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Abstract
This paper tackles the problem of decomposing a single image into two intrinsic images – a shading image (the
illumination at each point) and a reflectance image (the colour at each point). Assuming a linear response of the
camera, the acquired image I(x,y) is modelled as the product of the shading S(x,y) and the reflectance R(x,y)
(collectively called intrinsic images): the goal is to recover S and R from I(x,y). The proposed method stems
from the observation that R is "simpler" than I, in some sense related to its information content. This allows to
formulate the problem as the minimization over all the possible S of a cost function describing the complexity
of a tentative reflectance image given a shading image S. Given a 3D model of the scene, the orientation of the
camera, and an illumination model, S can be parameterized with the position of light sources on a hemisphere.
Preliminary experiments in a simulated environment validate the substance of the method, although many details
will be subject of further improvement.

1. Introduction

Images of a three-dimensional (3D) scene depends on many
physical characteristics of the surfaces, such as lighting, lo-
cal geometry, depth, and reflectance. All these information
are confounded by the imaging process into an array of in-
teger values, the sensed image, which reveals the physical
parameters only indirectly. An intrinsic image is an image
that represents one of these physical properties, which are
intrinsic to the surfaces in the scene.

The ability to decompose an image into its intrinsic com-
ponents is a major step toward scene understanding, because
algorithms often rely exclusively on one of the intrinsic char-
acteristics of the scene. For example, shape-from-shading
techniques require image data with no changes in colour (or
albedo). In the context of 3D modelling, the reflectance im-
age is used as a texture map: being devoid of illumination
effects the model can be re-illuminated without artifacts.

Assuming a linear response of the camera (or, equiva-
lently, after conversion from sRBG to linear RGB), the input
image I(x,y) is modelled as the product of the shading image
S(x,y) (the illumination at each point) and the reflectance

image R(x,y) (the colour at each point):

I(x,y) = S(x,y) ·R(x,y). (1)

This model is the same behind the "light mapping" tech-
nique [Abr] in Computer Graphics, but we address here the
inverse problem of decomposing I(x,y) into two intrinsic
images (see Fig. 1).

The main intuition behind our approach is that R is sim-
pler than any other image depicting the same scene: if we
compress R, for example, we should expect that it takes
less bits than I, because R is typically flatter than I. Sev-
eral measures of image complexity are available, which will
be surveyed in Sec. 2. Let us assume for the moment that
a suitable measure C is available. This allows to formulate
the problem as the minimization over all the possible S of
the cost function C(I/S). Unfortunately this problem is ill-
posed and practically infeasible unless one is able to find a
low-dimensional parameterization for S.

Nevertheless, if a 3D model of the scene is known together
with the orientation (i.e., position and angular attitude) of the
camera, given an illumination model, S can be parameterized
with the position of the light sources on a hemisphere, mak-
ing the problem tractable.
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Figure 1: From left to right: a synthetic image I, its shading component S and reflectance R. Please note how colour and texture
information are contained in R, while S encompasses only shading variations, which modulates R.

The motivation of this work is to produce correct (i.e.,
reflectance) textures for 3D models recovered by structure-
from-motion (e.g., [TGFF15]) and multi-view stereo (e.g.
[TFG∗13]). Therefore the assumptions can be fulfilled.

As the focus of this paper is exploratory, we report only
preliminary results on synthetic images.

1.1. Related works

The concept of intrinsic images was first introduced by Bar-
row and Tenenbaum [BT78]. With the term intrinsic, they
refer to those characteristics that belong to a surface itself,
such as local geometry, depth, reflectance, and incident illu-
mination. They propose a mid-level decomposition in which
every image can be thought as being the product of a re-
flectance component and an illumination component. Even
if this decomposition does not make all the image features
explicit, the authors state that this is still extremely useful
for solving many computer vision problems.

An important single-image-based work is the one devel-
oped in [SA93]. The authors defined a new domain made of
painted polyhedra, with no object occlusions, no cast shad-
ows and a single distant light source. Authors aimed to solve
the problem by analyzing the shape of every junction present
in the scene and then with a successive global analysis on
edge patterns.

A different approach was followed in [FHD02b], where
the intrinsic components were recovered using an invariant
grey-scale image from a previous work [FH01], where au-
thors showed that an image invariant to illumination could be
retrieved under particular illumination circumstances. The
invariant image is used to find the location of shadow edges
through appropriate thresholding. Building on the same in-
variant image [FHD02a] develop an automatic method to
remove shadows by incorporating shadow edges location
in the original retinex algorithm. In [FF07] the information

contained in the grey-scale invariant image is used to com-
pare the derivatives in the original image and classify them
as being caused by reflectance or illumination.

[TFA05] took a completely different approach and man-
aged to recover intrinsic images from a single image using
color information and a classifier trained to recognize grey-
scale patterns and discriminate between reflectance deriva-
tives and illumination ones. Even if this algorithm does not
put any restriction on the domain, it is still weak in a way
that the classifier needs knowledge about the structure of the
surface and about how it appears when illuminated. An evo-
lution of this work was presented in [TAF06] where the au-
thors tried to recover intrinsic images using non-linear re-
gression on small patches of the image in order to avoid the
problem of high dimensionality. Tappen’s original idea was
also used in [STL08] where a new non-local cue was intro-
duced to better deal with ambiguous local inferences: the key
idea is that distinct points with the same texture configura-
tion generally have the same reflectance value. [SLX09] in-
troduced the new concept of colour invariant edge to refine
the classification process to classify reflectance and shad-
ing edges. [SYJL11] made the assumption that neighbour-
ing pixels, in a local window, that have similar intensity val-
ues, should have the same reflectance. The intrinsic compo-
nents are retrieved by optimizing an energy function with
the aid of user scribbles, a similar approach was also used
in [BPD09].

Another important algorithm is the one proposed in
[FDL04]. The main idea was to recover intrinsic images
from a single image by minimizing the entropy of a resulting
invariant image. This algorithm performs surprisingly good
even if the camera is unknown, eliminating the process of
camera calibration, that was a necessary step in previous
similar works.

All these mentioned works followed an approach that
is called discriminative since these algorithms focus on
discriminating between reflectance edges and illumination
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edges; on the other hand the generative approach tries to cre-
ate possible surfaces and reflectance patterns that explain the
image and then use a model to choose the one the best fits.
[SL03] presents an Independent Component Analysis re-
lated probabilistic model where illumination and reflectance
are referred in a log space by a generalized autoregressive
process and a Hidden Markov Random field. Other gen-
erative approaches are those proposed in [SY11, RKZ∗11]
where the key idea is that global reflectance can be modeled
as a sparse set of reflectances since neighbour pixels have
the same reflectance if their chromacities are similar. Lately
the works by Barron and Malik showed outstanding results
[BM11,BM12a,BM12b,BM15]: they proposed a global uni-
fied method, called SIRFS, to recover shape, illumination
and reflectance from shading at the same time managing
to outperform all other algorithms tested using MIT dataset
[GJAF09]. Other references include [BBS14, GMLMG12].

Considering approaches treating multiple images, the
most important work was proposed by Weiss, who assumed
a sequence of images representing the same scene with dif-
ferent illumination [Wei01]. The reflectance is expected to
be constant over time, while only the illumination com-
ponent is changing in each image. All the images are fil-
tered horizontally and vertically and then the median over k
samples is taken before the information are combined back
together to obtain the final result. Multiple images were
also used to remove shadows from surveillance images in
[MNIS03]. An evolution of this approach was proposed in
2004: in [MLKS04] the author recover intrinsic images by
studying the effect of biased illumination on derivatives dis-
tribution and defining constraints on frames, pixels and mak-
ing the assumption of smoothness. The first method designed
explicitly for video was presented in [YGL∗14].

In [LBP∗12] the authors exploit several images of the
same scene under different viewpoints and lighting condi-
tions. They use multi-view stereo to automatically recon-
struct 3D points and normals from which we derive relation-
ships between reflectance values at different locations across
multiple views. This work is the closest to our, as it builds on
the availability of multiple images, with the difference that
they assume also different lighting conditions (as it is usual
in community photo collection), whereas our method works
also with constant lighting conditions.

With the exception of [LBP∗12] and our approach, pre-
vious work addressed the intrinsic decomposition problem
assuming a single image or multiple images with static cam-
era and different illumination. The availability of multiple
images taken from different viewpoints or, equivalently, of a
3D model of the scene has been never exploited.

2. Image complexity

As stated in the introduction, our plan is to recover the in-
trinsic images by minimizing C(I/S), the complexity of the

reflectance image. Therefore a suitable measure of image
complexity should be adopted.

In [YW13] an overview on this problem is reported and
the correlation between the compression of an image with
different encoders and three spatial operators is analysed.

Figure 2: Two images with the same entropy, but different
complexity.

The concept of complexity that suits our need cannot be
reduced to Shannon’s information theory only. For example,
the two images in Fig. 2 have the same entropy but in some
sense the right image is much more complex than left one
because of the spatial arrangement of pixels, that is ignored
by entropy. Compression-based complexity measures seem
to be the most appropriate, in particular the so called com-
pression ratio:

CR =
s(I)

s(C(I))
(2)

where s(I) is the file size of the uncompressed image I, and
s(C(I)) is the file size of the output of compressor C. Unfor-
tunately these measures are quite expensive to compute, but
in [YW13] it is shown that 1/CR correlates very well with
some spatial operators, in particular with

SImean =
1
N ∑

√
s2
h + s2

v (3)

where sh and sv are the results of the filtering of original im-
age I with horizontal and vertical Sobel kernels respectively,
and N is the number of pixels.

Hereinafter, we will use SImean as the complexity measure
C.

3. Method

We assume to know the 3D model of the scene, the orienta-
tion of the camera, and we are given an image of the scene
I (taken from that camera) that needs to be decomposed in
its intrinsic components, according to Eq. (1). We are only
interested in recovering the relative reflectance, for the es-
timated reflectance and shading images are each allowed to
be any scalar multiple of the true ones.

The idea behind the method is the following: if one were
able to generate all the possible S(x,y), he could recognize
the right reflectance

R(x,y) =
I(x,y)
S(x,y)

(4)
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as the one with the lowest complexity C.

The problem remains of how to bound the tremendous
complexity of minimizing it over all the shading images,
which is also an ill-posed problem.

The knowledge of the 3D model of the scene and some
other assumptions (to be further specified) allows us to cut
this huge search space down to a few dimensions, that cor-
responds to the unknown position of the light sources.

For the sake of simplicity, we assume a single distant light
source, that can be parameterized as a point (ψ,φ) in a hemi-
sphere. Given a value of (ψ,φ) a tentative shading image S
is rendered using a grey, diffusive 3D model. From this, a
tentative R is obtained, whose complexity C is evaluated. In
the end, the complexity of R(x,y) = I(x,y)

L(x,y) depends only on
(ψ,φ), so we can write C(ψ,φ) and solve:

(ψo,φo) = arg min
(ψ,φ)
C(ψ,φ) (5)

to find the parameters (ψo,φo) that gives the simplest re-
flectance image.

This conjecture is supported by the following observation.
Consider the simple diffusive object depicted in Fig. 3. This
figure represents two possible decomposition of the same
image, the first is correct, the second is wrong. We can tell
it because the reflectance image in the bottom row contains
shading artifacts, and the algorithm can recognize it as well
because it has a higher complexity than the correct one.

As a matter of fact, if we look at the function C(ψ,φ)
plotted over its angular domain (Fig. 4) we see that the
minimum is exactly in the correct position of the light:
(ψo,φo) = (45◦,180◦).

In the previous example the light was a point source at a
known distance, however the same behaviour is obtained if
we add some complexity to the scene (Fig. 5), by introduc-
ing a sun-like illumination, a wooden texture and enabling
ambient occlusions.

It should be clear that the model (Eq. 1) does not cater for
specular behaviour, which would require an extra additive
term C(x,y):

I(x,y) = S(x,y) ·R(x,y)+C(x,y). (6)

Our method assumes diffusive behaviour, hence wrong re-
sults are obtained if a specular component is added to the
materials, as shown in Fig. 6. Nevertheless, the method is
able to recover the light direction correctly, hence the specu-
lar component can be estimated in a second stage. This will
be subject to further research.

We should also expect failures when realistic global illu-
mination models are applied, since in that case, the shading
component should be coloured according to secondary re-
flections, which is not accounted for in our simple model.

In summary, the algorithm proposed here relies only on

the correct determination of the light source position know-
ing the 3D model of the scene and knowing the position of
the camera. The intrinsic reflectance component can be de-
termined, provided that the illumination model and the mate-
rial properties describe sufficiently well the image formation
process.

If illumination is constant over multiple images, the light
position can be estimated by minimizing an aggregate cost
function that has one term for each image; otherwise the
light position in estimated independently for each image.

4. Experiments

In order to generate our 3D scene to test the algorithm we
used Blender, an open-source 3D modelling software, which
also includes a built-in global rendering engine called Cy-
cles. The reason for this choice is to be mainly found in
the fact that Blender has a built-in Python interpreter, that
allows the user to utilize both the Blender API and all the
other available 3rd party Python modules at the same time.
In particular these are the main Python modules used in our
algorithm:

• BPY module, built-in into Blender, to generate and ma-
nipulate the 3D scene

• PIL module, to save read the images resulting from the
rendering process

• NUMPY module, to perform generic operations on matri-
ces

• SCIPY module, to perform advanced operations on matri-
ces, such as optimization

The first basic scene shown in Fig.3 is composed of a
cube, a sphere and a cylinder; the light source is a white
point light and the materials used are a red diffusive sur-
face for the cube, a blue one for the sphere and a green
one for the cylinder. Once this first step is completed the
next step involves the substitution of the original materials
with a flat grey material and the re-positioning of the point
light-source; the complexity of the image is then calculated
and its value stored into a file that is subsequently loaded
to produce the plots of the cost function. A single render
takes about half a second, so the whole process takes about
(0.5∗360∗90)/3600 = 4.5 hours to complete.

The recovery of the reflectance, however, does not entail
the exploration of the whole (ψ,φ) domain, for it is the re-
sult of a minimization process. To this end we employed the
Nelder-Mead method implemented in the optimize package
of SciPy. For the scene of Fig. 3, Nelder-Mead took an av-
erage of 100 steps to converge to the right solution. Fig. 7
shows the step-by-step error between the correct solution
and the current one.

A more realistic scene is depicted in Fig. 8. This scene
includes all the characteristics we added so far to our basic
scene, that are: cast shadows, textured materials, sun lamp
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Figure 3: An example of a simple rendered scene; Top: the correct shading and correct reflectance images. Bottom a wrong
decomposition, where the resulting reflectance image contains shading artifacts.

Figure 4: Plot of complexity values obtained moving the light-source in a hemisphere, and its relative isolines, for the scene of
Fig. 3. The red circle indicates the position of the ground truth global minimum.
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Figure 5: Same scene as in Fig. 3, but with sun lamp, texture and Ambient Occlusion enabled.

Figure 6: Similar scene as in previous experiment, now with added reflective component to materials.

Figure 7: Evolution of the errors relative to ψ (blue curve), φ

(red curve), and the complexity (green curve), using Nelder-
Mead method.

and ambient occlusion, giving a realistic look to the whole
scene. Please note that the sky in Blender is modelled so as
to yield a coloured light, hence the S image is in colour as
well.

The shading component is obtained by substituting all the
materials with a grey diffusive one, and the final reflectance
component is then calculated as the ratio between the target
image and the shading one.

Figure 9 shows the plot of the cost function (complex-
ity of a tentative reflectance) for this experiment. The shape
is different (and there are fewer samples) than before, but
still there is a distinct global minimum in the correct posi-

tion (ψo,φo) = (45◦,180◦), which the optimization proce-
dure duly reaches.

In the last experiment (Fig. 10) we wanted to test how
the algorithm would behave with a full global illumination:
this means that the rendering engines calculates up to 128
bounces for a single light ray, and (potentially) all the sur-
faces of the scene contribute with their colour to determine
the illumination.

The reflectance image (Fig. 10 right) is mainly correct,
but an artifact appears in the area shown in detail in Fig. 11
(between the two roofs) that has a reddish colour, due to the
fact that the red roof contributes to its illumination.

This problem is more severe in darker areas, where the in-
direct illumination prevail, and the colour of the illuminant
is significantly different to that obtained in the grey scene
used to compute the shading, where the information about
the colour of the surfaces is not taken into account. Fur-
ther investigation will be aimed at solving this problem. The
working idea is that the image I can be used as a proxy of
the unknown R in order to assign a colour to the light (while
the surfaces remains grey) during the computation of S with
global lighting.

Figure 12 shows the plot of the cost function for this ex-
periment, with a distinct global minimum in the correct po-
sition (ψo,φo) = (45◦,180◦).
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Figure 8: From top to bottom: to right: original image, rep-
resenting a small town with a tower, the shading component
and the reflectance recovered by our method.

Discussion

In summary, the algorithm proposed here does not require
any type of classification on derivatives or learning pro-
cess, but relies only on the correct determination of the light
source position knowing the 3D model of the scene and
knowing the position of the camera. Then, the intrinsic re-
flectance component is automatically determined, provided
that the illumination model and the material properties de-
scribe sufficiently well the image formation process.

This represents the first step of a broader program, aimed
at producing textured models from multiple images, where
the texture is intrinsic, hence it does not carry with itself the
illumination artifacts. We believe that the idea of identifying
the correct reflectance image as the simplest one among the

many images that can be obtained by rendering a synthetic
shading image (suitably parameterized) is effective, and this
preliminary experiments support the claim.

Future work will be aimed at (possibly) improving the
complexity measure, coping with glossy and specular sur-
faces and with global illumination effects, with the aim of
demonstrating the method on real images in conjunction
with a structure-from-motion pipeline.
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