matrix M satisfies
F = [e'|]\M (157)

then M is said to be compatible with F.
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In particular, from (152) we obtain that every plane homography Hp is compatible,
that is:

F = [e/|\Hr. (158)

A special compatible matrix is the epipolar projection matrix S[94], defined as follow:

[e']AF (159)

Although S is singular (it is not an homography), since it is compatible with the
fundamental matrix, it can be interpreted as the correspondence induced by the
plane TT.: that contains the optical center of the second camera and whose image on
the second camera is the line represented by e'.

This factorization allows us to compute a projective reconstruction from two views.
Let F be the fundamental matrix for the two cameras. If M is compatible with F,
the following pair of PPMs:

P=[I|00 P =[M]|e] (160)

yield the given fundamental matrix, as can be easily verified. There are an infinite
number of perspective projection matrices which all satisfy the epipolar geometry.
A canonical representation [94] is obtained by using the epipolar projection matrix
S. Once the two PPMs have been instantiated, structure follows by triangulation
(see Section 3.3).

7.4.2 Reconstruction from multiple views

In the case of more than two cameras, the projective reconstruction cannot be
computed by simply applying the method just described to each pair of views.
We would obtains, in general, a set of projective reconstructions linked to each
other by an unknown projective transformation (i.e., each defines its own projective
frame). Therefore, there would not be a unique transformation yielding a Euclidean
reconstruction.

To obtain a coherent projective reconstruction, some authors [62, 10] use the recon-
struction obtained from the first two views to compute the positions of the other

cameras in the arbitrary projective frame of the initial reconstruction (solving the
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exterior orientation problem, Section 3.2). The 3-D location of additional points
may be computed as long as the camera matrices are known for two cameras in
which these points are visible. Then, a global minimization of the reprojection error
is performed, incrementally or batch-wise (this is the so-called bundle adjustment
[66]).

A very elegant method is described in [133], based on the recovery of the projective
depths. Taken individually, the projective depths are arbitrary (because they depend
on arbitrary scale factors), but in a sequence of images they are linked together, and
this is the missing constraint that gives a coherent projective reconstruction. Let
F’ = F' the fundamental matrix of the second camera; from (140) the following

relationship can be obtained
K'F'm' = k(e Am) (161)

This equation relates the projective depths of a single 3-D point w in two images.

From the latter one can obtain

(e Ai)F'm’ |

By estimating a sufficient number of fundamental matrices and epipoles, we recurs-
ively chain together equation like (162) to give estimates for the complete set of
depths for point w, starting from k; = 1. A similar method has been presented in
[151].

Another approach [4, 151] to the problem moves from the following remark. The
matrix M in (160) can be interpreted as a plane homography, hence we can say that
the reconstruction is referred to that plane. It is this reference plane that should

not change from one reconstruction to another.

7.5 FEuclidean reconstruction

We have seen that a projective reconstruction can be computed starting from points
correspondences only, without any knowledge of the camera matrices. Despite it
conveys some useful informations [122], we would like to obtain an Euclidean recon-
struction, a very special one that differs from the true reconstruction by a similarity

transformation. This is composed by a rigid displacement (due to the arbitrary
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choice of the world reference frame) plus a a uniform change of scale (due to the
well-known depth-speed ambiguity, Chapter 5).

Maybank and Faugeras [100] proved that, if intrinsic parameters are constant, Eu-
clidean reconstruction is achievable. The procedure is known as autocalibration.

In this approach the internal unchanging parameters of the camera are computed
from at least three views. Once the intrinsic parameters are known, the problem
of computing the extrinsic parameters (motion) from point correspondences is the
well-known relative orientation problem (Chapter 5).

Recently, new approaches based on the idea of stratification [94, 34] have been intro-
duced. Starting from a projective reconstruction, which can be computed from the
set of correspondences {rh}} only, the problem is computing the proper T that up-
grades it to an Euclidean reconstruction, by exploiting all the available constraints.
To this purpose the problem is stratified into different representations: depending
on the amount of information and the constraints available, it can be analyzed at a

projective, affine?, or Euclidean level.

7.6 Autocalibration

In the case of two different cameras, the fact that for any fundamental matrix F one
can find intrinsic parameters matrix A and A’ such that E = A’"FA is called the
rigidity constraint.

The seven parameters of the fundamental matrix are available to describe the geo-
metric relationship between the two views; the five parameters of the essential mat-
rix are needed to describe the rigid displacement, thus at most two independent
constraint are available for the computation of the intrinsic parameters from the
fundamental matrix. Indeed, Hartley [61] proposed an algorithm to factor the fun-
damental matrix that yields the five motion parameters and the two different focal
lengths. He also noticed that no more information could be extracted from the
fundamental matrix without making additional assumptions.

In the case of a moving camera with constant intrinsic parameters, it is possible
to obtain an Euclidean reconstruction by cumulating constraints over different dis-

placements. There are five unknown (the intrinsic parameters), each displacement

2An affine reconstruction differs from the true one by an affine transformation.
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yields two independent constraints, hence three views are sufficient (between three

views there are three independent displacements: 1-2, 1-3 and 2-3).

7.6.1 Kruppa equations

With a minimum of three displacements, we can obtain the internal parameters of
the camera using a system of polynomial equations due to Kruppa [82], which are
derived from a geometric interpretation of the rigidity constraint [36, 100].

The unknown in the Kruppa equations is the matrix K = AAT, called the Kruppa
coefficients matriz, that represents the dual of the image of the absolute conic (see
[33] for details). From K one can easily obtain the intrinsic parameters by means

of Cholesky factorization (K is symmetric and definite positive), or in closed form:

2
bk ks R T
if K= |k, ks ks| then A= 0 Vks —ks® ks
ks ks 1 0 0 1
(163)

Kruppa equations were rediscovered and derived by Maybank and Faugeras [100].
Recently Hartley [64] provided a simpler form, based on the Singular Value Decom-
position of the fundamental matrix. Let F be written as F = UDV' (with SVD),

and
uy vy
U=| u V=1|v, D = diag(r, s, 0).
uj v

Then the Kruppa equations write (the derivation can be found in [64])

v, Kv, B —v, Kvy B v Kv;

ru/Ku;  rsu{Ku, s?u)Kuy

(164)

From (164) one obtains two independent quadratic equations in the five parameters
of K for each fundamental matrix (i.e., for each displacement). Moreover, assuming
that v = 0, which is a good approximation for usual cameras, one has the additional
constraint k3ks = k, [92]. There are basically two classes of methods for solving the
resulting system of equations (assuming that more than three views are available)
[164, 92]:
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e Partition the equations set in groups of five and solve each group with a global
convergent technique for systems of polynomial equations, like homotopy con-
tinuation methods [106, 131]. Each system will give a set of solutions and the
solution common to all of them is chosen. This method — presented in [92] —
has the great advantage of global convergence, but is computationally expens-
ive. Moreover, the number of systems to be solved rapidly increases with the

number of displacements.

e The over-constrained system of equation is solved with a non-linear least-
squares technique (Levenberg-Marquardt [48], or Iterated Extended Kalman
Filter [101]). The problem with non-linear least-squares is that a starting point
close to the solution is needed. This can be obtained by applying globally
convergent methods to subsets of equations (like in the previous case), or by
making the additional assumption that (1o, Vo) is in the center of the image,
thereby obtaining (from just one fundamental matrix) two quadratic equations
in two variables kq, k4, which can be solved analytically [64]. This technique
is used in [164].

7.7 Stratification

Let us assume that a projective reconstruction is available, that is a sequence {f’;mj}

of camera matrices such that:

P’ =0, P! . =[Q'dl. (165)

proj — proj —
We are looking for an Euclidean reconstruction, that is a 4 x 4 nonsingular matrix

T that upgrades the projective reconstruction to Euclidean. If {W;} is the sought

Euclidean structure, T must be such that: m} = P! . TT 'wj, hence

~lucl = Pi T y (166)

proj

where the symbol ~ means “equal up to a scale factor.”

7.7.1 Using additional information

Projective reconstruction differs from Euclidean by an unknown projective trans-

formation in the 3-D projective space, which can be seen as a suitable change of
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basis. Thanks to the fundamental theorem of projective geometry (see Appendix
A), a collineation in space is determined by five points, hence the knowledge of the
true (Euclidean) position of five points allows to compute the unknown 4 x 4 matrix
T that transform the Euclidean frame into the projective frame. An application of
this is reported in [113].

Moreover, if intrinsic parameters A are known, then T can be computed by solving

a linear system of equations derived from (194).

7.7.2 Euclidean reconstruction from constant intrinsic para-

meters

The challenging problem is to recover T without additional information, using only
the hypothesis of constant intrinsic parameters. The works by Hartley [58], Pollefeys
and Van Gool [118], Heyden and Astrom[68], Triggs [145] and Bougnoux [17] will
be reviewed, but first we will make some remarks that are common to most of the
methods.

We can choose the first Euclidean-calibrated camera to be P%,, = A[I| 0], thereby

fixing arbitrarily the rigid transformation:

Pl =A[l|0] Pl =AR'[t]. (167)
With this choice, it is easy to see that P9, = PS, T implies
- A O
= 168
T (168)
where r" = [r; 7, 13]. Under this parameterization T is clearly non singular, and

being defined up to a scale factor, it depends on eight parameters (s = 1).

Substituting (165) in (166) one obtains
Pla>PL,T=QA+qr"[dq], (169)
and from (167)
Ql.q = AR t'] = [AR! | AtT, (170)

hence

Q'A +q'r" ~ AR". (171)
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This is the basic equation, relating the unknowns A (five parameters) and r (three
parameters) to the available data Q' and q'. R is unknown, but must be a rotation

matrix.

Affine reconstruction. Equation (171) can be rewritten as
Q' +qr AT~ AR'A T =H. | (172)

T

relating the unknown vector a' = r" A~ to the homography of the infinity plane

(compare (172) with (152)). It can be seen that T factorizes as follows

. [1 o][a o
T:LJ 1] loT 1]' 1)

The right-hand matrix is an affine transformation, not moving the infinity plane,
whereas the left-hand one is a transformation moving the infinity plane.

Substituting the latter into (166) we obtain:

eucl

.. |ATT o0
o" 1

.. .. I 0 o

=P, ~ Pl l N ] = [H, |q"] (174)
a 1

Therefore, the knowledge of the homography of the infinity plane (given by a) allows

to compute the Euclidean structure up to an affine transformation, that is an affine

reconstruction.

From affine to Euclidean. Another useful observation is, if H,, is known and
the intrinsic parameters are constant, the intrinsic parameters matrix A can easily
be computed. In other words, updating from affine to Euclidean reconstruction is
straightforward.

Let us consider the case of two cameras. If A’ = A, then H, is exactly known

(with the right scale), since
det(Hoo)=det(ARA ') = 1. (175)
From (153) we obtain R = A" "TH, A, and, since RR" =1, it is easy to obtain:

H,KH] =K (176)
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where K = AAT is the Kruppa coefficients matrix. As (176) is an equality between
3 x 3 symmetric matrices, we obtain a linear system of six equations in the five
unknown ki, kz, k3, ks, ks . In fact, only four equations are independent [94, 155],
hence at least three views (with constant intrinsic parameters) are required to obtain
an over-constrained linear system, which can be easily solved with a linear least-
squares technique.

Note that two views would be sufficient under the usual assumption that the image
reference frame is orthogonal (y = 0), which gives the additional constraint k3ks =
k, [94, 155].

If points at infinity (in practice, sufficiently far from the camera) are in the scene, Hy,
can be computed from point correspondences, like any ordinary plane homography
[155] Moreover, with additional knowledge, it can be estimated from vanishing points
or parallelism [37, 34].

In the rest of the section, some of the most promising stratification techniques will

be reviewed.

Hartley

Hartley [58] pioneered this kind of approach. Starting from (171), we can write
(Q'+q'a’)A ~ AR (177)

By taking the QR decomposition of the left-hand side we obtain an upper triangular
matrix Bt such that (Q'+ gq'a’)A = B'R!, so (177) rewrites

B'R! = A'AR! or %A‘Bi =1 (178)
The scale factor 1/A! can be chosen so that the sum of the squares of the diagonal
entries of (1/AY)A~'B' equals three. Each camera excluding the first, gives six
constraints in eight unknowns, so three cameras are sufficient. In practice there are
more than three cameras, and the non-linear least squares problem can be solved
with Levenberg-Marquardt minimization algorithm [48]. As noticed in the case of
Kruppa equations, a good initial guess for the unknowns A and a is needed in order
for the algorithm to converge to the solution.

Given that from H' the computation of A is straightforward, a guess for a (that

determines H' ) is sufficient. The cheirality constraint [62] is exploited by Hartley
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to estimate the infinity plane homography, thereby obtaining an approximate affine

(or quasi-affine) reconstruction.

Pollefeys and Van Gool

In this approach [118], a projective reconstruction is first updated to affine recon-
struction by the use of the modulus constraint [94, 119]: since the left-hand part of
(172) is conjugated to a (scaled) rotation matrix, all eigenvalues must have equal
moduli. Note that this holds if and only if intrinsic parameters are constant. To

make the constraint explicit we write the characteristic polynomial:
det(Q' +g'a’ — AT) = LA’ + LA + LA + L. (179)

The equality of the roots of the characteristic polynomial is not easy to impose, but

a simple necessary condition holds:
L1 = Ul,. (180)

This yields a fourth order polynomial equation in the unknown a for each camera
except the first, so a finite number of solutions can be found for four cameras. Some
solutions will be discarded using the modulus constraint, that is more stringent than
(180).

As discussed previously, autocalibration is achievable with only three views. It
is sufficient to note that, given three cameras, for every plane homography, the
following holds [94]:

H'? = H**H'?, (181)
In particular it holds for the infinity plane homography, so
V_m m o~ 0 FaTV(OW L el T~
In this way we obtain a constraint on the plane at infinity for each pair of views.
Let us write the characteristic polynomial:
det((Q@ +d'a")(Q' +qa’) ' - A) =0 = (183)
det((Q'+d’a”) —A(Q' +q'a)) =0 (184)
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Writing the constraint (180) for the three views, a system of three polynomial of
degree four in three unknowns is obtained. Here, like in the solution of Kruppa
equations, homotopy continuation methods could be applied to compute all the
43 = 64 solutions.

In practice more than three views are available, and we must solve a non-linear least-
squares problem: Levenberg-Marquardt minimization is used by the author. The
initial guess leading to convergence is obtained by starting form a quasi- Fuclidean
[10] reconstruction, i.e., a reconstruction such that (171) is approximately satisfied.
This can be achieved by approximate knowledge of camera parameters and motion

or by using Hartley’s method for computing a quasi-affine reconstruction.

Heyden and Astrom

The method proposed by Heyden and Astrém [68] is again based on (171), which

can be rewritten as

5i A i
pr0j = AR (185)
r
Since RiRiT =T it follows that:
T
- . A A ~ T ~ . AAT Ar | -7 T T T
P;mj Plpmj = P;mj PLproj ~AR'R" A' = AA".
r’ r’ r'AT r'r

(186)

Note that (186) contains five equations, because the matrices of both members are
symmetric, and the homogeneity reduces the number of equations with 1. Hence,
each camera matrix, apart from the first one, gives five equations the eight un-
knowns o, &,,Y, Up, Vo, T1, T2, T3. A unique solution is obtained when three cameras

are available. If the unknown scale factor is introduced explicitly, (186) rewrites:

0="fi(A,rA)=MNAAT P!

proj

(187)

AAT Ar] ST

proj*
r'A"T r'r

Therefore, 3 cameras yield 18 equations in 11 unknowns.
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Triggs

Triggs [145] proposed a method based on the absolute quadric and, independently
from Heyden and Astrom, he derived an equation closely related to (186). The
absolute quadric Q consists of planes tangent to the absolute conic [33], and in an
Euclidean frame, is represented by the matrix

10
Qeuc - [0 0] . (188)

If T is a projective transformation acting as in (166), then it can be verified [145]
that it transforms Qeye into Q = TQ., T'. Since the projection of the absolute

quadric yields the dual image of the absolute conic [145], one obtain

P._QPpi

proj proj = K (189)
from which, assuming (168), (186) follows immediately. Triggs, however, does not
assume any particular form for T, hence the unknown are K and Q. Note that both
these matrix are symmetric and defined up to a scale factor.

Let k be the matrix composed by the the six elements of the lower triangle of K,
and w be the matrix composed by the six elements of the lower triangle of Q, then

(186) is equivalent to
wAk=0 (190)

in which the unknown scale factor is eliminated. For each camera this amounts to
15 bilinear equations in 9 + 5 unknowns, since both k and w are defined up to a
scale factor. Since only five of them are linearly independent, at least three images
are required for a unique solution.

Triggs uses two methods for solving the non-linear least-squares problem: sequential
quadratic programming [48] on N > 3 cameras, and a quasi-linear method with SVD
factorization on N > 4 cameras. He recommend to use data standardization (see
Section 5.4.1) and to enforce det(Q) = 3. The sought transformation T is computed
by taking the eigen-decomposition of Q.

Bougnoux

This methods [17] is different from the previous ones, because it does not require

constant intrinsic parameters and because it achieves an approximate Euclidean
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reconstruction without obtaining meaningful camera parameters as a by-product.

Let us write (166) in the following form:

aj’
P! @' [q" | ~PL,T (191)

eucl — — * proj

iT
a3

i

tua- The customary assumptions vy = 0 and

where qi",qi",qL" are the rows of P

Xy = &, are used to constraint the Euclidean camera matrices:

vy=0 & (i ) (d5AQ}) =0 (192)
=0, &= lai Adill=llasAdil. (193)

Thus each camera, excluding the first, gives two constraints of degree four. Since we
have six unknown, at least four cameras are required to compute T. If the principal
point (ug, Vo) is forced to the image center, the unknowns reduce to four and only

three cameras are needed.

The non-linear minimization required to solve the resulting system is rather unstable
and needs to be started in a close initialization: we need to estimate the focal length
and r. Assuming known principal point, no skew, and unit aspect ratio, the focal
length can be computed from the Kruppa equations in closed form [17]. Then,
assuming known intrinsic parameters A, an estimation of r can be computed by

solving a linear least-squares problem. From (186) the following is obtained:
Q'AATQ" +Q'Ard +(Q'Arq" )" +|rl*d'q" =AAAT. (194)

Since [AAT];3 = K33 =1, then A is fixed. After some algebraic manipulation [17]
one ends up with four linear equations in Ar. This method works also with varying
intrinsic parameters, although, in practice, only the focal length is allowed to vary,
since principal point is forced to the image center and no skew and unit aspect ratio
are assumed. The estimation of the camera parameters is inaccurate, nevertheless
Bougnoux proves that the reconstruction is correct up to an anisotropic homotethy,

which he claims to be enough for the reconstructed model to be usable.
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7.8 Discussion

The applicability of autocalibration techniques in the real world depends on two
issues: sensitivity to noise and solutions bracketing. The challenge is to devise
a method that exhibits graceful degradation as noise increases and needs only an
approximate initialization.

As for the Kruppa equations, in [92] the authors compare three solving methods: the
homotopy continuation method, Levenberg-Marquardt and the Iterated Extended
Kalman Filter. From the simulations reported, it appears that all the methods
give comparable results. However, the homotopy continuation method is suitable
for the case of few displacements, as it would be difficult to use all the constraints
provided by a long sequence, and its computational cost would be too high. Iterative
approaches (Levenberg-Marquardt and Iterated Extended Kalman Filter) are well
suited to the case where more displacements are available. The main limitation of
all these methods is the sensitivity to the noise in the localization of points.

The autocalibration methods based on stratification that we described have ap-
peared only recently, and only preliminary and partial results are available. Trigg’s
non-linear algorithm is reported to be accurate, fast and stable and requires only
approximate initialization. Both Hartley’s and Pollefey’s algorithms require a quasi-
affine reconstruction to start with; the number of unknown in the latter is only three,
whereas in the former is eight. Unfortunately, in Pollefey’s work the Euclidean recon-
struction is evaluated only visually. Also in Heyden and Astrém the reconstruction
is assessed only visually, and initialization is taken very close to the ground-truth.
Bougnoux’s algorithm is quite different form the others, since it does not even try to
obtain an accurate Euclidean reconstruction. Assessment of reconstruction quality

is deliberately visual.

7.9 Conclusions

This chapter presented a review of recent techniques for Euclidean reconstruction
from a single moving camera, with unconstrained motion and unknown constant
parameters. Such unified, comparative discussion has not yet been presented in the

literature.



120 Autocalibration

Even though formulations may be different, to all the methods reviewed, much of
the underlying mathematics is common. However, since problems are inherently
non-linear, proper formulation is very important to avoid difficulties created by the
numerical computation of the solutions.

Despite this problem is far from being completely solved, the more general one
in which intrinsic parameters are varying is gaining the attention of researchers.
In fact, Bougnoux’s method already copes with varying parameters. Heyden and
Astrém [69] proposed a method that works with varying and unknown focal length
and principal point. Later, they proved [70] that it is sufficient to know any of the five
intrinsic parameters to make Euclidean reconstruction, even if all other parameters
are unknown and varying. A similar method that can work with different types of

of constraints has been recently presented in [117].



Chapter 8

3-D Motion

This chapter address the 3-D motion problem, where the points correspondences
and the rigid displacement between two sets of 3-D points are to be recovered. One
application is to register sets of 3-D measurements obtained with different recon-
struction algorithm or depth measuring devices. The existence of missing points in
the two sets makes the problem difficult. We present RICP, a robust algorithm for
registering and finding correspondences in sets of 3-D points with significant per-
centages of missing data. RICP exploits LMedS robust estimation to withstand the
effect of outliers. Our extensive experimental comparison of RICP with an existing

method (ICP) shows RICP’s superior robustness and reliability.

8.1 Introduction

This chapter presents a solution to recovering the rigid transformation (rotation
and translation) that brings two 3-D point sets into alignment, when the corres-
pondences between points are not known and there exist missing data. Given a set
of 3-D points on a rigid body in one Cartesian system, and another set of points from
the same body in a rotated and translated coordinate system, and given the corres-
pondences between 3-D points, to estimate the rotation and translation is called the
3-D motion problem (also known as absolute orientation problem). To recover the
correspondences of the points in the two sets is called the correspondence problem.
The two problems are intimately connected; [156] gives a nice illustration of their

mathematical symmetry. Least-squares (LS) solutions are well-known for the ideal
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motion problem, in which both sets contain the same number of points affected by
moderate sensor noise [80], but fail for the general motion problem, whereby several
points, called outliers, have no correspondence in the other set and may lie far from

matched points.

3-D motion estimation is an important problem in many aspects of Computer Vision.
First, it can be used to register several range views [24, 31, 132], acquired by active
ranging systems like laser scanners [146], to recover an accurate, complete surface
model of a 3-D object (reverse engineering). Second, 3-D based motion is useful in
those cases where 3-D data can be reconstructed from 2-D images [49, 75, 83, 156/,
as we described in this thesis. An intriguing scenario is structure reconstruction
from unregistered video sequences acquired by an uncalibrated camera. Consider
several, uncalibrated video sequences of the same scene. Usually each sequence spans
a continuous range of viewpoints, but the camera jumps discontinuously between
sequences, and there is no information about such movements. Approximate, point-
based Euclidean reconstructions can be computed from each sequence; such 3-D

data could be registered to integrate independent sequences.

A popular method for registering 3-D data sets, without a-priori knowledge of cor-
respondences, is the iterative closest point algorithm (ICP) introduced by Besl and
McKay [13], and that has been applied in various vision systems using 3-D sensors.
The ICP algorithm is an iterative procedure with each iteration consisting of two
steps. In the first one, closest neighboring points are put into correspondences, while
keeping the current object pose fixed. The second step updates the current regis-
tration by least-squares minimization of the displacement of matched point pairs.
It can be shown that the iteration converges to a minimum of residual error. Since
convergence is only local, the initial position is a critical parameter. [14, 19] report
quantitative studies of ICP performance. The most relevant findings for our pur-
poses are that (i) the initial registration guess affects only the speed of convergence
(not registration accuracy), as long as it is chosen within the convergence basin
of the target minimum; (ii) accurate registration is possible with no outliers, and
requires very accurate measurements and high numbers of points; (iii) acceptable

accuracy (for reverse engineering) can be achieved with 2-300 points.

Here we introduce RICP, an algorithm for registering robustly a limited number of

sparse 3-D points (say about 100) corrupted by significant percentages of outliers.
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We replaced the LS minimization of ICP with the robust Least Median of Squares
(LMedS) regression [126] to withstand the effect of outliers.

As shown by our experiments, RICP achieves a larger basin of attraction and more
accurate registrations than ICP. We noticed that RICP still works with dense data,
but the advantages over ICP are smaller unless many outliers are present.

[99] also reports a robust registration method based on ICP and LMedS. Their
method iterates a 3-step sequence of processes: random sampling, estimation of the
motion parameters with ICP, and evaluation. The sequence as a whole makes up
the LMedS algorithm. On the contrary, in our approach, LMedS (with random
sampling) is used inside the ICP, where it replaces the LS rotation estimation. This
enables us to use a dynamic translation estimate based on outlier-free data in the
ICP iteration.

In the following, Section 8.2 summarizes ICP and its main features, Section 8.3
presents RICP, Section 8.4 reports our experimental evaluation of RICP, and Section

8.5 discusses RICP’s contributions and limitations.

8.2 A brief summary of ICP

This section summarizes ICP and some features of our ICP implementation. Let
P = {pi};\l" and M = {mi}]]\'”" the two sets of 3-D points to align, which we call
respectively data and model. In general, N,, # N,,. The problem is to compute the
rotation R and translation t producing the best alignment of P and M:

M =RP +t, (195)

meaning that R and t are applied to each point in the set P. In general, this
equation will not be satisfied exactly by all points, hence the equality should be
interpreted in the least square sense.

Let us define the closest point in the model to a data point p as
¢ =a in |lm —p||.
p(p) = arg min |lm —p||
We can then summarize ICP as follows:

1. Compute the subset of CPs: Y ={m e M |p € P:m =cp(p)}
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2. Compute a LS estimate of the motion bringing P onto ):

Ny
p— 1 PR— P— 2
(R,t) =argmin } _|ly: — Rpi — 6. (196)

i=1

where y; € Y and p; € P.
3. Apply the motion to the data points:

P «— RP +t.

4. If the stopping criterion (see below) is satisfied, exit; else go to 1.
The algorithm stops as soon as one of the following conditions is satisfied:

e the mean square error (MSE) d = 1/N,, ¥ % |ly: — pi||? is sufficiently small;

e the MSE difference between two successive iterations is sufficiently small;
e the maximum allowed number of iterations has been reached.

It has been proven [13] that ICP converges monotonically to a local minimum of the
MSE, an index commonly used along with its derivative with respect to the step
index [13, 14, 132, 166].

For step 1, we have implemented CP algorithms based on exhaustive search (ac-
ceptable with small point sets) and k-D trees [13, 166].

In step 2, motion parameters are computed using a technique involving the SVD,
which has been shown to yield the best global accuracy and stability [87]. Since (195)
is satisfied by the centroids of the point sets as well, we can eliminate translation

by defining the centralized sets:

Pei=Pi— P and y,i=yi—¥

where
Ny Ny
p:1/Npri S’:]/szcp(pi)-
i=1 i=1

Note that we estimate centroids p (data) and § (model) at each iteration, using only
the N, points that are CP for at least one data point, hence a model point increases

its weight in the computation if it is the CP of several data points.
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Problem (196) is then equivalent to the following problem:

Nyp

. o
min ) |ye; — Rpeal?, (197)

i=1

that is minimized when trace(RK) is maximized [80], where

Np
K=> yip:
i=1

If the SVD of K is given by K = VDU, then the optimal rotation matrix that
maximizes the trace is R = VU'. The optimal translation is then computed as
t =y —Rp.

Extensive experimentation with our ICP implementation confirmed ICP’s good per-
formance with full overlap (all points in both views) and initial motion guesses very
close to the solution, and its sensitivity to outliers (e.g., partial overlap) [14, 19].
Outliers skew the distribution of the residuals r; = ||y; — (Rp; + t)|| (Figure 52),
and consequently LS motion estimates. In addition, outliers skew the centroid es-
timate, and consequently rotation estimates obtained after shifting data points to
the centroid [80].

1s -
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o o. 0.2 o.
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Figure 52: Residual distributions for synthetic point sets corrupted by Gaussian
noise should be Gaussian, but are skewed by outliers. Two realizations of residuals
are shown, with full (left) and partial (right) overlap, for one of the last iterations.

8.3 RICP: a Robust ICP algorithm

This section outlines RICP, our robust algorithm for correspondenceless point match-

ing. Problem and notation are the same as in Section 8.2. RICP replaces step 2
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of ICP with a robust estimation of motion, based on LMedS. The principle behind
LMedS is the following: given a regression problem, where the number of parameters
is d, compute a candidate model based on a randomly chosen d-tuple from the data;
estimate the fit of this model to all the data, defined as the median of the residuals,
and repeat optimizing the fit. The data points that do not belong to the optimal
model, which represent the majority of the data, are outliers. The breakdown point,
i.e., the smallest fraction of outliers that can yield arbitrary estimate values, is 50%.
In principle all the d-tuples should be evaluated; in practice a Monte Carlo tech-
nique is applied, in which only a random sample of them of size m is considered.
Assuming that the whole set of points may contain up to a fraction € of outliers,

the probability that at least one of the m d-tuple consist of d inliers is given by
P=1—-(1—(1—¢)9Y™. (198)

Hence, given d, €, and the required P (close to 1), one can determine m:

log(1T—P)

™ log(T— (T— )9 (199)

In our implementation we assume € = 0.5, and require P = 0.95, thus m = 1533.
When Gaussian noise is present in addition to outliers, the relative statistical ef-
ficiency (i.e., the ratio between the lowest achievable variance for the estimated
parameters and the actual variance) of the LMedS is low; to increase the efficiency,
it is advisable to run a weighted LS fit after LMedS, with weights depending on the
residual of the LMedS procedure [126].

Estimating rotation. As in the previous case, we first eliminate translation by
shifting data and model in the centroid (see next subsection), then, releasing tem-
porarily the orthogonality constraint on R, we cast the problem of computing the

rotation R as a linear regression problem:

[YC,l v YC,Np] =R [pc,] . -pc,Np]
which can be re-written as follows:

X 0 0 I
0 X 0 | =b (200)
0 0 X

r3
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where
T T
Pc1 ry
_ N
X = R=|r,|,
T T
pc,Np rs

and b is obtained by juxtaposing the rows of the matrix [yc;...y¢n,]. The nine
entries of R are then computed by solving the linear regression with the Monte Carlo
LMedS method, outlined before.

The residuals sj, j = 1,...,3N,, of (200) are used to generate the weights for the
final, weighted LS regression as follows. First, a robust standard deviation estimate

[126] is computed as

5
=14826(1+ ——+— 2 201
o 86( +2Np—d—|—1> /rnjeds], (201)

where d is the number of parameters (9 in our case). Second, a weight is assigned

to each residual, such that

0 otherwise.

{ 1 if [s;]/6 < 2.5,
Wj =

Notice that the w; are associated to the individual coordinates of 3-D data point
Pci- A weight W is assigned to each point p.i, which is zero if at least one of its
coordinates has a zero weight, and one otherwise. We therefore deem a point p.;
an outlier if at least one of its coordinates is an outlier. Finally, we estimate R by
solving (197) with each point weighted by wf. We use SVD to solve the weighted LS
problem (similarly to Section 8.2), which yields a rotation matrix by construction.
Estimating centroids. As outliers skew centroid estimates, we adopt a weighted

version of the dynamic average (Section 8.2) taking the average on the outlier-free

_ N * = N *
data: p=) ;Fwipi and m =) ., wicp(pi).

8.4 Experimental results

Synthetic data. A first set of experiments was devoted to compare the accuracy
and robustness of RICP and ICP with controlled noise and outliers. We generated

model sets of 50 random points each within a unitary cube (performance depends



128 3-D Motion

Data and Model Data aligned to Model Data aligned to Model
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Figure 53: Cloud-of-points tests: example of registration with missing data (out-
liers). From left to right: starting position, ICP alignment, RICP alignment.
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Figure 54: RMS error, rotation error and translation error vs standard deviation of
Gaussian noise and number of outliers. Cloud-of-points tests. Top row: ICP results.
Bottom row: RICP results.
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on shape [19], but a reasonable indication of performance is achieved with non-
elongated sets of random points). The data sets were obtained by translating and
rotating the models (t = (0.2,0.1,0.4)7, rotation by 0.17 rad around axis (1,1,1)T;
notice the small rotation to guarantee ICP convergence to the correct alignment)
and adding Gaussian noise of varying standard deviation. Following [156] outliers
were simulated by dropping points at random from both sets, but avoiding to drop
corresponding pairs from the two sets. For each noise and outlier level, we averaged
and recorded the RMS errors, the absolute rotation and translation errors over 50
different realizations of noise and outliers.

Figure 53 shows a typical example of final alignment for ICP and RICP with outliers;
the cubes attached to the data emphasize the different quality of the results. Figure
54 summarizes the results, suggesting the better accuracy of RICP. The figure plots
the RMS, rotation and translation errors against the intensities of Gaussian noise and
outliers (up to 20 points, that 40% of the data). The rotation and translation errors
are the Frobenius norms of the difference between the true and estimated R and t,
respectively. These measures were chosen because (a) they are simple, scalar indices,
(b) errors in the direction of the rotation axis (used previously) were artificially high
with small rotations, which make axis estimates poorly conditioned, and (c) the RMS
error (but not both Frobenius norms of R and t) may be small for completely wrong
alignments with certain shapes. Notice that, with no outliers, the RMS follows the
standard deviation of the Gaussian noise, as one expects; in this case RICP benefits
from final the weighted LS estimation, its performances being the same as ICP.
With outliers, the increase of all error indices with the number of outliers is much
sharper for ICP than for RICP. The performance degradation of both algorithms
seems comparable with 40% outliers (recall that the initial displacement is small to
ensure ICP convergence).

We verified the better accuracy of RICP also with different shapes. Figure 55
visualizes an example of final registration with outliers using as model points the
corners of a standard calibration jig formed by regular grids of squares arranged
on two perpendicular planes. Notice that, unlike the cloud of points above, which
spans 3-D volumes, these data are surfaces. Figure 56 shows the results of the same

type of tests leading to Figure 54.



130 3-D Motion

Data and Model Data aligned to Model Data aligned to Model
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Figure 55: Calibration jig tests: example of registration with missing data (outliers).
From left to right: starting position, ICP alignment, RICP alignment.
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Figure 56: RMS error, rotation error and translation error vs. standard deviation of
Gaussian noise and number of outliers. Calibration jig tests. Top row: ICP results.
Bottom row: RICP results.
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Figure 57: Basins of attraction. Final RMS (left) and rotation error (right) for ICP
(dashed line and circles) and RICP (solid line and crosses) with increasing initial
rotation angle.

In a second set of controlled experiments we verified the larger basin of convergence
(the region in R, t space guaranteeing convergence to the correct alignment) of RICP
with respect to ICP, by observing the RMS and rotation errors (defined as above)
for increasingly different initial rotations (from 0 to 180 degrees). We used sets of 30
points within the unitary cube, corrupted by outliers and Gaussian noise as before.
Translation was fixed, as we found that rotation has the largest influence on the
basin of convergence (because translation is eliminated by centroids subtraction).
Figure 57 shows an example of results (with rotation axis [],1,1]T, 20% outliers,
0.02 noise standard deviation), showing clearly that ICP stops converging before
RICP (here, by about 35 degrees) as the initial rotation difference increases. Figure
58 visualizes a case in which ICP does not converge and RICP does, at a parity of

initial displacement and noise/outliers conditions.

Data and Model Data aligned to Model Data aligned to Model

Figure 58: A case in which RICP finds the correct registration and ICP does not.
From left to right: starting position, ICP alignment, RICP alignment.
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A final set of experiments proved that RICP leads to more accurate registrations
than ICP even with dense data with outliers (partial overlap between views). For
instance, Figure 59 shows two range views of a mechanical widget, acquired by a
laser scanner, and the registration found by RICP. Figure 60 shows the histograms
of the absolute residuals for RICP and ICP, clearly smaller for RICP; the MSE is
7.21 for ICP and 5.01 for RICP.
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Figure 59: Two range views of a mechanical widget (top row). The registration
found by RICP, from two viewpoints (bottom row). All views are subsampled for
display.
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Figure 60: Residual histograms for the widget experiment.



8.5 Conclusions 133

8.5 Conclusions

We have presented RICP, a robust version of the ICP algorithm for correspondence-
less registration of sparse sets of 3-D points corrupted by sensor noise and outliers.
RICP is based on the robust, high-efficiency estimator, LMedS, and implements
a dynamic, weighted scheme for estimating translation using corresponding points
only.

Unlike ICP, it works on sparse point sets, and tolerates substantial amounts of wrong
measurements and missing data. With Gaussian noise only, the performances of ICP
and RICP are very similar, and both RMS errors converge to the standard deviation
of the noise. With outliers, RICP achieves more accurate alignments than ICP
(indeed the better the higher the outlier percentage) and converges to the correct
registration from a wider range of initial displacements.

Inevitably, RICP’s robustness comes at the cost of a higher complexity. In our tests
on a SPARCServer 10 running Solaris 2.5, RICP took, on average, 88 seconds to
register synthetic clouds of 50 points with noise and outliers, ICP only half a second.

This points strongly to off-line applications for RICP.






Chapter 9
Conclusions

This thesis makes five main contributions.

The first is a simple and compact rectification algorithm, developed in Chapter 3.
The correct behavior of the algorithm has been demonstrated with both synthetic
and real images. Tests showed that reconstruction performed directly from the
disparities of the rectified images does not introduces appreciable errors compared
with reconstructing from the original images.

The second major contribution is a new, efficient algorithm for stereo correspond-
ence, SMW, based on a multi-window approach, and taking advantage of left-right
consistency (Chapter 4). Tests showed the advantages offered by SMW. The adapt-
ive, multi-window scheme yields robust disparity estimates in the presence of occlu-
sions, and clearly outperforms single-window schemes. Left-right consistency proves
effective in eliminating false matches and identifying occluded regions. In addition,
disparity is assigned to occluded points heuristically, thereby achieving reasonable
depth maps even in occluded areas. Uncertainty maps are also computed, allowing
the use of SMW as a module within more complex data fusion frameworks. As
for any area-based matching method, SMW’s performance is affected adversely by
poorly-textured regions, but areas of low texture are associated consistently with
high uncertainty values.

Another contribution of this thesis is a robust extension of the Shi-Tomasi-Kanade
tracker, based on the X84 outlier rejection rule (Chapter 6). The computational
cost is much less than that of schemes based on robust regression and random
sampling like RANSAC or LMedS. Yet experiments indicate excellent reliability
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in the presence of non-affine feature warping. The algorithm locates and discards
unreliable features accurately and consistently (most right features are preserved,
all wrong features are rejected), and tracks good features reliably over many frames.
The fourth major contribution is an original, unified account of some of the most
promising techniques for computing the Euclidean structure from uncalibrated im-
ages (Chapter 7). Such a comparative account, which does not yet exist in the
literature, sheds light on the relations between different methods, presented in dif-
ferent ways and formalisms in the original research articles.

The last contribution of this thesis is RICP, a robust version of the ICP algorithm
for correspondenceless registration of sparse sets of 3-D points corrupted by sensor
noise and outliers (Chapter 8). RICP is based on LMedS regression, and implements
a dynamic, weighted scheme for estimating translation using corresponding points
only. Unlike ICP, it works on sparse point sets, and tolerates substantial amounts
of wrong measurements and missing data. Inevitably, RICP’s robustness comes at
the cost of a higher complexity, and this points strongly to off-line applications for
RICP.

These five contributions cover the main elements for building a robust system for
structure recovery, coping with various degrees of a-priori knowledge. A complete
system should include projective reconstruction and autocalibration, that could not

be implemented during this research.



Appendix A
Projective Geometry

Mine eye hath play’d the painter, and hath stell’d
Thy beauty’s form in table of my heart;

My body is the frame wherein ’tis held,

And perspective it is best painter’s art.

For through the painter must you see his skill,

To find where your true image pictur’d lies,
1

The understanding of perspective projections was one of the great achievements of
the Rinascimento (Reneissance). The Italian architect F. Brunelleschi studied this
topic in some detail, but the first explicit formulation of perspective projections is
found in the treatise by L. B. Alberti De Pictura [1], written in 1435. This treatise
describes a method for projecting the horizontal “plane of the floor” onto the vertical
“plane of the painting”. Piero della Francesca pushed the theory forward: in his
De Prospectiva Pingendi [29], written in 1478, he dealt with the general problem of
depicting 3-D objects and, as a painter, he also put his theory in practice (Figure
62).

In the XVII century G. Desargues, building on the works on perspective and on astro-
nomical research by Keplero, introduced projective geometry as a tool for studying
the conics (see [135]). Projective geometry, thanks to the concept of points at in-

finity, deals with elegance with all the particular cases found in theorems on conics.

'W. Shakespeare, Complete Sonnets, Dover Publications Inc, NY, 1991
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From the analytic standpoint, the most important aspect of projective geometry is
the introduction of homogeneous coordinates, which allows many of the significant
aspects of projective geometry to be proven using linear algebra.

In this appendix some concepts of analytic projective geometry will be briefly re-
viewed and summarized for the reader’s convenience. A more detailed knowledge of
the subject can be acquired by reading [6, 160, 107, 33].

Figure 61: The well-known “Flagellazione” by Figure 62: “La camera degli
Piero della Francesca, painted in 1460, Galleria Sposi” by Andrea Mantegna
Nazionale delle Marche, Urbino. This painting painted in fresco in 1474,
have been studied as one of the most important Palazzo Ducale, Mantova.
examples of perspective drawing [159].

Points and lines A point on the projective plane is represented by an ordered
triple of real numbers [x1, %2, x3] # [0, 0, 0] with the convention that [xp, X2, x3] and
[Ax1,Ax2, Ax3] — where A # 0 — represent the same point.

A line on the projective plane is represented by an ordered triple of real numbers
[x1,%2,%x3] # [0,0,0] with the convention that [xi,x2,x3] and [Axy, Ax2, Ax3] where
A # 0 represents the the same line . We shall see that a suitable coordinate system
can be established in the plane, so that this number triplets are the coordinates of

points.

Projective basis Four points aj, a;, a3, a4, no three of which are collinear, define

a projective basis for the projective plane. Let us choose the representations (i.e., the
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scale factors) of the first three points so that we have: a;+a;+a3; = as. In terms of
this coordinate system, we define the relative homogeneous coordinates of any points
x to be [x1,x2,x3] if x = x7a; + x2a; + x3a3. The word “homogeneous” refers to
the fact that the homogeneous coordinates of a projective point may be multiplied
by any nonzero scalar. Note that the role of a4 is simply to fix the scale factors for
ay,ay and a3, which can be otherwise chosen arbitrarily. Indeed, if x = [x1, X2, X3]
and we change the representation for the reference points, the linear combination
x1A1a1 + X2A2a2 + x3A3a3 gives a representation of a point different from x.

Any point [x1, X2, x3] may be written as x1[1, 0, 0] +x>[0, 1, 0] +x3[0, 0, 1], hence, re-
ferred to this coordinate system, it has relative homogeneous coordinates [x1, X2, x3].
The coordinate system defined by the four points [1,0,0], [0, 1,0],[0,0,1],[1,1,1] is

called the natural coordinate system.

Collinear points In the projective plane, points and lines are dual elements; the

point x belongs to the line y if an only if their scalar product is zero, in symbols
x-y=0. (202)

When x is a variable point on the fixed line y, (202) is called the equation of the
line.
It can be easily proved that a necessary and sufficient condition for the distinct

points x, y, z to be collinear is

det(x,y,z) =0, (203)
which is equivalent to

x:(yAz)=0. (204)

Hence the line containing the two distinct points y e z is represented by (y /A z).

It can also be proved that if y e z are distinct points, then oy + Bz with o, p € R"
is another point on the line determined by y e z. If we let A = 3/ and accept the
convention y + Az = z when A = oo, the line containing the two distinct points y

and z has parametric equation:

x=y+Az AERU{oco} . (205)
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Collineations A non-singular linear transformation of the projective plane into
itself is called collineation (or homography).

The most general collineation is represented by a non-singular 3 x 3 matrix H:

Axq Hip Hiz His X1
}\Xé = Hz'] Hz'z H2y3 X2 . (206)
A H3_] H3_2 1 1

The collineation maps points into points and lines into lines and preserves collinearity
(hence its name).

The projective transformation matrix H requires eight independent parameters to
define a unique mapping. Each point correspondence in the plane provides two

equations:

x;1 x2 1 0 0 0 —x1x; —x2X] Ha4 [x{] (207)

0 0 0 x1 x2 1 —xyx5) —x2x} Ha»

It is then necessary to find four point correspondences to define the transformation
matrix uniquely. This gives a constructive proof that four points (provided that no
three of them are collinear) determine a unique transformation matrix. This is in
agreement with the fact that a base for the projective plane is composed by four
elements: the collineation is completely specified by its action on a base. This result,
generalized in a projective space of any dimension, is known as the fundamental

theorem of the projective geometry.

Cross ratio On the line determined by y and z take four points a = y + «z,
b=y+pz c=y+vzand d =y + 6z. We define the cross ratio of these points

in terms of the parameters «, 3,v, d as

‘ |
(o, Bsy,8) = T (208)
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The significance of the cross ratio is that it is invariant under collineations. The
parameters «, 3,7y, d can also be interpreted as the distances from a fixed point on
the line.

Models for the projective plane In this paragraph we present two common
models of projective spaces.

In the first model, we build up an affine space to form a projective space by inserting
the directions of lines as additional points. The projective plane is built up from the
affine plane by adding points at infinity (ideal points) in such a way that parallel
lines always meet at an ideal point. Hence, we add one ideal point for each pencil
of parallel lines. The set of all ideal points form the line at infinity.

In the second method we collapse a vector space to form a projective space by
using the lines in that vector space as our projective points. Let V be an m-
dimensional vector space. The associated (n — 1)-dimensional projective space is
V = {Q|Q is a T-dimensional subspace of V}. A model for the projective plane is
constituted by a pencil of lines in 3-D space, all emanating from the origin, and an
arbitrary plane 7, not passing through the origin. Each line represents a projective
point. The lines which intersect the plane correspond to points in the affine plane,
whereas lines parallel to 7t correspond to ideal points. Only the direction of lines is
important in this model. This is in agreement with the homogeneous representation
of projective points.

Although both these models are useful to understand projective geometry, the “col-
lapsed vector space” approach is less cumbersome since one does not have to discuss

two cases, one for ideal points and the other for affine points.

Axioms for the projective plane In defining the projective plane we took the
analytic approach, introducing immediately coordinates. Yet, projective geometry
is often formalized from a synthetic point of view. The following three statements

are usually taken as axioms defining the projective plane:
(1) Two points are contained in one and only one line.
(2) Two lines intersect in exactly one point.

(3) There are four points such that no three are on the same line.
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Homogeneous vs Cartesian coordinates Homogeneous coordinates (triplets of
real numbers) are used to represent points on the projective planes. Representation
is not unique, since x and Ax with A € R represent the same projective point.
Cartesian coordinates (pairs of real numbers) are used to represent points in the
affine plane. The representation is unique. Since the projective plane can be viewed
as an extended affine plane, we can draw a relationship between representations
of affine points (ideal points, of course, do not have a Cartesian representation).
From the “collapsed vector space” point of view, the Cartesian representation of a
projective point are the coordinates, in the plane 7t : x3 = 1, of the intersection of the
line representing the projective point with the plane 7t. The Cartesian coordinates
corresponding to a projective point [x1, X2, %3] are [x;/x3,%2/x3]. Vice versa, the

homogeneous representation of the point [x1,x2] is Alx7, x, 1] with A € R*.



List of symbols

image brightness

perspective projection matrix (camera matrix)
homogeneous coordinates of a world point
homogeneous coordinates (in pixels) of an image point
normalized homogeneous coordinates of an image point (ray vector)
relative depth

equality up to an arbitrary scale factor
arbitrary scale factor

focal plane

retinal plane

image reference frame

world reference frame

camera std reference frame

intrinsic parameters matrix

focal distance

effective pixel horizontal size

effective pixel vertical size

focal distance in horizontal pixels

focal distance in veritcal pixels

principal point

skew factor

extrinsic parameters matrix

rotation matrix

translation vector
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144 List of Symbols
C optical center
VAN external product
[ A external product matrix
diag(...) diagonal matrix; the arguments are the diagonal elements
trace(-) sum of the diagonal elements of a matrix
e epipole
E essential matrix
F fundamental matrix
[ 1 projection operator extracting the i-th component
Hp homography matrix of plane TT
H, infinity plane homography matrix
K=AAT Kruppa's coeflicients matrix



Credits

The software for this thesis was written by the author, with the exceptions listed
below. It was coded in MATLAB ((© Copyright The Math Works Inc.), SCILAB?,
a public domain MATLAB-like package from INRIA (registered at APP under the
number 93-27-011-00) or in ANSI C, and compiled using the public domain GNU
gcc compiler v2.7 ((©) Copyright Free Software Foundation, Inc.). Some programs
in C inclues Meschach ((© Copyright David E. Stewart), a public domain library for
linear algebra (available from Netlib®) and the Numerical Recipes [120] routines in C
(© Copyright Numerical Recipes Software). Images are read, written and visualized
using the HIPS ((©) Copyright SharpImage Software) package. The calibration code
is by Luc Robert* (INRIA), and the Calibtool interface was written in Tcl/Tk by a
Erman Petrei (University of Udine). The tracking algorithm was coded by Tiziano
Tommasini [140], and the RICP code is due to Stefano Morson, Orazio Stangherlin

and Gerard Martin [98], who also helped in performing the experiments.

Computing and laboratory facilities were provided by the Dipartimento di Matem-
atica ed Informatica, University of Udine, by courtesy of Vito Roberto. Visits to
the Heriot-Watt University, Edinburgh, was supported by a British Council grant
the first time and by a EC Socrates grant the second time.

Stereo pairs in Chapter 3 ((© Copyright INRIA-Syntim®) were calibrated by Jean-
Philippe Tarel [134]. The stereo pairs “Parking meter”, “Shrub”, and “Trees” in
Chapter 4 are part of the JISCT (JPL-INRIA-SRI-CMU-TELEOS) stereo test set®;

Zhttp:/ /www-rocq.inria.fr/scilab/scilab.html

http:/ /www.netlib.org/
*http://www.inria.fr/robotvis/personnel /lucr /detecproj.html
Shttp://www-syntim.inria.fr /syntim/analyse /paires-eng.html
bftp://ftp.vislist.com/IMAGERY /JISCT/
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the “Castle” stereo pair, with calibration data, is courtesy of Carnegie Mellon Uni-
versity — Calibrated Imaging Laboratory’ (supported by ARPA, NSF, and NASA).
The “Hotel” and “Artichoke” sequences in chapter 6 are taken from the Carnegie
Mellon University — VASC® database. “Platform” is part of the SOFA® synthetic
sequences, courtesy of the Computer Vision Group, Heriot-Watt University. “Stair”
is courtesy of Francesco Isgro, Heriot-Watt University. Thanks to Bob Fisher and
Anthony Ashbrooks (Department of Artificial Intelligence, University of Edinburgh)
for the widget data used in Chapter 8. The calibration jig was designed by Aless-
andro Verri and manufactured at the University of Genova, Department of Phisics.
Parts of this dissertation are adapted from papers written by the candidate during
this three years, in conjuction with other authors: Vito Roberto, Tiziano Tommasini,
Emanuele Trucco and Alessandro Verri. In particular, Chapter 3 incorporates a
revised version of [46, 42]; Chapter 4 comes from the merging of [44, 45, 124];
Chapter 6 is a revised version of [141]; Chapter 7 is based on [43] and Chapter 8 is
adapted from [147].

"http://www.cs.cmu.edu/afs/cs/project /cil/www /cil-ster.html
8http://www.ius.cs.cmu.edu/idb/
9http://www.cee.hw.ac.uk/ mtc/sofa
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