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Specifying Virtual Cameras In
Uncalibrated View Synthesis

A. Fusiello Member, IEEE,

Abstract— This paper deals with the views synthesis problem fundamental matrices or tensors. With the exception of few
and proposes an automatic method for specifying the virtual papers, previous work concentrates on the generation of the
camera position and orientation in an uncalibrated setting based novel view, assuming that the problem of view specification

on the interpolation and extrapolation of the motion among . .
the reference views. Novel images can be rendered from viral is solved somehow. For example, in [S], [13], the user has

cameras moving on parametric trajectories. Synthetic and eal {0 manually specify the position of four points in each frame
experiments illustrate the approach. of the synthetic sequence. The view specification problem is

addressed only in [13], [14], where the internal parameters
are assumed to be approximately known, thereby violatiag th

I. INTRODUCTION . k
) o o assumption of uncalibrated camera.
lew synthesis consists in rendering images of a scene as

if they were taken from a virtual viewpoint different fromA Contribution
all the viewpoints of the real views. It is an instancdmofge- "
Based RenderinBR): While the traditional geometry-based This paper tackles the problem of view specification with
rendering starts from a 3-D model, in IBR views are generatg@icalibrated images. Our solution is a technique that esabl
by re-sampling one or more example images, using apprepridt natural, easy-to-use and transparent way of dealing with
warping functions (see [1] for a review). The advantage & ththe problem of posing the virtual camera in thecalibrated
photographs of real scenes can be used as a basis to créfi@um as opposed to the familiar Euclidean stratum. The
very realistic images, and rendering time is decoupled fropynthetic views are physically-valid, as in [5], but our tred
the complexity of the scene. is not limited to in-between views, as it caters for integsol
The warping functions are based on geometric relationshiigh and extrapolation within the same framework. We will
that are found between the positions of pixels represeiiag consider here the case of two or three reference views, but th
same point in the scene observed from different Viewpoirﬁéeth()d can cope with an arbitrary number of reference views.
[2]. For example, given the internal and external paranseter Our algorithm yields a parametric family of camera poses
of the camera, and the depth of a scene point (with respg@tdescribes a smooth trajectory in the Euclidean spatteeas
to the camera), it is easy to obtain the position of the poiRframeters vary continuously. These trajectories intatpo
in any synthetic view [3]. In the case of calibrated cameraetween the poses of the reference cameras and extrapolate
algorithms based on image interpolation yield satisfacter them by replicating the rigid motion among the reference
sults [4], [5], [6]. Where no knowledge on the imaging devic®iews. To the best of our knowledge, this is the first solution
can be assumed, uncalibrated point transfer techniquiezeutiwhich does not require manual input from a human operator
image-to-image constraints such as the fundamental reatrig@nd does not make any assumption on the internal parameters
[7], trilinear tensors [8], plane+parallax [9], or homoghées Of the camera.
[10]’ to re_project pixels from a small number of reference The method is based on an uncalibrated deSCI’iption of the
images to a given view. Another way of linking correspondingjgid motion in terms of epipole and homography of the plane
points is therelative affine structurea close relative of the at infinity, which is isomorphic to the familiar Euclideamid
plane+parallax, introduced by [11], [12]. motion. This enables to map operations transparently from
Although uncalibrated point transfer algorithms are welhe Euclidean to the uncalibrated stratum. In particulag, w
understood, what prevent them to be applied in real-workyild upon the framework for linear combination of simitgri
applications is the lack of a “natural” way of specifyingransformations set forth by [15].
the pose (position and orientation) of the virtual camera in The idea of manipulating rigid motions in the uncalibrated
the familiar Euclidean frame, because this is not accessibjtratum was also outlined in [16] for a robotic applicatibot
Everything is represented in a projective frame that isdohk it was limited to rotations Only. A preliminary version ofish
to the Euclidean one by amknowrprojective transformation. Work appeared in [17].
All the uncalibrated view-synthesis algorithms requires t
specify some projective elements, like epipoles, homdgesp B. Synopsis
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The novel contribution is contained in Section V and VI. Ieth The most general homography matrix has eight degrees of
former, the structure of the uncalibrated rigid transfatiores freedom, being defined up to a scale factor. Therefore, four
is investigated and related to the Euclidean stratum. In therresponding points in the two views define a homography.
latter, the application to the specification of virtual pose Definition 2.4: The epipole in the second view, denoted by
described. Albeit this paper does not aim at describing acom, is the projection of the first camera’s center onto the sécon
plete system for view synthesis, some examples illusgaticamera. Similarly, the epipole in the first viesvis defined
the approach are reported in Section VII. Finally, conduosi as the projection of the second camera’s center onto the first
are drawn in Section VIII. camera.

In our case,

[I. BACKGROUND THEORY e = K'[R|t][0,0,0,1]T = K't. (6)
In this section we review some background notions and

provide a straightforward derivation of the relative affine
structure framework. ¢('m' =(H,m +¢€'. )

Hence, (3) can be re-written as:

A. Collineations and two-views geometry B. Relative Affine structure

We start by reviewing the geometry of two views. A more Equation (7) relates two corresponding points using the
complete discussion can be found, for example, in [18]. homography of the plane at infinity. An interesting formidat
If we take the first camera reference frame as the worfi the two-views geometry is obtained by taking a generic
reference frame, we can write the following two gener&]'a”e as the reference one instead of the infinity plane. This
camera matrices: leads to the relative affine structure [12] or plane+paxditd
formulation.
P = K|[I|0] = [K]0] (1) Proposition 2.5: Given a plandl, with equatiomn™M = d,
P’ = K'[R]t] (2) two corresponding points andm’ are related by

/!
where R is a3 x 3 rotation matrix,t is a3 x 1 translation >m’' = Hom + €’ (i) (8)
vector, representing the rigid motion that brings the sdcon ¢ dg¢

camera reference frame onto the world reference fraé&s \whereq £ d—nT¢ K ~'m is the orthogonal distance of the 3-
an upper-triangular matrix that contains the internal a@'se p point M (of which m andm’ are projections) to the plane

parameters. II, and¢ and ¢’ are the distance dM from the focal plane
Definition 2.1: Two pointSm andm’ that are the prOjeCtion of the first and second camera respective]y_
of the same 3-D poinM onto the first and the second camera, _ _ B L
respectively, are said to hmrresponding points Proof: Substitute//o = Hy — K't— K n 7). =m .
Proposition 2.2: Two corresponding pointsa andm’ are I M € II, then (8) reduces to (4). Otherwise, there is
related by a residual displacement, calllq:mrallax, proportional to the
¢m’ = (K'RK 'm + K't. (3) relative affine structurey £ ac of M, with respect to the

lanell [12].
Wher_eg and¢’ are the distance di fr_om the focal plane of P This (gqu]ation tells us that points are first transferred as
the first and second camera r_espectlvely. . .. if they were lying on the reference plaig and then their
Proof: Insert (1) and (2) into the perspective projectionyition is corrected by a displacement in the direction of
equationsm = PM and¢'m’ = P'M and eliminateM. B o aninole, with magnitude proportional to the relativinaf
In very special cases views are related bgodineation(or ¢t ,cture. It is worth noting that:

homog_raph)l, €, a n_on-smgular linear transformqtlon of the « The relative affine structure is independent of the choice
projective plane into itself, represented by a non-singtita3 .
of the second view.

matrix. It is related to the disparity, being proportional to the
Proposition 2.3:1f the scene is described by a 3-D plane inverse depth. Indeed, when the reference plane is the

II with equationn™ = d, then two views of such a scene L . '
] plane at infinity, the relative affine structure reduces to
are related by: 1

! , fy = —.
>m’ = Hym. 4) . . .
¢ « Pointsm’, Hpm ande’ are collinear. The parallax field
where is a radial field centered on the epipole.
- .
A -1 0 < SIS The latter property can be used to locate the epipole
Hp = KORK + K th : ) [19], given the homography between two views and two off-

is the collineation induced by plarié. plane corresponding paifsn; mg) and(m;; m/). Following
Proof: Specialize (3) withM & TT - simple geometric considerationghe epipole is computed as

|_f d — o in A(5) we obtain the homography for the plane 1, e projective plane, the line determined by two pointgiven by their
at infinity: H,, = K'RK~". cross product, as well as the point determined by two lines.
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the intersection between the line containiflgim,, m{, and In Section VI we will present a solution to this problem that
the line containingim;, mj: provides an easy and transparent way of specifying thealirtu
, , , camera’s viewpoint in an projective frame. The solutiorldmii
e’ = (Himyo x mp) x (Hrpm; x mj) (9)  upon the concept dinear combinatiorof rigid motions in the
where the symbok means equality up to a scale factor. EchI;_dean frame [15], which we shall recapitulate in thetnex
ection.

IIl. POINT TRANSFER WITH RELATIVE AFFINE STRUCTURE
IV. LINEAR COMBINATION OF RIGID MOTIONS

Since the relative affine structure is invariant on the ohoic
of the second view, arbitrary “second views” can be synth
sized, by giving a plane homography and an epipole, whi
specify the position and orientation of the virtual camerai
projective frame.

We will turn now to a notation for three (or more) views
and will use the subscriptd,2,3 to designate them. A
transformation denoted b#;; will always map quantities of
view i to quantities of view;j. An element present in view
will be denoted bym;. Likewise, an element present in view
in relation with view; will be denoted bye;;. Superscripts will

i t
be used to index elements in a set, likenitf &k =1,...,m scalar multlplegG for .t € R. .
T ) Let us consider, without loss of generality, the problem
When working in the uncalibrated stratum, care must be - .
. o of interpolating between the eleme@t € SE(3,R) and the
taken to properly deal with projective scale factors. Fanax

. . identity. On a differentiable manifold we can make sensdef t
ple Hi» andes; computed from corresponding points are onl . . .

\ . Interpolation between two elements as drawing the geodesic
defined up to a scale factor. In this context, we must rewri

e
(8) as:

The linear combination of rigid motions has been defined by
fi[]S] as a tool for for dealing with geometric transformasgon
in Computer Graphics. It is based on the conceptsaadlar
multiple and commutative compositioof rigid motions.

Let SE(3,R) denote thespecial Euclidean groupand let
G € SE(3,R) be a4 x 4 matrix that represents a rigid motion.

1) Scalar multiple: Thanks to the group structure of
SE(3,R), integer multiples of a rigid motion are well defined
as G* for z € Z. However,SE(3,R) is also a differentiable
manifold (it is a Lie group), hence we will be able to define

path between them [20] (the geodesic path is the shortdst pat
between two points in a curved space).
The geodesic path in a neighborhood/ofan be obtained

and keep in mind that the sum makes sense only if the sc@Rthe projection ontBE(3, R) of a straight path in the tangent
factors of Hy, and ey, has been fixed. From now on weSPace; the mapping that projects fréifi(3, R) to the tangent
will assume, unless otherwise specified, that the epipoleS8ace atl is the matrix logarithm. The matrix logarithm is
represented by a unit vector. The scale of the homographyP€fly introduced in the Appendix, where its existence for
fixed by forcing a chosen point to have unit relative affinthe matrices of interest in this work is discussed. Convgrse

1’1’112C ~ ngm]f + egl'yf. (10)

structure. a straight path in the tangent space emanating from O is
Given a certain number of corresponding paird@Pped onto a geodesic BE(3,R) emanating from/ by
(m%; mb) Vk = 1,...,m their relative affine structure is (e exponential map. Hence, the geodesic patlsHf3, R)
obtained by solving for* in (10): joining I and G is given by
o (m} x ey)T(Hipm} x m¥) G' £ exp(tlog(G)), te]0,1]. (12)
! |lm5 x es:[[? This definition has some good properties:
The view synthesis algorithm that we employ, inspired by « If G represent a rotation by an anglearound axisu,
[12], is the following. then G* is a rotation of angled around the same axis

(this can be proved using Rodrigues’ formula).

« In the case of a matriks representing a pure translation
by a vectorv, G represents a translation by.

« The half transformation is well-defined, i€2G2 = G.

More in general:

Definition 4.1: Let G € SE(3,R). The scalar multipleof
G is defined as:

GENERALVIEWSYNTHESIS

1) given a set of corresponding paifgn’; m§) &k =
1,...,m;

2) recover the epipoles; and the homograph¥f,;

3) choose a pointn! and scaleH, to satisfy
mY ~ Hiom! + ey;

4) compute the relative affine structugé with (11); t® G2 G2 exp(tlog(G)), teR. (13)
5) obtain a new epipoles, and a new homographifis  The scalar multiple coincides with the integer multiple for
(properly scaled); o _ t € Z, and produces a smooth interpolant (along the geodesic)
6) transfer points in the synthetic view with for all the other values of
E ~ k k . . .
my ~ Hizmy + es1 2) Commutative compositionLet us now consider the

The problem that makes this technique difficult to use icomposition of two rigid motiongz; and G2. We would like
practice (and for this reason it has been overlooked for vidw be able to define aommutative compositiofor addition)
synthesis) is point (5), namely the need to specify a nesuch thatG; followed by G2 ends up in the same place as
epipolees; and a new (scaled) homograph . G4, followed by G;.
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Definition 4.2: Let G1,G2 € SE(3,R). The commutative The ratiod; /d2 in general is unknown, but ifl is the plane at
compositionof G1, G, is defined as: infinity thend; /d2 = 1 (please note that this is approximately
true for planes distant from the camera). Therefore, takieg

A log Gi+log G
 GreGy S e (14)  plane at infinity adT, (20) writes:
The operation is indeed commutative because the sum in

the exponent is commutative. The commutative composition Hoc13 = Hoc23Hoo12  and  e3; = Hoozzenr +e32  (22)
behaves much like the standard matrix producG{fand G,
commute, therG; @ Gy = e!°8C1eloe G2 — GGy = GoG1.
SinceG; commutes withG; !, thenG, @ Gt =1

The intuitive meaning of the commutative composition ¢
be grasped thanks to the relationship:

Albeit, in general, homographies can be computed only up
to a scale factor, in the case of the infinity plane homography
if internal parameters are assumed constant (as we do hence-
af?)rth), the scale is fixed by the requirement theat( H..) = 1.
Definition 5.1: Let e;; and H.;; be the epipole and the
exp(Gy + Go) = lim (exp(%gl)exp(%gﬂ)" (15) plane at infinity, respectively, linking two camerasand j.
oo The matrix
from which it is easily obtained that Dy 2 |:H(aoij e{-z} (23)
G1® Gz = lim (G7 G3)". (16) s called theuncalibrated rigid motion matrix
As opposed to a Euclidean rigid motion matri?;; contains
the homography of the plane at infinity in place of the rotatio
and the epipole in lieu of the translation.
In matrix form (22) writes:

In a sensez; ® G5 is like applyingG,; and G, simultane-
ously, as we are slicing infinitely many timés and G, and
then applying these slices alternately.

3) Linear combination:Using the scalar multiple and the

commutative composition we can do a weighted combination D15 = D33 D1s (24)
of two rigid motions: ) ) o i .
Definition 4.3: Let G1, G2 € SE(3,R). Thelinear combi- Interestingly enough, uncalibrated rigid motion matrices

D;; follow the same multiplicative composition rule as the
homogeneous rigid motion matricés; of SE(3,R). This is
(u®G1) ® (vE Gy) = evlosCrtviogGe (17) something that [21] noted, but it has never been exploitd, t
To be rigorous, this operation corresponds to a linear comkfie best of our knowledge. In a sendg,; is a homogeneous
nation in the logarithm space. The linear combination of twepresentation of the rigid motion at the uncalibratedistré.

nation of G, G5 is defined as:

independent motions spans a 2-manifoldSef(3, R). This observation leads to the following:
Proposition 5.2: The uncalibrated rigid motions form a
V. THE GROUP OF UNCALIBRATED RIGID MOTIONS group that is isomorphic t8E(3,R), under the assumption
of constant internal parameters.

In this section we will first derive a description of a rigid
motion that can be achieved when cameras are not calibrated
(uncalibrated motio}y resting on the knowledge of the epipole G A [Rij tij] € SE(3,R) (25)
and the homography of the plane at infinity. Then we will draw * 0 1 ’
its relationship with the Euclidean description of rigid 00, e g matrix that represent a rigid motion, whéés a rotation
the special Euclidean grou§¥(3, R). matrix andt is a vector representing a translation.

We aim to obtain an equation relating views 1-3 in terms of First, let us observe that the operatex : ¢x (Gi;) = D;;
1-2 and 2-3. To this end, let us consider (8), which expressggt maps calibrated operations into the uncalibratedustra
the epipolar geometry with reference to a plane, in the cag@ere the infinity plane homography substitutes the ratatio

Proof: Let

of view pair 1-2: and the epipole substitutes the translation, is a conjugegy.
G -1 g _
amQ = Hiomy +exm (18) vr(Gij) = Dy; = [KR%K Kf”] =KG, ;K™ (26)
and view pair 2-3: with
= K 0
K= . 27
%mg = Hosmy + e3272. (19) |:0 1:| ( )
2
By substituting the first into the second, we obtain: Then, itis easy to shown fthjs a[] hom~omorph|sm:
(s d 0i(Ga3) o (G12) = KGos K 'KG12 K ™' = (28)
ams = HyzHiomy + (Hazeq + 632d—2)’Y1 (20) = KG93G1oK ™ = i (Ga3Gra)
whered; andd, are the distances of the plafie from the and, beingog invertible, it is an isomorphism. ~ m
first and the second camera respectively. Comparison wjth (8 Thanks to the fact that uncalibrated motions are isomorphic
yields: to SE(3,R), we can map the definitions of the previous section
dy 2Technically, since we assume to know the plane at infiniig, ¢cbrrespond
Hiz = Hy3Hma and es = Hozes + e32d_2 (21) to the affine calibration stratum [21].
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onto the uncalibrated motions. Every operation carried outThe complete algorithm for view synthesis along a 1-d
in the uncalibrated stratum reflects itself consistentijtie manifold with two reference views is summarized below.
Euclidean stratum, even if the map¢ is unknown.

TWOVIEWSYNTHESIS

VI. SPECIFYING THE VIRTUAL CAMERA POSITION 1) Given a set of corresponding paifm%; m5) &k =
Let us focus on the main contribution of this paper, namely  1,...,m; _ o
an easy and transparent way of specifying the virtual camera 2) Recover the epipolez; and the infinity homography
viewpoint in the uncalibrated stratum. Hoo2; _ . .
Using the infinity plane as the reference plane, the transfer3) Compute the relative affine structuyg¢ with (11);
equation that allows to render the virtual vidw becomes: 4) Let Dy = Hogu ei1 :
mk .
mlg ~ Hooizmb + eg7% = [110] D15 { ’“1} (29) 5) For any given value o thg parameter _
"N a) Compute the uncalibrated motion of the virtual
The virtual viewpoint is specified through the uncalibrated cameraDi3(t) =t ® Dio;
rigid motion matrix D13. b) Transfer points to the 3rd view with (29).

B. Motion along a 2-d manifold

Assuming that three reference views are availalble /s,
and I3, we want to synthesize the fourth viedy. To this
end we suppose that uncalibrated motidns and D3 are
t® D £ D' =exp(tlog(D)), teR. (30) available.

Along the same line as in the previous section, we extend
the definition of linear combination of rigid motions to the
group of uncalibrated motions via the isomorphigm

A. Motion along a 1-d manifold

Let D = ¢k (G), G € SE(3,R); echoing the definition of
the scalar multipleof a rigid motion, let us define

It is easy to show, using Proposition 5.2, thatD = ¢(t0G).
Starting fromD;2, which is known, let us compute

D13(t) =t ® D1a (32) Dia(u,v) = (u®D12)B(vODi3) = eulog Dia+vlog Dis (32)
and plug it into (29). Ag varies inR we obtain a 1-parameter  Thanks to Proposition 5.2, this has a geometric meaning
family of uncalibrated motions. in the Euclidean stratum, corresponding to posing the airtu

Sincet ® D12 = ¢(t® G12), this correspond to placing thecamera afu ® G12) @ (v ® G13). This is a 2-manifold (a sur-
virtual camera at pose (position and orientatiod)G1> with  face) of SE(3, R) that contains the poses of the three reference
respect to the first camera, in the Euclidean space. Hence, géneras (for(u, v)=(0,0), (u,v)=(0, 1), and (u,v)=(1,0),
can make sense of this operation as posing the virtual camgggpectively).
at scalar multiples o712, even if G12 is unknown. A very special case is when the reference views are rectified

The 1-d manifold (a curve) iBE(3,R) described by©G12  [22]. Then R, = I = H..» and the epipole is at infinity.
contains the pose of the first cameta(0), and the pose of Given that no seed rotation is present, the virtual camema ca
the second camera £ 1). It interpolates between the two foronly be translated i) along the line containing the centéthe®

t € [0,1], and extrapolates for> 1 or ¢ < 0. cameras (in case of two cameras) or ii) in the plane contginin
the focal planes of all the cameras in the case of three camera
Geodesic The complete algorithm for view synthesis along a 2-d

P f 2 . . . . .
Pose of camera 1 os¢ ofcamera manifold with three reference views is summarized below.

THREEVIEWSYNTHESIS

1) Given two sets of corresponding pairs in 3 views
(my;mb) and(my;mb) k=1,...,m;

2) Recover the epipoles,;, es; and the infinity homogra-
phiesH 12, Hoo13;

3) Compute the relative affine structuyé with (11);

4) Choose a point{ and scalees; to satisfy
m) ~ Ho13m{ + 1{esq;

5) Let D12 = Ho(;)lQ efl(:| andD13 = Ho(;)lB ei’1:|;

6) For any given value of the parameters:
a) Compute the uncalibrated motion of the virtual
cameraD4(t) = (u ® Di2) ® (v ® Di3);

b) Transfer points in the 4th (synthetic) view with
Fig. 1. Ast varies inR, the pose of the virtual camera describes a curve &
in SE(3,R). This allows to synthesize a sequence of images as taken by a k- my .
smoothly moving camera. my = [I|O]D14 7{6 k=1,....m. (33)
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The linear combination of uncalibrated motions can be
applied to an arbitrary number of motions, depending on the
number of reference views available. In generdhdependent
motions will span an-dimensional manifold ofSE(3,R),
which has dimension six. As the dimension of the paramete
space grows, however, our view specification method lose
part of its ease of use. =

VIlI. EXAMPLES %

=
Some synthetic examples are reported here to illustrate th m m m M

kind of trajectories that can be achieved with the proposei
method. The reference views have been obtained by pragectin _ , ,

. e I " I;y: Fig. 3. Montage of a virtual sequence obtained starting ftloree reference
a (simplified) 3-d model of the “Tribuna” (Piazza delle Erb%iews. The trajectory of the virtual camera is a line in thel parameters
Verona) with known camera matrices. Epipoles and infiniBpace, which contains two reference views, shown in redigbter line).
plane homographies have been extracted from the camera
matrices. Then, the two synthesis algorithms have beereappl
respectively to produce the sequences shown here.

In particular, the sequence depicted in Fig. 2 has been ot
tained with the voVIEWSYNTHESIS algorithm. The motion
of the virtual camera is described by a single parameter
varying in[—1.2,2.2], so as to illustate both interpolation and
extrapolation.
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Fig. 4. Montage of a virtual sequence obtained starting filoree reference
views. The trajectory of the virtual camera is a circle in the parameters
space, hence the last view coincide with the first.
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Fig. 2. Montage of a virtual sequence obtained starting fram reference
views (shown in red or lighter line).
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The two sequences reproduced in Figures 3 and 4 have been
produced with the TREEVIEWSYNTHESIS) algorithm. In this  Fig. 5. Trajectories in theu, v) space{—1.2,2.2] x [-1.2,2, 2]. The circles
. . . represent the reference views.
case, the parameter spage v) is two-dimensional, and two
specific trajectories (shown in Figure 5) have been chosen in

this space to generate the two different Sequence. 1) The plane at infinity between pairs of reference images.
The same sequences have been generated using the groungl- The epipoles between pairs of reference images.

truth 3-d structure and camera matrices, and the results arg) pe reative affine structure of points in one reference
identical, as expected. Figure 6 shows the trajectoriehef t

virtual camera in the Euclidean space for the three seqsence  itical item is the infinity homoarachy. which
reported here. y grapny, ,

Albeit the focus of this paper is on the mathematicz%lowever' can_be recovered using a variety of heuri_stics [23]
framework for the generation of virtual trajectories, weplex or exarrr]lple |tbcar;1 b(:] approxm;atecfi trJ]y the domlnantf hr?'
mented a rough-and-ready view synthesis algorithm, iregingf'09rapny, or by the homography of the upper part of the

for illustrative purposes, that works with real images.Ure 'mage, or by_ extracting vanishing points. In our case we
7 shows the real reference images and the some framesomalned the |nf|n|t_y homogra_phy _(or an apprommaﬂon of it)
the synthetic sequence. The full movie together with oth p part of an uncalibrated rectification algqnthm [24].@1\an
examples is available on the Interrdet. omogrfiphy and at least two Off.'p'aT‘e points, the epipaes c
A view synthesis algorithm needs the following pieces (Hg obtained with (9). The re_ctlfled images are then matched
data to render new images: Wlt.h a stereo matching algorithm [25], qnd the_ correspogdin
points are used to compute the relative affine structure

3http://profs.sci.univr.it/ fusiello/demo/synth/ Small artifacts in Figure 7 are due to wrong matches. A more

image.
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Fig. 6. Position and orientation of the virtual camera in Ehelidean space for the sequences of Fig. 2 (left) Fig. 3dfe)dand Fig. 4 (right).

sophisticated stereo matching with some post-procesding o VIIl. CONCLUSION
the disparity map (as [26], [27]) would be required to achiev

. . o We presented a mathematical framework for posing the
high-quality synthetic images.

virtual camera in the uncalibrated rendering of syntheiteve.

The method builds upon the linear combination scheme that
had been previously developed [15] within the group of rigid
motions,SE(3,R). We extended it to the uncalibrated motion,
by observing that an isomorphism exists betwe&dt(3, R)

and the group of uncalibrated motion. This allowed to reflect
into the Euclidean stratum all the operations carried out in
the uncalibrated stratum, even if the former is not accéssib
In particular, we defined parametric trajectories for theuail
camera based on the linear combination of the uncalibrated
rigid motions among the reference cameras.

A drawback of this framework is that the description of
the uncalibrated motion is less general than it could bet as i
requires the homography of the infinity plane. It is not clear
whether the theory could be modified to work with a more
general description, like a finite plane homography. Tresiés
is left for future investigation.

Acknowledgments:Giandomenico Orlandi contributed to
this work with inspiring discussions. Luca Irsara produtiesl
sequence shown in Figure 7.

APPENDIX

We shall discuss here the existence of tleal matrix
logarithm for elements ofE(3, R) and ¢k (SE(3,R)) which
Fig. 7. Top row: reference views. Bottom rows: montage of Witual  js necessary for the definitions above to make sense.
sequence obtained starting from the reference views. Definition 1.1: The linear groupGL(n, R) is the group of

1 ,
the invertiblen x n real matrices.

The algorithm then must specify how the rendering of the GL(n,R) 2 {4 € M(n,R) : det(A) #£ 0} (34)
new image is performed. In our case, the pixels of the refer- ’ '

ence image are mapped to the destination image in increasivitereM (n, R) denote the space of all x n real matrices.

~ order, which guarantees that points closer to the cameréGiven a4 € GL(n,R), any solution of the matrix equation
overwrites farther points. Remaining holes in the destimat eX = A, whereeX denotes the exponential of the matik
image are filled by interpolation. While this is satisfagtoris calledlogarithm of A. In general,A may have an infinite
for small holes, larger ones (usually due to occlusionsg givwumber of real and complex logarithms. Howeverdihas no
rise to blurred areas, as visible in Figure 7. This problemigenvalues on the closed negative real axis themas a real
could be tackled by i) reducing the size of holes by using thegarithm [30]. Among all real logarithm there is a uniqueson
information coming from all the reference views [28], [28f, whose eigenvalues has imaginary part lyind ia 7, w[. This
by ii) filling the remaining holes with inpainting [29]. unigue logarithm is called thgrincipal logarithmof A. It will
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be denoted byog A. Operationally, the logarithm is defined[17]
by the following series
logA & — Z
k=1
which converges in the ballA — I]| < 1.

The logarithm map projects a neighborhood &f in
GL(n,R) into a neighborhood of 0 iM(n,R), which can 19
be identified with the tangent space @ (n,R) at I. [20]

In our case, botBE(3,R) andyx (SE(3,R)) are subgroups
of GL(4,R). Moreover, they satisfy the spectral condition folPY
existence of a real logarithm. Let(A) denote the spectrum

of A If G 2 g J; € SE(3,R) then it is easy to see that

o(G) = {1} Uo(R), ando(R) = {1,e*"?}, being a rotation |53
matrix. As ¢ (G) is similar to G, theno(px (G)) = o(G).
In [31] a closed-form form for the logarithm i8E(3, R) is

(I—A)F*

A (35)

(18]

[22]

[24]

given, which can also be adapted to compute the logarithm'in
vr (SE(3,R)).
[25]
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