
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X 1

Specifying Virtual Cameras in
Uncalibrated View Synthesis

A. Fusiello Member, IEEE,

Abstract— This paper deals with the views synthesis problem
and proposes an automatic method for specifying the virtual
camera position and orientation in an uncalibrated setting, based
on the interpolation and extrapolation of the motion among
the reference views. Novel images can be rendered from virtual
cameras moving on parametric trajectories. Synthetic and real
experiments illustrate the approach.

I. I NTRODUCTION

V Iew synthesis consists in rendering images of a scene as
if they were taken from a virtual viewpoint different from

all the viewpoints of the real views. It is an instance ofImage-
Based Rendering(IBR): While the traditional geometry-based
rendering starts from a 3-D model, in IBR views are generated
by re-sampling one or more example images, using appropriate
warping functions (see [1] for a review). The advantage is that
photographs of real scenes can be used as a basis to create
very realistic images, and rendering time is decoupled from
the complexity of the scene.

The warping functions are based on geometric relationships
that are found between the positions of pixels representingthe
same point in the scene observed from different viewpoints
[2]. For example, given the internal and external parameters
of the camera, and the depth of a scene point (with respect
to the camera), it is easy to obtain the position of the point
in any synthetic view [3]. In the case of calibrated cameras,
algorithms based on image interpolation yield satisfactory re-
sults [4], [5], [6]. Where no knowledge on the imaging device
can be assumed, uncalibrated point transfer techniques utilize
image-to-image constraints such as the fundamental matrices
[7], trilinear tensors [8], plane+parallax [9], or homographies
[10], to re-project pixels from a small number of reference
images to a given view. Another way of linking corresponding
points is therelative affine structure, a close relative of the
plane+parallax, introduced by [11], [12].

Although uncalibrated point transfer algorithms are well
understood, what prevent them to be applied in real-world
applications is the lack of a “natural” way of specifying
the pose (position and orientation) of the virtual camera in
the familiar Euclidean frame, because this is not accessible.
Everything is represented in a projective frame that is linked
to the Euclidean one by anunknownprojective transformation.
All the uncalibrated view-synthesis algorithms requires to
specify some projective elements, like epipoles, homographies,

A. Fusiello is with the Dipartimento di Informatica, Università degli Studi
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fundamental matrices or tensors. With the exception of few
papers, previous work concentrates on the generation of the
novel view, assuming that the problem of view specification
is solved somehow. For example, in [5], [13], the user has
to manually specify the position of four points in each frame
of the synthetic sequence. The view specification problem is
addressed only in [13], [14], where the internal parameters
are assumed to be approximately known, thereby violating the
assumption of uncalibrated camera.

A. Contribution

This paper tackles the problem of view specification with
uncalibrated images. Our solution is a technique that enables
a natural, easy-to-use and transparent way of dealing with
the problem of posing the virtual camera in theuncalibrated
stratum, as opposed to the familiar Euclidean stratum. The
synthetic views are physically-valid, as in [5], but our method
is not limited to in-between views, as it caters for interpola-
tion and extrapolation within the same framework. We will
consider here the case of two or three reference views, but the
method can cope with an arbitrary number of reference views.

Our algorithm yields a parametric family of camera poses
that describes a smooth trajectory in the Euclidean space asthe
parameters vary continuously. These trajectories interpolate
between the poses of the reference cameras and extrapolate
them by replicating the rigid motion among the reference
views. To the best of our knowledge, this is the first solution
which does not require manual input from a human operator
and does not make any assumption on the internal parameters
of the camera.

The method is based on an uncalibrated description of the
rigid motion in terms of epipole and homography of the plane
at infinity, which is isomorphic to the familiar Euclidean rigid
motion. This enables to map operations transparently from
the Euclidean to the uncalibrated stratum. In particular, we
build upon the framework for linear combination of similarity
transformations set forth by [15].

The idea of manipulating rigid motions in the uncalibrated
stratum was also outlined in [16] for a robotic application,but
it was limited to rotations only. A preliminary version of this
work appeared in [17].

B. Synopsis

The rest of the paper is structured as follows. In Section
II we review some background notions required to make the
paper self-consistent. Section III summarizes points transfer
using the relative affine structure, while Section IV reviews
the framework for the linear combination of rigid motions.
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The novel contribution is contained in Section V and VI. In the
former, the structure of the uncalibrated rigid transformations
is investigated and related to the Euclidean stratum. In the
latter, the application to the specification of virtual poses is
described. Albeit this paper does not aim at describing a com-
plete system for view synthesis, some examples illustrating
the approach are reported in Section VII. Finally, conclusions
are drawn in Section VIII.

II. BACKGROUND THEORY

In this section we review some background notions and
provide a straightforward derivation of the relative affine
structure framework.

A. Collineations and two-views geometry

We start by reviewing the geometry of two views. A more
complete discussion can be found, for example, in [18].

If we take the first camera reference frame as the world
reference frame, we can write the following two general
camera matrices:

P = K[I|0] = [K|0] (1)

P ′ = K ′[R|t] (2)

whereR is a 3 × 3 rotation matrix,t is a 3 × 1 translation
vector, representing the rigid motion that brings the second
camera reference frame onto the world reference frame,K is
an upper-triangular matrix that contains the internal camera’s
parameters.

Definition 2.1: Two pointsm andm
′ that are the projection

of the same 3-D pointM onto the first and the second camera,
respectively, are said to becorresponding points.

Proposition 2.2:Two corresponding pointsm andm
′ are

related by
ζ′m′ = ζK ′RK−1

m + K ′
t. (3)

whereζ andζ′ are the distance ofM from the focal plane of
the first and second camera respectively.

Proof: Insert (1) and (2) into the perspective projection
equationsζm = PM andζ′m′ = P ′

M and eliminateM.
In very special cases views are related by acollineation(or

homography), i.e, a non-singular linear transformation of the
projective plane into itself, represented by a non-singular 3×3
matrix.

Proposition 2.3: If the scene is described by a 3-D plane
Π with equationnT

M = d, then two views of such a scene
are related by:

ζ′

ζ
m

′ = HΠm. (4)

where

HΠ , K ′RK−1 + K ′
t
n

T

d
K−1. (5)

is the collineation induced by planeΠ.
Proof: Specialize (3) withM ∈ Π.

If d → ∞ in (5) we obtain the homography for the plane
at infinity: H∞ , K ′RK−1.

The most general homography matrix has eight degrees of
freedom, being defined up to a scale factor. Therefore, four
corresponding points in the two views define a homography.

Definition 2.4: The epipole in the second view, denoted by
e
′, is the projection of the first camera’s center onto the second

camera. Similarly, the epipole in the first viewe is defined
as the projection of the second camera’s center onto the first
camera.

In our case,

e
′ = K ′[R|t][0, 0, 0, 1]T = K ′

t. (6)

Hence, (3) can be re-written as:

ζ′m′ = ζH∞m + e
′. (7)

B. Relative Affine structure

Equation (7) relates two corresponding points using the
homography of the plane at infinity. An interesting formulation
of the two-views geometry is obtained by taking a generic
plane as the reference one instead of the infinity plane. This
leads to the relative affine structure [12] or plane+parallax [9]
formulation.

Proposition 2.5:Given a planeΠ, with equationnT
M = d,

two corresponding pointsm andm
′ are related by

ζ′

ζ
m

′ = HΠm + e
′

(

a

d ζ

)

(8)

wherea , d−n
TζK−1

m is the orthogonal distance of the 3-
D point M (of which m andm

′ are projections) to the plane
Π, andζ and ζ′ are the distance ofM from the focal plane
of the first and second camera respectively.

Proof: SubstituteH∞ = HΠ − K ′
t
n

T

d
K−1 in (7).

If M ∈ Π, then (8) reduces to (4). Otherwise, there is
a residual displacement, calledparallax, proportional to the
relative affine structureγ ,

a

d ζ
of M, with respect to the

planeΠ [12].
This equation tells us that points are first transferred as

if they were lying on the reference planeΠ, and then their
position is corrected by a displacement in the direction of
the epipole, with magnitude proportional to the relative affine
structure. It is worth noting that:

• The relative affine structure is independent of the choice
of the second view.

• It is related to the disparity, being proportional to the
inverse depth. Indeed, when the reference plane is the
plane at infinity, the relative affine structure reduces to

γ =
1

ζ
.

• Pointsm
′, HΠm ande

′ are collinear. The parallax field
is a radial field centered on the epipole.

The latter property can be used to locate the epipole
[19], given the homography between two views and two off-
plane corresponding pairs(m0;m

′
0) and(m1;m

′
1). Following

simple geometric considerations1, the epipole is computed as

1In the projective plane, the line determined by two points isgiven by their
cross product, as well as the point determined by two lines.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X 3

the intersection between the line containingHΠm0,m
′
0 and

the line containingHΠm1,m
′
1:

e
′ ≃ (HΠm0 × m

′

0) × (HΠm1 × m
′

1) (9)

where the symbol≃ means equality up to a scale factor.

III. POINT TRANSFER WITH RELATIVE AFFINE STRUCTURE

Since the relative affine structure is invariant on the choice
of the second view, arbitrary “second views” can be synthe-
sized, by giving a plane homography and an epipole, which
specify the position and orientation of the virtual camera in a
projective frame.

We will turn now to a notation for three (or more) views,
and will use the subscripts1, 2, 3 to designate them. A
transformation denoted byHij will always map quantities of
view i to quantities of viewj. An element present in viewi
will be denoted bymi. Likewise, an element present in viewi
in relation with viewj will be denoted byeij . Superscripts will
be used to index elements in a set, like inm

k
i k = 1, . . . , m.

When working in the uncalibrated stratum, care must be
taken to properly deal with projective scale factors. For exam-
ple H12 ande21 computed from corresponding points are only
defined up to a scale factor. In this context, we must rewrite
(8) as:

m
k
2 ≃ H12m

k
1 + e21γ

k
1 . (10)

and keep in mind that the sum makes sense only if the scale
factors of H12 and e21 has been fixed. From now on we
will assume, unless otherwise specified, that the epipole is
represented by a unit vector. The scale of the homography is
fixed by forcing a chosen point to have unit relative affine
structure.

Given a certain number of corresponding pairs
(mk

1 ; m
k
2) ∀k = 1, . . . , m their relative affine structure is

obtained by solving forγk
1 in (10):

γk
1 =

(mk
2 × e21)

T(H12m
k
1 × m

k
2)

||mk
2 × e21||2

. (11)

The view synthesis algorithm that we employ, inspired by
[12], is the following.

GENERALV IEWSYNTHESIS

1) given a set of corresponding pairs(mk
1 ; m

k
2) k =

1, . . . , m;
2) recover the epipolee21 and the homographyH12;
3) choose a pointm0

1 and scaleH12 to satisfy
m

0
2 ≃ H12m

0
1 + e21;

4) compute the relative affine structureγk
1 with (11);

5) obtain a new epipolee31 and a new homographyH13

(properly scaled);
6) transfer points in the synthetic view with

m
k
3 ≃ H13m

k
1 + e31γ

k
1

The problem that makes this technique difficult to use in
practice (and for this reason it has been overlooked for view
synthesis) is point (5), namely the need to specify a new
epipolee31 and a new (scaled) homographyH13.

In Section VI we will present a solution to this problem that
provides an easy and transparent way of specifying the virtual
camera’s viewpoint in an projective frame. The solution builds
upon the concept oflinear combinationof rigid motions in the
Euclidean frame [15], which we shall recapitulate in the next
Section.

IV. L INEAR COMBINATION OF RIGID MOTIONS

The linear combination of rigid motions has been defined by
[15] as a tool for for dealing with geometric transformations
in Computer Graphics. It is based on the concepts ofscalar
multiple andcommutative compositionof rigid motions.

Let SE(3, R) denote thespecial Euclidean group, and let
G ∈ SE(3, R) be a4×4 matrix that represents a rigid motion.

1) Scalar multiple: Thanks to the group structure of
SE(3, R), integer multiples of a rigid motion are well defined
as Gz for z ∈ Z. However,SE(3, R) is also a differentiable
manifold (it is a Lie group), hence we will be able to define
scalar multiplesGt for t ∈ R.

Let us consider, without loss of generality, the problem
of interpolating between the elementG ∈ SE(3, R) and the
identity. On a differentiable manifold we can make sense of the
interpolation between two elements as drawing the geodesic
path between them [20] (the geodesic path is the shortest path
between two points in a curved space).

The geodesic path in a neighborhood ofI can be obtained
as the projection ontoSE(3, R) of a straight path in the tangent
space; the mapping that projects fromSE(3, R) to the tangent
space atI is the matrix logarithm. The matrix logarithm is
briefly introduced in the Appendix, where its existence for
the matrices of interest in this work is discussed. Conversely,
a straight path in the tangent space emanating from 0 is
mapped onto a geodesic inSE(3, R) emanating fromI by
the exponential map. Hence, the geodesic path inSE(3, R)
joining I andG is given by

Gt , exp(t log(G)), t ∈ [0, 1]. (12)

This definition has some good properties:

• If G represent a rotation by an angleθ around axisu,
then Gt is a rotation of angletθ around the same axis
(this can be proved using Rodrigues’ formula).

• In the case of a matrixG representing a pure translation
by a vectorv, Gt represents a translation bytv.

• The half transformation is well-defined, i.e,G
1

2 G
1

2 = G.

More in general:
Definition 4.1: Let G ∈ SE(3, R). The scalar multipleof

G is defined as:

t ⊙ G , Gt , exp(t log(G)), t ∈ R. (13)
The scalar multiple coincides with the integer multiple for
t ∈ Z, and produces a smooth interpolant (along the geodesic)
for all the other values oft.

2) Commutative composition:Let us now consider the
composition of two rigid motionsG1 andG2. We would like
to be able to define acommutative composition(or addition)
such thatG1 followed by G2 ends up in the same place as
G2 followed by G1.
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Definition 4.2: Let G1, G2 ∈ SE(3, R). The commutative
compositionof G1, G2 is defined as:

G1 ⊕ G2 , elog G1+log G2 (14)
The operation is indeed commutative because the sum in
the exponent is commutative. The commutative composition
behaves much like the standard matrix product. IfG1 andG2

commute, thenG1 ⊕ G2 = elog G1elog G2 = G1G2 = G2G1.
SinceG1 commutes withG−1

1 , thenG1 ⊕ G−1
1 = I

The intuitive meaning of the commutative composition can
be grasped thanks to the relationship:

exp(G1 + G2) = lim
n→∞

(

exp( 1
n
G1) exp( 1

n
G2)

)n
(15)

from which it is easily obtained that

G1 ⊕ G2 = lim
n→∞

(G
1

n

1 G
1

n

2 )n. (16)

In a sense,G1 ⊕G2 is like applyingG1 andG2 simultane-
ously, as we are slicing infinitely many timesG1 andG2 and
then applying these slices alternately.

3) Linear combination:Using the scalar multiple and the
commutative composition we can do a weighted combination
of two rigid motions:

Definition 4.3: Let G1, G2 ∈ SE(3, R). The linear combi-
nation of G1, G2 is defined as:

(u ⊙ G1) ⊕ (v ⊙ G2) = eu log G1+v log G2 (17)
To be rigorous, this operation corresponds to a linear combi-
nation in the logarithm space. The linear combination of two
independent motions spans a 2-manifold ofSE(3, R).

V. THE GROUP OF UNCALIBRATED RIGID MOTIONS

In this section we will first derive a description of a rigid
motion that can be achieved when cameras are not calibrated
(uncalibrated motion), resting on the knowledge of the epipole
and the homography of the plane at infinity. Then we will draw
its relationship with the Euclidean description of rigid motion,
the special Euclidean groupSE(3, R).

We aim to obtain an equation relating views 1-3 in terms of
1-2 and 2-3. To this end, let us consider (8), which expresses
the epipolar geometry with reference to a plane, in the case
of view pair 1-2:

ζ2

ζ1

m2 = H12m1 + e21γ1 (18)

and view pair 2-3:

ζ3

ζ2

m3 = H23m2 + e32γ2. (19)

By substituting the first into the second, we obtain:

ζ3

ζ1

m3 = H23H12m1 + (H23e21 + e32

d1

d2

)γ1 (20)

whered1 and d2 are the distances of the planeΠ from the
first and the second camera respectively. Comparison with (8)
yields:

H13 = H23HΠ12 and e31 = H23e21 + e32

d1

d2

(21)

The ratiod1/d2 in general is unknown, but ifΠ is the plane at
infinity thend1/d2 = 1 (please note that this is approximately
true for planes distant from the camera). Therefore, takingthe
plane at infinity asΠ, (20) writes:

H∞13 = H∞23H∞12 and e31 = H∞23e21 + e32 (22)

Albeit, in general, homographies can be computed only up
to a scale factor, in the case of the infinity plane homography,
if internal parameters are assumed constant (as we do hence-
forth), the scale is fixed by the requirement thatdet(H∞) = 1.

Definition 5.1: Let eji and H∞ij be the epipole and the
plane at infinity, respectively, linking two camerasi and j.
The matrix

Dij ,

[

H∞ij eji

0 1

]

(23)

is called theuncalibrated rigid motion matrix.
As opposed to a Euclidean rigid motion matrix,Dij contains
the homography of the plane at infinity in place of the rotation,
and the epipole in lieu of the translation.

In matrix form (22) writes:

D13 = D23D12 (24)

Interestingly enough, uncalibrated rigid motion matrices
Dij follow the same multiplicative composition rule as the
homogeneous rigid motion matricesGij of SE(3, R). This is
something that [21] noted, but it has never been exploited, to
the best of our knowledge. In a sense,Dij is a homogeneous
representation of the rigid motion at the uncalibrated stratum2.
This observation leads to the following:

Proposition 5.2:The uncalibrated rigid motions form a
group that is isomorphic toSE(3, R), under the assumption
of constant internal parametersK.

Proof: Let

Gij ,

[

Rij tij

0 1

]

∈ SE(3, R) (25)

be a matrix that represent a rigid motion, whereR is a rotation
matrix andt is a vector representing a translation.

First, let us observe that the operatorϕK : ϕK(Gij) = Dij

that maps calibrated operations into the uncalibrated stratum,
where the infinity plane homography substitutes the rotation
and the epipole substitutes the translation, is a conjugacymap:

ϕK(Gij) = Dij =

[

KRijK
−1 Ktij

0 1

]

= K̃GijK̃
−1 (26)

with

K̃ =

[

K 0

0 1

]

. (27)

Then, it is easy to shown thatϕK is an homomorphism:

ϕK(G23)ϕK(G12) = K̃G23K̃
−1K̃G12K̃

−1 =

= K̃G23G12K̃
−1 = ϕK(G23G12)

(28)

and, beingϕK invertible, it is an isomorphism.
Thanks to the fact that uncalibrated motions are isomorphic

to SE(3, R), we can map the definitions of the previous section

2Technically, since we assume to know the plane at infinity, this correspond
to the affine calibration stratum [21].
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onto the uncalibrated motions. Every operation carried out
in the uncalibrated stratum reflects itself consistently inthe
Euclidean stratum, even if the mapϕK is unknown.

VI. SPECIFYING THE VIRTUAL CAMERA POSITION

Let us focus on the main contribution of this paper, namely
an easy and transparent way of specifying the virtual camera’s
viewpoint in the uncalibrated stratum.

Using the infinity plane as the reference plane, the transfer
equation that allows to render the virtual viewI3 becomes:

m
k
3 ≃ H∞13m

k
1 + e31γ

k
1 = [I|0]D13

[

m
k
1

γk
1

]

(29)

The virtual viewpoint is specified through the uncalibrated
rigid motion matrixD13.

A. Motion along a 1-d manifold

Let D = ϕK(G), G ∈ SE(3, R); echoing the definition of
the scalar multipleof a rigid motion, let us define

t ⊙ D , Dt = exp(t log(D)), t ∈ R. (30)

It is easy to show, using Proposition 5.2, thatt⊙D = ϕ(t⊙G).
Starting fromD12, which is known, let us compute

D13(t) = t ⊙ D12 (31)

and plug it into (29). Ast varies inR we obtain a 1-parameter
family of uncalibrated motions.

Sincet⊙D12 = ϕ(t⊙G12), this correspond to placing the
virtual camera at pose (position and orientation)t⊙G12 with
respect to the first camera, in the Euclidean space. Hence, we
can make sense of this operation as posing the virtual camera
at scalar multiples ofG12, even if G12 is unknown.

The 1-d manifold (a curve) inSE(3, R) described byt⊙G12

contains the pose of the first camera (t = 0), and the pose of
the second camera (t = 1). It interpolates between the two for
t ∈ [0, 1], and extrapolates fort > 1 or t < 0.

I

G

Pose of camera 1

Pose of camera 2

SE(3)

Geodesic

t

Fig. 1. As t varies inR, the pose of the virtual camera describes a curve
in SE(3, R). This allows to synthesize a sequence of images as taken by a
smoothly moving camera.

The complete algorithm for view synthesis along a 1-d
manifold with two reference views is summarized below.

TWOV IEWSYNTHESIS

1) Given a set of corresponding pairs(mk
1 ; m

k
2) k =

1, . . . , m;
2) Recover the epipolee21 and the infinity homography

H∞12;
3) Compute the relative affine structureγk

1 with (11);

4) Let D12 =

[

H∞12 e21

0 1

]

;

5) For any given value of the parametert:
a) Compute the uncalibrated motion of the virtual

cameraD13(t) = t ⊙ D12;
b) Transfer points to the 3rd view with (29).

B. Motion along a 2-d manifold

Assuming that three reference views are available,I1, I2,
and I3, we want to synthesize the fourth view,I4. To this
end we suppose that uncalibrated motionsD12 and D13 are
available.

Along the same line as in the previous section, we extend
the definition of linear combination of rigid motions to the
group of uncalibrated motions via the isomorphismϕ:

D14(u, v) = (u⊙D12)⊕(v⊙D13) = eu log D12+v log D13 (32)

Thanks to Proposition 5.2, this has a geometric meaning
in the Euclidean stratum, corresponding to posing the virtual
camera at(u⊙G12)⊕ (v⊙G13). This is a 2-manifold (a sur-
face) ofSE(3, R) that contains the poses of the three reference
cameras (for(u, v)=(0, 0), (u, v)=(0, 1), and (u, v)=(1, 0),
respectively).

A very special case is when the reference views are rectified
[22]. Then R12 = I = H∞12 and the epipole is at infinity.
Given that no seed rotation is present, the virtual camera can
only be translated i) along the line containing the centers of the
cameras (in case of two cameras) or ii) in the plane containing
the focal planes of all the cameras in the case of three cameras.

The complete algorithm for view synthesis along a 2-d
manifold with three reference views is summarized below.

THREEV IEWSYNTHESIS

1) Given two sets of corresponding pairs in 3 views
(mk

1 ; m
k
2) and (mk

1 ; m
k
3) k = 1, . . . , m;

2) Recover the epipolese21, e31 and the infinity homogra-
phiesH∞12, H∞13;

3) Compute the relative affine structureγk
1 with (11);

4) Choose a pointm0
1 and scalee31 to satisfy

m
0
3 ≃ H∞13m

0
1 + γ0

1e31;

5) Let D12 =

[

H∞12 e21

0 1

]

andD13 =

[

H∞13 e31

0 1

]

;

6) For any given value of the parametersu, v:
a) Compute the uncalibrated motion of the virtual

cameraD14(t) = (u ⊙ D12) ⊕ (v ⊙ D13);
b) Transfer points in the 4th (synthetic) view with

m
k
4 ≃ [I|0]D14

[

m
k
1

γk
1

]

k = 1, . . . , m. (33)
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The linear combination of uncalibrated motions can be
applied to an arbitrary number of motions, depending on the
number of reference views available. In general,n independent
motions will span an-dimensional manifold ofSE(3, R),
which has dimension six. As the dimension of the parameter
space grows, however, our view specification method loses
part of its ease of use.

VII. E XAMPLES

Some synthetic examples are reported here to illustrate the
kind of trajectories that can be achieved with the proposed
method. The reference views have been obtained by projecting
a (simplified) 3-d model of the “Tribuna” (Piazza delle Erbe,
Verona) with known camera matrices. Epipoles and infinity
plane homographies have been extracted from the camera
matrices. Then, the two synthesis algorithms have been applied
respectively to produce the sequences shown here.

In particular, the sequence depicted in Fig. 2 has been ob-
tained with the TWOV IEWSYNTHESIS algorithm. The motion
of the virtual camera is described by a single parametert
varying in [−1.2, 2.2], so as to illustate both interpolation and
extrapolation.

Fig. 2. Montage of a virtual sequence obtained starting fromtwo reference
views (shown in red or lighter line).

The two sequences reproduced in Figures 3 and 4 have been
produced with the THREEV IEWSYNTHESIS) algorithm. In this
case, the parameter space(u, v) is two-dimensional, and two
specific trajectories (shown in Figure 5) have been chosen in
this space to generate the two different sequence.

The same sequences have been generated using the ground-
truth 3-d structure and camera matrices, and the results are
identical, as expected. Figure 6 shows the trajectories of the
virtual camera in the Euclidean space for the three sequences
reported here.

Albeit the focus of this paper is on the mathematical
framework for the generation of virtual trajectories, we imple-
mented a rough-and-ready view synthesis algorithm, intended
for illustrative purposes, that works with real images. Figure
7 shows the real reference images and the some frames of
the synthetic sequence. The full movie together with other
examples is available on the Internet.3

A view synthesis algorithm needs the following pieces of
data to render new images:

3http://profs.sci.univr.it/˜fusiello/demo/synth/

Fig. 3. Montage of a virtual sequence obtained starting fromthree reference
views. The trajectory of the virtual camera is a line in the 2-d parameters
space, which contains two reference views, shown in red (or lighter line).

Fig. 4. Montage of a virtual sequence obtained starting fromthree reference
views. The trajectory of the virtual camera is a circle in the2-d parameters
space, hence the last view coincide with the first.
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Fig. 5. Trajectories in the(u, v) space[−1.2, 2.2]×[−1.2, 2, 2]. The circles
represent the reference views.

1) The plane at infinity between pairs of reference images.
2) The epipoles between pairs of reference images.
3) The relative affine structure of points in one reference

image.

The more critical item is the infinity homography, which,
however, can be recovered using a variety of heuristics [23]:
for example it can be approximated by the dominant ho-
mography, or by the homography of the upper part of the
image, or by extracting vanishing points. In our case we
obtained the infinity homography (or an approximation of it)
as part of an uncalibrated rectification algorithm [24]. Given an
homography and at least two off-plane points, the epipoles can
be obtained with (9). The rectified images are then matched
with a stereo matching algorithm [25], and the corresponding
points are used to compute the relative affine structureγ.
Small artifacts in Figure 7 are due to wrong matches. A more
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Fig. 6. Position and orientation of the virtual camera in theEuclidean space for the sequences of Fig. 2 (left) Fig. 3 (middle) and Fig. 4 (right).

sophisticated stereo matching with some post-processing of
the disparity map (as [26], [27]) would be required to achieve
high-quality synthetic images.

Fig. 7. Top row: reference views. Bottom rows: montage of thevirtual
sequence obtained starting from the reference views.

The algorithm then must specify how the rendering of the
new image is performed. In our case, the pixels of the refer-
ence image are mapped to the destination image in increasing
γ order, which guarantees that points closer to the camera
overwrites farther points. Remaining holes in the destination
image are filled by interpolation. While this is satisfactory
for small holes, larger ones (usually due to occlusions) give
rise to blurred areas, as visible in Figure 7. This problem
could be tackled by i) reducing the size of holes by using the
information coming from all the reference views [28], [27],or
by ii) filling the remaining holes with inpainting [29].

VIII. C ONCLUSION

We presented a mathematical framework for posing the
virtual camera in the uncalibrated rendering of synthetic views.
The method builds upon the linear combination scheme that
had been previously developed [15] within the group of rigid
motions,SE(3, R). We extended it to the uncalibrated motion,
by observing that an isomorphism exists betweenSE(3, R)
and the group of uncalibrated motion. This allowed to reflect
into the Euclidean stratum all the operations carried out in
the uncalibrated stratum, even if the former is not accessible.
In particular, we defined parametric trajectories for the virtual
camera based on the linear combination of the uncalibrated
rigid motions among the reference cameras.

A drawback of this framework is that the description of
the uncalibrated motion is less general than it could be, as it
requires the homography of the infinity plane. It is not clear
whether the theory could be modified to work with a more
general description, like a finite plane homography. This issue
is left for future investigation.

Acknowledgments:Giandomenico Orlandi contributed to
this work with inspiring discussions. Luca Irsara producedthe
sequence shown in Figure 7.

APPENDIX

We shall discuss here the existence of thereal matrix
logarithm for elements ofSE(3, R) andϕK(SE(3, R)) which
is necessary for the definitions above to make sense.

Definition 1.1: The linear groupGL(n, R) is the group of
the invertiblen × n real matrices.

GL(n, R) , {A ∈ M(n, R) : det(A) 6= 0} (34)

whereM(n, R) denote the space of alln × n real matrices.
Given aA ∈ GL(n, R), any solution of the matrix equation

eX = A, whereeX denotes the exponential of the matrixX ,
is called logarithm of A. In general,A may have an infinite
number of real and complex logarithms. However, ifA has no
eigenvalues on the closed negative real axis thenA has a real
logarithm [30]. Among all real logarithm there is a unique one
whose eigenvalues has imaginary part lying in] − π, π[. This
unique logarithm is called theprincipal logarithmof A. It will
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be denoted bylog A. Operationally, the logarithm is defined
by the following series

log A , −

∞
∑

k=1

(I − A)k

k
(35)

which converges in the ball‖A − I‖ < 1.
The logarithm map projects a neighborhood ofI in

GL(n, R) into a neighborhood of 0 inM(n, R), which can
be identified with the tangent space toGL(n, R) at I.

In our case, bothSE(3, R) andϕK(SE(3, R)) are subgroups
of GL(4, R). Moreover, they satisfy the spectral condition for
existence of a real logarithm. Letσ(A) denote the spectrum

of A. If G ,

[

R t

0 1

]

∈ SE(3, R) then it is easy to see that

σ(G) = {1} ∪ σ(R), andσ(R) = {1, e±iθ}, being a rotation
matrix. AsϕK(G) is similar toG, thenσ(ϕK(G)) = σ(G).

In [31] a closed-form form for the logarithm inSE(3, R) is
given, which can also be adapted to compute the logarithm in
ϕK(SE(3, R)).
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