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Abstract

In this paper we present a view synthesis algorithm for the generation of novel intermediate views that smoothly
interpolate between two reference images of the same scene acquired from two different point of views. If the acquisition
system is not calibrated, there is no way to access the Euclidean frame and therefore it is impossible to determine the
position and the orientation of the cameras as well as the three dimensional reconstruction of the imaged scene. Under the
assumption of equal internal calibration of the two cameras, it is proved that the knowledge of the infinite homography
is a sufficient condition for generating physically valid synthetic images from a pair of uncalibrated images. The view
synthesis problem is therefore brought to the simpler well-known task of the estimation of the infinite homography
through a set of geometric constraints existing in the scene. The work is complemented by the introduction of two
novel techniques for estimating the infinite homography. This contributes to provide a variety of possibilities for such
estimation, depending on the geometric constraints that can be identified in the imaged scene. The validity of the work
is supported by a set of simulations on a synthetic three-dimensional scene and experiments on real data as well.
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1. Introduction

The term View Synthesis refers to the process of gener-
ating virtual images starting from a sparse set of reference
images of a scene acquired by cameras in different posi-
tions. The novel images are called virtual views, as they
are supposed to correspond to a picture of the scene taken
from a virtual view point by a virtual camera. In the lit-
erature three classes of view synthesis methodologies can
be identified. The first one relies on the concept of model
based rendering. The algorithms belonging to this cate-
gory are based on an explicit geometrical 3D model of the
scene and therefore require the full calibration (internal
and external parameters) of the acquisition system. Once
the 3D model is reconstructed, the novel views are synthe-
sized by specifying the virtual point of view and defining
the extrinsic parameters (rotation and translation) of the
virtual camera. The accuracy of the virtual view depends
on the accuracy of the 3D model. Some examples can
be found in [11, 14, 6, 21, 7]. The second class of the
techniques for the view synthesis can be identified in the
methods based on the plenoptic function [15, 20], which
describes the intensity of the light observed from every
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position and direction in the 3D space. These methods do
not require - in principle – any geometric information on
the acquired objects, nor the computation of point corre-
spondences. However, they need a large set of reference
images. The third class of view synthesis techniques re-
lies on uncalibrated reference views. When the acquisi-
tion system cannot be calibrated, i.e., when no a priori
information on the camera positions and on their internal
parameters is available, only a projective reconstruction
of the 3D scene can be obtained. In other words, one
can only reconstruct a 3D model affected by an unknown
projective transformation, which is characterized by 15 de-
grees of freedom. The view synthesis process consists in
this case in the interpolation among the set of reference
views, by exploiting the geometric constraints existing in
the images. The milestone of this approach is the work by
Shashua and Navab ([3, 2]), which constitutes the basis of
the further developments by Fusiello [8, 4] and Tebaldini
[22].

All the uncalibrated view-synthesis algorithms require
the specification of some projective elements, like epipoles,
homographies, fundamental matrices or tensors. With the
exception of the aforementioned papers, previous work
concentrates on the generation of the novel view, assuming
that the problem of view specification is solved somehow.
For example, in [18, 3], the user has to manually specify
the position of four points in each frame of the synthetic
sequence. In [12] images are assumed to be nearly rec-
tified, so the view synthesis reduces to the interpolation
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of horizontal disparities. The view specification problem
is addressed in [5], where the internal parameters are as-
sumed to be approximately known, thereby violating the
assumption of uncalibrated camera.

The work presented in this paper deals with the view
synthesis starting from two uncalibrated views of the scene.
The focus on this class of view synthesis techniques reveals
to be very promising for modern applications such as vir-
tual navigation systems, where many pictures of the same
scene are taken from different positions. These systems
allow the user to virtually walk through the streets of a
city, just connecting in a quite rough way the available set
of pictures. The major limitation of these applications is
that the images always rotate around a fixed observation
point, and consequently it is impossible to switch between
two view points in a continuous way. This problem could
be solved by employing a view synthesis algorithm that
continuously and smoothly interpolates between pairs of
reference views, generating novel views as they would be
taken from virtual cameras. In these kind of applications
the view synthesis process cannot rely on a complete 3D
representation of the scene, either because it is unpracti-
cal to obtain it, or because it is impossible to access the
calibration information of the acquisition systems.

Starting from the concept of the relative affine struc-
ture introduced by Shashua and Navab [19], in this paper
we revisit and extend the work by Tebaldini [22], deriving
a complete framework for the generation of novel views
that smoothly interpolates the reference views. This is
made possible since the rigid motion of an object can be
described by means of matrices that belong to a particular
algebraical group, called special euclidean group (SE(3)).
This is a Lie group and allows to calculate a smooth trajec-
tory that interpolates between the initial and the final po-
sition of the camera. In principle, a virtual camera can be
specified exponentiating the matrix that maps the trans-
formation between the two views of the scene. However,
this procedure can be directly applied only in the case of
calibrated cameras, i.e. when all the metric information
about the observed 3D scene is known. In the more gen-
eral case of uncalibrated cameras, the approach has to be
extended and adapted to the information contained in the
images. We will see that the problem of the synthesis of
virtual views can be definitively solved from the knowledge
of the infinite homography matrix, which is the transfor-
mation induced by the plane at infinity. This is true under
the assumption that the reference views are taken by cam-
eras having equal internal calibration; however this does
not constitute a big limitation, since in general multiple
pictures are taken by means of a single camera without
changing the focal properties (no zooming for example).
The estimation of the infinite homography is well known
in Computer Vision, and several techniques are proposed
in the literature. In this paper we also propose two novel
solutions to this issue, by exploiting some geometric con-
straints detectable in the two views, such as planes paral-
lelism. Parallel planes are indeed common in most built

environments, so this technique is relevant to virtual nav-
igation systems such as Google Street View and Microsoft
GeoSynth.

With respect to [22] in this paper we provide a more
comprehensive formalization of the view synthesis problem
and improve on some practical aspects. In particular: i)
we prove that the knowledge of the homography induced
by the plane at the infinity is sufficient for determining
the synthetic views; ii) we get rid of reference 3D points
that were needed in [22]. Moreover, we assessed the ef-
fectiveness of the method by means of extensive simulated
experiments and in a real setup as well, by comparing the
coordinates of the points of the synthetic views with those
obtained from a ground-truth 3D model.

The rest of the paper is organized as follows. Section
2 gives an overview on the concepts of projective geome-
try, such as a review on the multi-view geometry and on
the infinite homography, which constitute the background
for understanding the paper. Section 3 is devoted to il-
lustrate the notion of relative affine structure, which rest
at the basis of the view synthesis algorithm. In particu-
lar the algorithm proposed by [19] will be reviewed, which
requires to specify the position of the virtual camera in a
projective frame. The solution to this problem relies on
the concepts of Linear Lie Groups and Lie Algebra, which
will be depicted in Section 4, with the purpose of gener-
ating smooth interpolating trajectories in the projective
frame. Section 5 turns all the previous notions to account
and describes the view synthesis methodology based on the
knowledge of the infinite homography between two uncal-
ibrated views which is the core of this paper. The section
starts by showing how the knowledge of the infinite ho-
mography is a sufficient condition for the synthesis of new
views. The section is completed by the description of the
two novel methods for estimating the infinite homography
from geometric elements visible in the two views, namely
two parallel planes and a vanishing point or two pairs of
parallel planes. Section 6 illustrates the experimental eval-
uation of our approach and at last in Section 7 conclusions
are drawn.

2. Planar homography and the special case of in-
finite homography

This section reviews some basic concepts of multiple
view geometry in Computer Vision. In particular we fo-
cus on the concept of planar homography, or equivalently,
of homography induced by a plane, which constitutes the
basis of the relative affine structure introduced in the next
section. For a comprehensive dissertation the reader is
referred to [16].

Consider a 3D point X lying on generic plane π, as
depicted in Figure 1. The planar homography is the pro-
jective transformation Aij(π) that transfers the image of
the point on the first view xi to its projection on the sec-
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ond view xj , i.e.1

xj ∼= Aij(π)xi .

Figure 1: Planar homography: the image on the first view xi of a
3D point X lying on the plane π is mapped to the point xj in the
second view through the transformation Aij(π).

When the homography is induced by the plane at infin-
ity π∞ = [0, 0, 0, 1]T , it takes the name of infinite homog-
raphy. The view synthesis procedure described in Section
5 assumes the knowledge of this matrix, whose expression
can be derived as follows. Consider a generic pair of cam-
era matrices

Pi = Ki[Ri|ti]
Pj = Kj [Rj |tj ] .

Let xi be a point on the first view. In the reference frame
associated to the first camera, correspondent to the canon-
ical camera matrix P̄i = Ki[I|0], the ray passing through
xi is directed as the unit vector

di =
K−1
i xi

||K−1
i xi||

.

Therefore, the vector [di, 0]T represents the intersection
between the ray and π∞. In the reference frame associated
to the second camera, considering P̄j = Kj [I|0], the same
direction is given by dj = Rijdi, with Rij = RjR

−1
i

being the relative rotation between the two cameras. The
point at infinity is then [dj , 0]T , whose projection onto the
second view is

xj ∼= Kj [I|0]

[
dj
0

]
= Kjdj ∼= (KjRijK

−1
i )xi . (1)

From Equation (1) is easy to verify that the homography
induced by the plane at infinity is given by

H∞ij
∼= KjRijK

−1
i .

In the following we will always refer to the infinite homog-
raphy with the matrix

A∞ij = KjRijK
−1
i ; (2)

1By default, all the points are in homogeneous coordinates.
Cartesian coordinates will be denoted by a tilde above the variable.

this scaling constitutes the base of the view synthesis algo-
rithm described in Section 5. If the two calibration matri-
ces are equal, i.e. Ki = Kj , then det(A∞ij ) = 1. Another
important result is that an affine reconstruction can be cal-
culated from the infinite homography [16]. More specifi-
cally, the reconstruction of the epipolar geometry obtained
with the camera matrices Pi = [I|0] and Pj = [A∞ij |eji] is
affine.

3. Relative affine structure

In this section we show that the relation between the
point correspondences in two images can be expressed by
means of the homography induced by a generic reference
plane, plus an affine term which multiplies the epipole of
the second view. First of all we will show that this is true
for the plane at infinity π∞. Then, the result is extended
for a generic plane π.

Consider two cameras with generic projection matrices
Pi = Ki[Ri|ti] and Pj = Kj [Rj |tj ], whose centres are

Ci = [C̃i, 1]T and Cj = [C̃j , 1]T . Consider the point X
and its projections xi ∼= PiX and xj ∼= PjX in the two
views; the projections are scaled in such a way that xi =
[x̃i

T , 1]T and xj = [x̃j
T , 1]T . In the reference system of

the first camera, for which the projection matrix is P
(i)
i =

Ki[I|0], the point xi is obtained as

xi ∼= zixi = P
(i)
i

[
ziK

−1
i xi
1

]
,

where the superscript (i) is used to stress that we are work-
ing in the reference frame of the first camera. Due to the
particular scaling of xi, ziK

−1
i xi are the Euclidean coor-

dinates of the point X in the reference system of the first
camera. Moreover, zi is the depth of X, i.e. the signed
distance of X from the principal plane. On the other hand,
the reference system of second camera is characterized by

the projection matrix P
(j)
j = Kj [I|0]. As before, the su-

perscript (j) indicates that the reference system is associ-
ated to the second camera. It is easy to verify that

xj ∼= P
(j)
j

[
Rij(ziK

−1
i xi) + t
1

]
= ziA

∞
ij xi + Kjt

∼= A∞ij xi +
1

zi
Kjt , (3)

where t = tj − ti is the vector joining the camera centres
expressed in Euclidean coordinates. Since in this reference
system the camera centres are given by

C
(j)
j = [0T , 1]T

C
(j)
i =

[
Rj tj
0T 1

]
Ci ,

it is readily verified that t = [Rj |tj ]Ci and therefore

eji ∼= ēji = Kjt = Kj [Rj |tj ]Ci = PjCi ,
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where ēji refers to the specific scale2 of the epipole eji.
Finally we obtain

xj ∼= A∞ij xi + µēji , (4)

with µ = 1
zi

. The term µ is called relative affine structure.
Let us now focus on the case in which a general plane

π = [vT , c]T is considered as a reference. This vector is
homogeneous and therefore it can be scaled in such a way
that π = [nT ,−dπ]T , where n = v

||v|| is the unit vector

normal to the plane and −dπ is the signed distance of
the plane from the origin. Recalling the expression of the
infinite homography given in Equation (2), from Equation
(3) we have

xj ∼= KjRijK
−1
i xi +

Kjt

zi
. (5)

Consider again the point X and its Euclidean represen-
tation in the reference system of the first camera, i.e.
ziK

−1
i xi. We distinguish two cases:

• If X lies on the plane π, since the centre C
(i)
i coin-

cides with the origin, it follows that the distance of

the plane from C
(i)
i is

dπ = nT (ziK
−1
i xi)

which is the projection on the plane normal n of the
reprojected point xi. As a consequence, Equation
(5) can be rewritten as

xj ∼= KjRijK
−1
i xi +

Kjt

zi

dπ
dπ

= KjRijK
−1
i xi + Kj

tnT

dπ
K−1
i xi

= Kj

(
Rij +

tnT

dπ

)
K−1
i xi . (6)

From Equation (6) we recognize the homography in-
duced by the plane π

Aij(π) ∼= Kj

(
Rij +

tnT

dπ

)
K−1
i . (7)

• Let X be a point not on the plane. Adding and

subtracting the quantity Kj
tnT

dπ
K−1
i xi to Equation

(5) and rearranging the terms we obtain

xj ∼= Aij(π)xi +

(
dπ − nT (ziK

−1
i xi)

dπzi
ēji

)
.

Since d = dπ − nT ziK
−1
i xi is the signed distance

between X and π, it follows that

xj ∼= Aij(π)xi + µēji (8)

2We recall that the epipole is represented by a homogeneous vec-
tor, i.e. eji ∼= λeji ∀λ 6= 0. In order to refer to a particular scaling
of the epipole, we use the notation ēji = PjCi. Notice that the
quantity ēji can not be treated as a homogeneous vector.

with

µ =
d

zidπ
as depicted in Figure 2

Ci

n

xi

X

π

ddπ

76 
zi

Figure 2: Representation of different terms in the relative affine
structure for a point X out of the reference plane π.

In order to solve the scaling ambiguity, Shashua and
Navab [19] proposed to normalize both Aij(π) and
µ such that µ = 1 for a certain finite point X0 not
lying on the reference plane. This way, after the nor-
malization one obtains the expression for the relative
affine structure

µ =
d

zi

z0
i

d0
,

where d0 is the distance of X0 from π; and z0
i is the

depth of X0 with respect to the first camera.

We summarize here some interesting properties of the rel-
ative affine structure:

• µ = 0 for each point on the reference plane. For
those points, in fact, di = 0 and xj ∼= Aij(π)xi;

• if the plane at infinity is chosen as a reference, then
d, d0, dπ →∞; therefore d

d0
→ 1 and

Aij(π)→ A∞ij

µ→ z0
i

zi
.

• the relative affine structure depends only on the dis-
tance of X from the reference plane and on the po-
sition of the first camera, while it is independent on
the second camera;

• for any choice of π

eji ∼= Aij(π)eij + µēji ∼= Aij(π)eij ;

since the epipoles are aligned with the cameras cen-
ters along the baseline.
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• expanding Equation (7), we easily obtain a relation
between the homography induced by π and the infi-
nite homography:

Aij(π) ∼= A∞ij + (Kjt)
nTK−1

i

dπ
.

By expressing the plane π in the reference system of
the first camera, i.e. πi = [vTi , ci]

T ∼= [nTK−1
i ,−dπ]T ,

we also have that

vTi
ci

= −nTK−1
i

dπ
.

Since ēji = Kjt, we finally obtain

Aij(π) ∼= A∞ij − ēji
vTi
ci

. (9)

3.1. Relative affine structure and view synthesis

The model of the relative affine structure described by
Equation (8) allows to build a 3D representation of the
scene geometry by means of the pair of camera matrices
in canonical form

P̂i = [I|0] ; P̂j = [Aij(π)|eji] .

The reconstruction is given by

XP = [xTi , µ]T ,

and it is immediate to see that

xi ∼= P̂iX
P ; xj ∼= P̂jX

P .

For the projective reconstruction ambiguity, for a general
choice of the reference plane, the 3D reconstruction given
by XP is affected by an unknown projective transforma-
tion. As noticed in Section 2, a special case is given when
the plane at infinite is selected as a reference. In this case
the 3D reconstruction is affine.

Shashua and Navab proposed a methodology for the
synthesis of new views based on the relative affine struc-
ture. The algorithm can be summarized as follows:

1. from a sufficiently populated set of point correspon-

dences in the two views (x
(k)
i ,x

(k)
j ) estimate the fun-

damental matrix F and the epipoles by solving

x
(k)T
j Fx

(k)
i = 0 ,∀k

FTeji = 0

Feij = 0 ; (10)

2. determine the reference plane π and the associated
homography Aij(π) by selecting (even randomly)
three pairs of correspondences:

x
(k)
j

∼= Aij(π)x
(k)
i , k = 1, 2, 3

eji ∼= Aij(π)eij ;

3. calculate the relative affine structure

µk = −

(
[x

(k)
j ]×eji

)T (
[x

(k)
j ]×Aij(π)x

(k)
i

)
∥∥∥[x

(k)
j ]×eji

∥∥∥2 (11)

and reconstruct the scene geometry

XP
k
∼=
[
x

(k)
i

µk

]
; (12)

4. specify the matrix of the virtual camera, Pv;

5. generate the virtual view as x
(k)
v
∼= PvX

P
k .

In spite of its simplicity, this algorithm has a number of
tricky points. First of all, as noted by Fusiello in [8, 4],
a crucial step is point 5, namely the need to specify the
position of the virtual camera in the projective frame. In
general, we are interested in synthesizing views by moving
the virtual camera along a convenient smooth path be-
tween the two cameras. While in the Euclidean space it is
easy to specify a smooth trajectory, this is not necessar-
ily true in the projective frame. Hence, a proper method
to specify the virtual camera in the projective frame is
required. Moreover, as can be noticed by looking at the
work by Tebaldini [22], the knowledge of the homography
Aij(π) induced by a general reference plane π is not suf-
ficient for solving the view synthesis problem. In fact, a
number of Euclidean quantities remain undetermined [22]
and have to be estimated by exploiting further geometric
constraints arising from the two views.

The solution to the first problem relies on the concepts
of Lie Algebra and Lie Groups described in the next sec-
tion. Regarding the second issue, in Section 5 we will show
how the knowledge of the infinite homography is a suffi-
cient condition for the synthesis of new views. Formally,
this corresponds to choosing the plane at infinity as a ref-
erence. If the plane at infinity is identifiable, one may
proceed as in [8]; however, in most of the cases the im-
ages don’t show the plane at infinity, preventing the use of
this solution. Several strategies for estimating the infinite
homography, not based on the search of the plane at the
infinity, have been recently proposed in the literature, as
for example in [24],[13]. Furthermore, at the end of Section
5 we also propose two novel methods for determining the
infinite homography exploiting the relative affine structure
jointly with geometric elements visible in the two views.

4. Linear Lie Groups

In this section we introduce some concepts related to
the Lie Groups and the Lie Algebra. They represent pow-
erful tools for the computation of smooth trajectories both
in the Euclidean space and in the Projective space. The
basic idea is that a rigid motion can be synthesized through
a linear combination of infinitesimal generators. This re-
sults in a smooth trajectory that interpolates the initial
and final positions of an object.
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4.1. Special Euclidean Group and rigid motions

Consider a transformation matrix given by

Ḡ =

[
R t
0T 1

]
, (13)

where R is a 3D rotation matrix and t ∈ R3 is a trans-
lation vector. The set of all the transformations in the
form of Equation (13) defines the set of all the rigid mo-
tions in R3, characterized by 6 degrees of freedom (3 for
the rotation and 3 for the translation). Under the matrix
multiplication operation, this set identifies the so-called
Special Euclidean Group of R3, indicated by SE(3). A
group is a pair formed by a set and a binary operation
which satisfies the properties of closeness, associativity,
existence and uniqueness of the identity and of the inverse
elements. If a group is also a differentiable manifold it is
a Lie group, and it represents a generalization of the con-
cepts of differentiable curves. It can be shown that SE(3)
is a Lie Group [9]. Consider now the parametrization of
the matrix in Equation (13) given by G(θ) ∈ SE(3), where
θ = [θ1, . . . , θ6]T is the parameter vector. A curve in the
parameter space is defined as γ : θi = θi(t), where t is a
real parameter. Alternatively, the curve can be defined on
the manifold, namely Γ : G = G(θ(t)). Without loss of
generality we can assume that the curve Γ on the manifold
starts from the identity, i.e. G(θ(0)) = I. Since SE(3) is
differentiable, we may compute the derivative of G along
the curve

dG

dt
=

6∑
i=1

dθi
dt

∂G

∂θi
.

We now introduce the concept of Lie algebra, which
is the set of the differentials in t = 0 of all the differen-
tiable curves Γ on the manifold such that Γ(0) = I. The
Lie algebra of SE(3), denoted by se(3), may therefore be
interpreted as the tangent space of the manifold at the
identity.

More specifically, G represents a point on the mani-
fold and dG/dt is a vector tangent to the curve Γ at the
identity. Moving along Γ by small step dt, we may write

G(dt) = I + dt
dG

dt
,

that may be interpreted as a displacement on the manifold
due to the right multiplication by the element I + dtdGdt ,
namely:

G(dt) = I

(
I + dt

dG

dt

)
.

At this point, we could think to replicate this displacement
K times, yielding

G(Kdt) =

(
I + dt

dG

dt

)K
.

As a consequence, by posing t = Kdt and letting K go to
infinity, we obtain

G(t) = lim
K→∞

(
I +

t

K

dG

dt

)K
= et

dG
dt . (14)

By posing t = 1 Equation (14) defines a map between the
elements of SE(3) and those of the correspondent Lie alge-

bra se(3) in the form G = e
dG
dt . This mapping is called the

Exponential Map. Returning to the geometrical meaning
of rigid motions of the elements of SE(3), we can see that,
as t varies over the real axis, Equation (14) describes a
one parameter family of transformations, emanating from
the identity and passing through Ḡ at t = 1. In other
words, Equation (14) defines a method for interpolating
and extrapolating new transformations on the basis of an
element of the Lie algebra, dG

dt , that may be thought as
the infinitesimal generator of the transformation defined
by G.

The question now is how to obtain the infinitesimal
generator from G. In general, the correspondence between
a Lie group and its Lie algebra is not one to one, preventing
the uniqueness of the interpolated (extrapolated) motions.
This issue is solved by a theorem by E. Cartan [10], assur-
ing that a one to one correspondence exists between a Lie
group and its Lie algebra provided that the Lie group is
simply connected. Dealing with matrix groups, this condi-
tion may be reduced to require that no eigenvalue of G lies
on the closed negative real axis [8]. Under this condition
the infinitesimal generator of G may be computed as the
principal matrix logarithm of Ḡ:

dG

dt
= log(Ḡ) = −

∞∑
K=1

(I− Ḡ)K

K
.

Therefore, the synthesized motion may be obtained as

G(t) = et log(Ḡ) = Ḡt . (15)

Since this condition is always satisfied for the elements of
SE(3) [8], what is left to show prior to use Equation (14)
in the applications is that the interpolated (extrapolated)
transformations are actually smooth, in some sense. To do
this, it is sufficient to note that:

• if the motion represented by Ḡ is a rotation by an
angle φ around an axis, then Ḡt represents a rotation
by an angle tφ around the same axis (as stated by
the Rodrigues’ formula);

• if the motion represented by Ḡ is a translation by a
vector t, then Ḡt represents a translation by a vector
t.

Hence, the motions generated by Equation (14) are
smooth in the sense specified by [1] and [17].

4.2. Lie group homomorphism

So far, it has been shown that the exponential map pro-
vides a tool for generating rigid motions in SE(3). Dealing
with rigid motions, however, does not suffice for the aim
of view synthesis from uncalibrated reference views. In
fact, we will see that the Euclidean frame is inaccessible,
and thus the matrix Ḡ is not known. The key to solve
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this problem is represented by the concept of Lie group
homomorphism [9].

Given two Lie groups ΩG and ΩT , a Lie group homo-
morphism is an application ϕ : ΩG → ΩT such that

ϕ(G1G2) = ϕ(G1)ϕ(G2) = T1T2

for all G1,G2 ∈ ΩG, where T1,T2 ∈ ΩT . From this defi-
nition it follows that ϕ(I) = I, in fact

ϕ(G) = ϕ(I)ϕ(G) ,

and from the uniqueness of the identity one gets that
ϕ(I) = I.

Consider now the application of ϕ to Equation (14).
Under the assumption that ϕ(G) is also differentiable, we
may write

T(t) = ϕ(G(t))

= ϕ

(
lim
K→∞

(
I +

t

K

dG

dt

)K)

= lim
K→∞

ϕ

((
I +

t

K

dG

dt

)K)

= lim
K→∞

(
ϕ

(
I +

t

K

dG

dt

))K
. (16)

Neglecting higher order terms, the action of ϕ may be
approximated as

ϕ

(
I +

t

K

dG

dt

)
= I +

t

K

∑
k

[
∂ϕ

∂gk

]
I

dgk
dt

= I +
t

K
dϕ

(
dG

dt

)
, (17)

where dϕ defines an application between the tangent spaces
at the identity of ΩG and ΩT induced by ϕ. This oper-
ation, also called derivative of ϕ, maps the derivative of
G(t) on the derivative of T(t) = ϕ(G(t)). In fact, a direct
evaluation of the derivative of T(t) results in

dT

dt
=

dϕ

dt

=
∑
k

[
∂ϕ

∂gk

]
I

dgk
dt

= dϕ

(
dG

dt

)
(18)

that may be plugged into Equation (16) along with Equa-
tion (17), yielding

T(t) = lim
K→∞

(
I +

t

K

dT

dt

)K
= et

dT
dt . (19)

Hence, we obtain that under the action of a Lie group
homomorphism, the following diagram commute:

Gt ϕ−→ Tt

↑et·() ↑et·() (20)

dG

dt

dϕ−−→ dT

dt
.

4.3. The Special Projective Group

As we will see in the next section, the whole problem
of view synthesis through linear combinations of elements
of the Lie algebra may be essentially reduced to finding a
homomorphism for the transformations between the cam-
eras in the projective and in the Euclidean frames. For this
reason we introduce here the concept of Special Projective
Group.

Consider a 3× 3 invertible upper triangular matrix K
and a matrix G ∈ SE(3). By posing

K̃ =

[
K 0
0 1

]
,

it is easy to verify that the transformation matrix

T = K̃GK̃−1 (21)

is homomorphic to G. In fact, given 2 matrices G1,G2 ∈
SE(3), we have that

T12 = K̃G1K̃
−1K̃G2K̃

−1

= K̃G1G2K̃
−1

= K̃G12K̃
−1 ,

where G12 = G1G2 ∈ SE(3). Hence, by virtue of (20),
Tt is homomorphic to Gt for every t, i.e.

Tt = K̃GtK̃−1 .

The matrices in the form of Equation (21) are the mem-
bers of the so-called Special Projective Group, denoted by
SP (3). In order to account the scalability of these matri-
ces, SP (3) is defined as the quotient set of the matrices in
the form of Equation (21) with respect to the equivalence
relation ∼=.

In the next section we will show that the transforma-
tion between two camera matrices with identical calibra-
tion matrix K belongs to the group SP (3), having the
form of the matrix T. The synthesized transformation
Tt is therefore perfectly equivalent to the transformation
yielded by removing the camera matrix, applying a proper
rotation and translation, and finally reapplying the camera
matrix, even in absence of information about the calibra-
tion parameters.

5. View synthesis

An effective way to describe the relative displacement
and orientation of two cameras is that of considering the
transformation the scene should undergo for the same views
to be generated by a single camera taking a picture of the
scene before and after such transformation. For this pur-
pose, we observe that, given the camera matrices Pi =
Ki[Ri|ti] and Pj = Kj [Rj |tj ], the projections of the point
X can be rewritten as

xi ∼= [I|0]

[
Pi

0T 1

]
X = [I|0] TiX = [I|0] Xi

xj ∼= [I|0]

[
Pj

0T 1

]
X = [I|0] TjX = [I|0] Xj ,

7



where Ti (Tj) is the transformation of P3 mapping the
scene to the frame centred on the i-th (j-th) camera. Since
the cameras are finite, the matrices Ti and Tj are invert-
ible; by posing Tij = TjT

−1
i we obtain that Xj = TijXi

and
xj ∼= [I|0] TijXi .

The inverse of Ti can be explicitly calculated, resulting in

T−1
i =

[
R−1
i K−1

i −R−1
i ti

0T 1

]
;

therefore we also have that

Tij =

[
KjRjR

−1
i K−1

i −KjRjR
−1
i ti + Kjtj

0T 1

]
.

The top left part of Tij is exactly the definition of the
infinite homography given in Equation (2); furthermore,
considering that the centre of the first camera is −R−1

i ti,
its projection on the second view is the epipole

eji ∼= ēji = Kj [Rj |tj ]
[
−R−1

i ti
1

]
.

As a consequence, the transformation mapping the scene
from view i to view j can be rewritten in the following
interesting form:

Tij =

[
A∞ij ēji
0T 1

]
.

If the two cameras have identical calibration matrices, i.e.
K = Ki = Kj , then Tij belongs to the Special Projective
Group SP (3). Therefore, in principle, a virtual view can
be generated by exponentiating the matrix Tij :

x(t) ∼= [I|0]Tt
ijXi . (22)

The problem is that the actual reconstruction Xi is un-
known, since only a projective reconstruction of the scene
is available.

Following the algorithm described in Section 3, the pro-
jective reconstruction is given by

XP
i = [xTi , µi]

T ,

where µi is the relative affine structure with respect to the
first camera. When the plane at infinity is chosen as a
reference, we saw that the relative affine structure is given
by

µi =
z0
i

zi
.

Owing to the projective reconstruction ambiguity, for some
homography H we also have that

XP
i
∼= HX

= HT−1
i Xi

= HiXi . (23)

By posing xi = [xi, yi, 1]T , the point Xi has Euclidean
coordinates zixi, i.e. Xi = [zixi, ziyi, zi, 1]T and, equiva-
lently

zixi = [I|0]Xi .

At this point, from Equation (23) it is immediate to see
that

Hi
∼=
[

I 0
0T z0

i

]
.

The same reasoning leads to the expression of the projec-
tivity Hj between the scene seen from the point of view
of the second camera Xj = TijXi, and its reconstruction
XP
j . This is given by

Hj
∼=
[

I 0
0T z0

j

]
.

Notice now that the projections of XP
i on the two views

are obtained as

xi ∼= [I|0]XP
i

xj ∼= [I|0]XP
j = [I|0]DijX

P
i ,

where Dij is the relative transformation between the cam-
eras as seen in the projective frame. In order to obtain its
expression it is sufficient to write

XP
j
∼= HjXj = HjTijXi

∼= HjTijH
−1
i XP

i ,

and therefore

Dij = HjTijH
−1
i =

[
A∞ij

1
z0i

ēji

0T
z0j
z0i

]
. (24)

Supposing that the infinite homography A∞ij is known, this
matrix is fully determined by observing the following rea-
soning. Consider the representations of the reference point
X0 in the reference systems of the two cameras, i.e.

X0
i = TiX

0 = [x0
i , y

0
i , z

0
i , 1]T

X0
j = TjX

0 = [x0
j , y

0
j , z

0
j , 1]T .

Since X0
j = TijX

0
i , it is easy to verify that

z0
j

z0
i

x0
j = A∞ij x0

i +
1

z0
i

ēji , (25)

where x0
i = [x0

i /z
0
i , y

0
i /z

0
i , 1]T and x0

j = [x0
j/z

0
j , y

0
j /z

0
j , 1]T

are the projections of the reference point on the two views.
On the other hand, for the relative affine structure prop-
erty we have that

x0
j
∼= A∞ij x0

i + eji

=⇒ βx0
j = A∞ij x0

i + eji , (26)

where eji is scaled in such a way to have µi = 1 for x0
i ,

and β 6= 0 is an opportune scaling factor. Since all the
terms in Equation (26) are known, β is readily determined.
Comparing eqs. (25) and (26) we notice that they are
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scaled in the same way, and therefore we finally obtain
that

z0
j

z0
i

= β,
1

z0
i

ēji = eji . (27)

An alternate way for estimating the matrix Dij is to use
a sufficient number of correspondent pairs (XP

i ,X
P
j ). In

this case, the scaling ambiguity of the estimated matrix
can be solved by exploiting the fact that det(A∞ij ) = 1.

5.1. The scene calibration matrix

In principle, the knowledge of the transformation ma-
trix Dij could be exploited to synthesize the virtual view
as

x(t) ∼= [I|0]Dt
ijX

P
i

as explained in Section 4. What prevents from the appli-
cation of this method is that, in general, Dij is not homo-
morphic to Tij , resulting in a loss of physical validity of
the synthesized view. To overcome this issue, we observe
that a sufficient and necessary condition for a homomor-
phism to be between Dij and Tij is that the two matrices
are similar3. This condition may be imposed by introduc-
ing a matrix Vj such that VjDij is similar to Tij . From
Equation (24) it follows that such a matrix is obtained as

Vj = HiH
−1
j =

[
I 0

0T
z0i
z0j

]
=

[
I 0

0T β

]
.

Hence

VjDij =

[
A∞ij eji
0T 1

]
. (28)

where eji is scaled in such a way to have µi = 1 for x0
i .

Since VjDij is homomorphic to Tij , it is easily verified
that

(VjDij)
t = HiT

t
ijH

−1
i ∀ t ∈ R ,

and consequently the novel view is synthesized exactly as
if the transformation Tij (and hence the relative motion
Gij) were known:

x(t) ∼= [I|0](VjDij)
tXP

i

= [I|0]HiT
t
ijXi

= [I|0]Tt
ijXi . (29)

The matrix Vj acts therefore as an equalizer between the
two reconstructions, balancing the projective deformations
in such a way as to reach similarity to Tij . For this reason,
Vj is called scene calibration matrix.

3Two square matrices A and B are similar if B = P−1AP for
some non-singular matrix P.

5.2. Calculating the infinite homography

In the last section we saw that the knowledge of the in-
finite homography A∞ij is sufficient for calculating the ma-
trices Dij and Vj , and it is therefore a sufficient condition
for synthesizing virtual views from a pair of uncalibrated
reference views. The focus is now on the methodologies
for estimating the transformation induced by the plane at
infinity.

The straightforward approach for estimating the infi-
nite homography is based on the knowledge of 3 vanishing
points, i.e. the projections of 3 points at infinity. The
infinite homography is therefore estimated as the solution
of the system 

p
(1)
j

∼= A∞ij p
(1)
i

p
(2)
j

∼= A∞ij p
(2)
i

p
(3)
j

∼= A∞ij p
(3)
i

eji ∼= A∞ij eij

,

where (p
(k)
i ,p

(k)
j ) with k = 1, . . . , 3 refers to the 3 pairs of

correspondent vanishing points. In general, this method is
rarely applicable because the images don’t show elements
that allow to calculate more than one or two vanishing
points. Moreover, the estimation of a vanishing point in
some cases can be very difficult, especially when it is re-
trieved by intersecting two lines that are almost parallel,
leading to high numerical errors.

In the literature many methods for estimating the in-
finite homography were recently proposed. In [24] the au-
thors show how the infinite homography can be retrieved
starting from two arbitrary rectangles visible in the two
views, exploiting the so-called semi-metric transformation.
An alternative method is proposed in [13], where the in-
finite homography is linearly estimated from the epipolar
constraints.

Here we propose two novel methods for estimating the
infinite homography which exploit its relation with the ho-
mography induced by a reference plane π given in Equa-
tion (9). This relation reveals a scaling ambiguity between
the left and right side. However, exploiting some of the
results obtained in the previous sections, it is possible to
solve the ambiguity; furthermore, we will see that such
a scaling is independent from the choice of the reference
plane. Equation (9) can be rewritten as follows:

Aij(π) = kπ

(
A∞ij − ēji

vTi
ci

)
,

or equivalently as

A∞ij =
1

kπ
Aij(π) + ēji

vTi
ci

, (30)

where kπ 6= 0 is the unknown scaling factor. Another im-
portant result is given by Equation (25), which shows that
the relation between the points in the two views by means
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of the infinite homography A∞ij and its relative affine struc-
ture is not affected by scaling ambiguity. Plugging Equa-
tion (30) into Equation (25) we obtain

z0
j

z0
i

x0
j =

(
1

kπ
Aij(π) + ēji

vTi
ci

)
xi +

1

z0
i

ēji

=
1

kπ
Aij(π)xi + ēji

(
vTi
ci

xi +
1

z0
i

)
=

1

kπ
Aij(π)xi + ēji

(
πTi X0

i

z0
i ci

)
, (31)

where πi = [vTi , ci]
T . Notice that, in general, the epipole

is known up to a scale factor, i.e. γēji = eji for some
γ 6= 0. Taking into account this fact, multiplying both

terms of Equation (31) by γ
πTi X0

i

z0i ci
we obtain

γ

(
z0
j

z0
i

z0
i ci

πTi X0
i

)
x0
j = γ

z0
i ci

πTi X0
i

1

kπ
Aij(π)x0

i + eji , (32)

from which we recognize the property of the relative affine
structure, scaled in such a way that µi = 1 for the reference
point x0

i , i.e.

bπx0
j = Aij(π)x0

i + eji (33)

for some bπ 6= 0. Comparing Equation (32) with Equation
(33) it is immediate to see that γ

z0i ci
πTi X0

i

1
kπ

= 1

bπ = γ
(
z0j
z0i

z0i ci
πTi X0

i

) ⇒ kπ = bπ
z0
i

z0
j

.

At this point, we can rewrite Equation (30) as follows

A∞ij =
1

bπ

z0
j

z0
i

Aij(π) + ēji
vTi
ci

,

or equivalently

1

bπ
Aij(π) =

z0
i

z0
j

(
A∞ij − ēji

vTi
ci

)
.

Notice that, if Aij(π) and eji are known, they can always
be scaled in such a way that Equation (33) becomes

x0
j = A?

ij(π)x0
i + e?ji ,

where A?
ij(π) = Aij(π)/bπ and e?ji = eji/bπ. Accord-

ing to this scaling, we final obtain a fundamental relation
between the infinite homography and the homography in-
duced by a reference plane π, which is independent from
the choice of the plane:

A?
ij(π) =

z0
i

z0
j

(
A∞ij − ēji

vTi
ci

)
. (34)

¥towards P ¥towards P

Ci
Cj

0
X

xi
0

xj
0

p w

vi

vi

ci

d /gi

pi
¥ pj

¥

Aij

¥

eij eji

A (p),A (w)ij ij

Figure 3: Estimation of the Infinite Homography A∞ij from a pair of
parallel planes and a vanishing point not on the planesP∞.

5.2.1. Infinite homography from a pair of parallel planes
and a vanishing point not on the planes

Suppose that in the two views it is possible to iden-
tify a pair of parallel planes, whose coordinates are πi =
[vTi , ci]

T and ωi = [γvTi , di]
T in the reference system of the

first camera, with γ ∈ R−{0, 1} (see Figure 3). According
to Equation (34), for the two planes we have

A?
ij(π) =

z0
i

z0
j

(
A∞ij − ēji

vTi
ci

)
(35)

A?
ij(ω) =

z0
i

z0
j

(
A∞ij − ēji

γvTi
di

)
.

Subtracting the two equations we get

A?
ij(π)−A?

ij(ω) =
z0
i

z0
j

ējiα
vTi
di

,

where α = γci
di
− 1. By left-multiplying both terms by

ēTji
||ēji||2 we obtain

vTi
ci

=
z0
j

z0
i

1

α

ēTji
||ēji||2

(
A?
ij(π)−A?

ij(ω)
)
. (36)

Inserting Equation (36) into Equation (35) and rearrang-
ing the terms leads to the following expression for the in-
finite homography

A∞ij =
z0
j

z0
i

[
A?
ij(π)+

1

α

ējiē
T
ji

||ēji||2
(
A?
ij(π)−A?

ij(ω)
)]
, (37)

where the ratio
z0i
z0j

and the constant α are unknown. Notice

that the matrix
ējiē

T
ji

||ēji||2 is independent from the scale of the

epipole, i.e.
ējiē

T
ji

||ēji||2
=
λējiλēTji
||λēji||2

for any λ 6= 0, and therefore this term is unequivocally
determined from the knowledge of eji. The unknowns can
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be determined by considering a pair of correspondent van-
ishing points (p∞i ,p

∞
j ) in the two views, not lying on the

planes. In fact, by definition

p∞j = kA∞ij p∞i (38)

for some k 6= 0. Substituting Equation (37) into Equation
(38) we obtain the following linear system

p∞j =

[
XA?

ij(π)+Y
ējiē

T
ji

||ēji||2
(
A?
ij(π)−A?

ij(ω)
)]

p∞i , (39)

where X = k
z0j
z0i

and Y = k
z0j
z0i

1
α are the unknowns. The

infinite homography can be estimated up to the scale factor
k by solving the system, and k can finally be retrieved by
imposing that det(A∞ij ) = 1.

Notice that it is important for the vanishing point not
to be on the planes. In fact, if p∞i ∈ π or p∞i ∈ ω, it
follows that vTi p∞i = 0. Consequently the term that mul-
tiplies Y in Equation (39) vanishes, since it is proportional
to vi.

5.2.2. Infinite homography from two pairs of parallel planes

When a further pair of parallel planes (π′,ω′) is avail-
able on the two images, we no more need a vanishing point
for estimating the infinite homography. Equation (37) can
be rewritten for the second pair of planes, i.e.

A∞ij =
z0
j

z0
i

[
A?
ij(π

′)+
1

α′
ējiē

T
ji

||ēji||2
(
A?
ij(π

′)−A?
ij(ω

′)
)]
, (40)

where, in general, α′ 6= α. Noticing that eji = λA∞ij eij for
some unknown λ 6= 0, right-multiplying eqs.(37) and (40)
by eij leads to the system

eji=λ
z0j
z0i

[
A?

ij(π)+
1

α

ējiē
T
ji

||ēji||2
(
A?

ij(π)−A?
ij(ω)

)]
eij

eji=λ
z0j
z0i

[
A?

ij(π
′)+

1

α′
ējiē

T
ji

||ēji||2
(
A?

ij(π
′)−A?

ij(ω
′)
)]

eij

.

(41)

Notice also that c(·)eji = A?
ij(·)eij for any choice of the

reference plane, where the scaling constant c(·) is known if
the epipoles and the homography are known. In the light
of these considerations, the system can be rewritten as eji = λ

z0j
z0i

[
cπ + 1

α (cπ − cω)
]
eji

eji = λ
z0j
z0i

[
c′π + 1

α′ (c′π − c′ω)
]
eji

,

where cπ, cω, c′π and c′ω are the known scales of eji (as an
example, cπeji = A?

ij(π)eij). At this point it is immediate
to see that

λ
z0
j

z0
i

[
cπ +

1

α
(cπ − cω)

]
= λ

z0
j

z0
i

[
c′π +

1

α′
(c′π − c′ω)

]
= 1 ,

and therefore

1

α′
=
cπ − c′π + 1

α (cπ − cω)

c′π − c′ω
. (42)

From Equation (41) it is readily verified that

A?
ij(π) +

1

α

ējiē
T
ji

||ēji||2
(
A?
ij(π)−A?

ij(ω)
)

=

= A?
ij(π

′) +
1

α′
ējiē

T
ji

||ēji||2
(
A?
ij(π

′)−A?
ij(ω

′)
)
,

from which we can solve for 1
α by inserting the expression

of 1
α′ given by Equation (42). The infinite homography

can be finally obtained from Equation (37) calculating the

ratio
z0j
z0i

by posing det(A∞ij ) = 1.

5.3. Summary of the view synthesis algorithm

For the sake of clarity, in this section we summarize
the presented view synthesis algorithm, starting from the
one proposed by Shashua and Navab reported in Section
3. We identify the following steps:

1. From a set of correspondences in the two views, es-
timate the fundamental matrix and the epipoles eij
and eji with (10);

2. In the original approach [19] defining a reference
plane, π it is possible to recover the relative affine
structure (eq. 11) and then reconstruct the 3D ge-
ometry (12). While in the proposed work we follow
the approach depicted in the following steps.

3. Due to the belonging to the Special Projectivity Group
SP (3) of the transformation T between two cameras
with the same Intrinsic parameters, we can map such
a transformation as a Lie Group Homomorphism (eq.
19) and a continuous set of intermediate transforma-
tions can be generated.

4. Estimate the infinite homography with the method
described either in Sec. 5.2.1 (based on two paral-
lel planes and a vanishing point) or 5.2.2 (based on
two pairs of parallel planes) and scale it such that
det(A∞ij ) = 1;

5. select a reference point correspondence (x0
i ,x

0
j ) and

scale the epipole such that x0
j
∼= A∞ij x0

i + eji;

6. recover the projective reconstruction XP
i according

to Equation (12);

7. Once the relative transformation matrix Dij is ob-
tained from one of the proposed methods, it can be
made homomorphic to Tij through the pre-multiplication
with the scene calibration matrix Vj that makes their
product similar to Tij (eq. 28).

8. generate the virtual views through Equation (29),
namely: x(t) ∼= [I|0](VjDij)

tXP
i .

6. Experiments

This last section is devoted to showing the effectiveness
and the robustness of the proposed solutions. First we
present a series of experiments based on a 3D synthetic
scene, then we test the effectiveness of our method on real
images.
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6.1. Synthetic setup

We present the first set of experiments, that are based
on a 3D synthetic scene which is projected in the two refer-
ence views shown in Figure 4. The reference views have a
dimension of 1600× 1200 pixels, and are obtained specify-
ing two different camera matrices having the same internal
calibration parameters.

(a) View i (b) View j

Figure 4: The two reference views are obtained by projecting a 3D
synthetic scene by means of 2 different camera matrices with the
same internal calibration parameters.

The synthetic 3D scene is composed by a complex ob-
ject defined by 11 points (pictured in yellow in Figure 4)
enclosed in a cube. Four of the six sides of the cube exhibit
a regular grid structure, yielding a total of 411 point corre-
spondences between the two views. This structure allows
to identify, in the two images, all the geometric elements
that are necessary for estimating the infinite homography.
All the simulations have been conducted according to Fig-
ure 5: two pairs of parallel planes are defined by the eight
red points corresponding to the vertexes of the cube; and a
vanishing point is obtained by intersecting the two red lines
passing through the bottom vertexes. The green point is
selected as a reference for the evaluations.

(a) View i (b) View j

Figure 5: The cube structure allows to identify two pairs of parallel
planes and a vanishing point in the two views.

6.2. Evaluation metric

The robustness of the proposed view synthesis algo-
rithm is tested by corrupting all the 411 point correspon-
dences with zero-mean additive Gaussian noise with stan-
dard deviation σ, i.e.

x̃
(k)
i = x

(k)
i +

exey
0

 ,

where ex ∼ N(0, σ2) and ey ∼ N(0, σ2) are two indepen-
dent random variables. The noisy data x̃j for the second
view are obtained analogously. From the noisy correspon-
dences one obtains the estimate of the camera calibration
matrix Vi and of the transformation Dij , namely the ma-

trices Ṽj and D̃ij , respectively. The view synthesis algo-
rithm is evaluated by considering the error between the
exact position and the reconstructed position of the refer-
ence points in the virtual view. The error is calculated by
means of the Euclidean distance between the target coor-
dinates x(t) = [x(t), y(t), 1]T obtained exponentiating the
matrix Tij by means of Equation (22) and the reconstruc-

tion x̂(t) = [x̂(t), ŷ(t), 1)]T through the matrix ṼjD̃ij by
means of Equation (29), i.e.:

dt,σ =
√

[x(t)− x̂(t)]2 + [y(t)− ŷ(t)]2 . (43)

The evaluation is performed with different noise levels (σ
from 0 to 4 pixels) and considering virtual views generated
by varying the parameter t in the range from 0 to 1. The
performances of the algorithm are finally summarized cal-
culating the mean error and the root mean squared error
(RMSE) applied to the distance measure defined in Equa-
tion (43), averaging the results over 1000 realizations.

6.3. Results

In this section we show view synthesis results relative
to the two methods for estimating the infinite homography.
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Figure 6: Performances of the view synthesis algorithm relative to
the RMS reconstruction error of the reference point. Top row (a,b):
The infinite homography is estimated from a pair of parallel planes
and a vanishing point. Bottom row (c,d): The infinite homography is
estimated from two pairs of parallel planes. Left column: the matrix
Dij is calculated using Equation (24). Right column: the matrix
Dij is estimated from point correspondences.

Consider first the estimation by means of two paral-
lel planes and a vanishing point. The results are drawn
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both in the case that the matrix Dij is estimated through
Equation (24) and for the estimation of Dij from the set
of correspondences (XP

i ,X
P
j ). The correspondent results

are shown in Figure 6.
It can be observed that the view synthesis is very ro-

bust against the noise on the point correspondences, es-
pecially when the matrix Dij is estimated through its ex-
pression (Figure 6(a)): in this case, when the error is set to
σ = 4 pixels (right side of the image), the RMSE maintains
lower than 5 pixels. Notice that, as expected, the recon-
struction error is generally lower for the synthetic views
close to the reference (t = 0, bottom of the image), and
it tends to increase for views with increasing t. Regarding
the second method for estimating Dij , Figure 6(b) reveals
that, in this case, the performances are slightly worse.

Consider now the case of estimating the infinite ho-
mography from two pairs of parallel planes. As before, the
results are presented for the two methods for estimating
the matrix Dij , and are reported in Figures 6(c) and 6(d).
When Dij is explicitly calculated, the algorithm exhibits
less sensibility to the noise, especially for high values of σ.
However, when σ < 2 pixels, the results are comparable to
the case of Figures 6(a) and 6(b). When the matrix Dij is
estimated from the correspondences, we observe that the
results revert to be comparable to the case of a pair of
parallel planes and a vanishing point.

6.4. Comparison of the proposed approaches

In this section the two proposed methods are compared
more closely. For these experiments we set the parameter
t = 0.5 and Dij is estimated from the correspondences (as
in Figures 6(b) and 6(d)), and we use all of the 11 points
of the yellow object as reference points.

We included a strategy where the infinite homogra-
phy is computed using the perspective projection matrices
(PPMs) of the two views. Let Pi := [Qi|qi] where i = 1, 2,
be the PPMs, then the infinite homography between the
two reference views can be calculated according to the for-
mula A∞12 := Q2Q

−1
1 (see [16] for a full derivation). This

equation represents the optimal strategy to compute the
infinite homography but it requires the knowledge of fully
calibrated PPMs. The reason for its optimality is that
it does not involve any information that needs to be es-
timated from the images, hence any reconstruction error
is to be attributed to computation of the relative affine
structure.

The first comparison is the noise tolerance of the three
methods (the optimal, and the two proposed approaches).
We gradually added noise to the point correspondences,
as described in Section 6.2, and measured the RMSE of
the reconstructed points. Figure 7(a) shows the curve ob-
tained, which shows that the three methods are equally
tolerant to correspondence noise.

In the second experiment, instead of corrupting the
correspondences coordinates, we introduced noise during
the generation of the points that are supposed to lie on

the same plane. Please note that in this case the noise
is injected in the 3D space, hence the standard deviation
σ is not measured in pixels. We used an increasing σ
from 0 to 0.2 units of the 3D space. The same noise is
applied to the vertices that are used for the computation
of the vanishing points. Notice that this kind of corruption
should not influence the optimal strategy since it leaves the
correspondences precision unaltered.

In Figure 7(b) we can observe that both the proposed
methods deteriorate their RMSE score as the noise level
applied to the planes increases, but the method that uses
one pair of parallel planes and a vanishing point is con-
siderably less resilient than the one that uses two sets of
parallel planes. The optimal method, as expected, is in-
sensitive to this kind of corruption.

6.5. View synthesis examples

In this section we show some examples of virtual views
generated starting from the reference images of Figure 4.
In order to provide a ground-truth, Figure 9(a) reports
a set of 9 views obtained exponentiating the theoretical
transformation matrix Tij and applying it to the real 3D
model of the scene; the parameter t ranges from 0 to 1.
Notice that for t = 0 and t = 1 the synthesized views
corresponds to the references depicted in Figure 4.

Figures 9(b), 9(c) and 9(d) show the 9 novel views gen-
erated with the view synthesis algorithm for 3 different
choices of the noise level (σ = 1, 2, 3 respectively). All
the synthesized views are obtained estimating Dij from
its mathematical expression, and the infinite homography
is retrieved from two pairs of parallel planes.

All the synthetic views confirm the effectiveness of the
algorithm. Even for very noisy data (σ = 3), the recon-
structions are not far from the ground-truth, confirming
the robustness of the view synthesis algorithm as well as
of the methods for estimating the infinite homography. We
recall that the aim of the methods presented in this paper
is to estimate the interpolated position of corresponding
points matched between the two original views; therefore
the full synthesis of an interpolated image is not covered.

6.6. Evaluation on real images

In this section we evaluate our approach on a more
realistic scenario, where we rely on the presence of two
sets of parallel planes. The images were captured using
a hand-held Canon EOS 1100D camera. We processed
five sequences: “Milo1” is a ad hoc assembled scene with
a toy figure and a textured cube. The remaining four are
hallway scenes, two from the University of Verona and two
from the University of Udine4.

For the sake of comparison, we created an output that
is equivalent to our view synthesis using a calibrated ap-
proach. In particular, we fed the pictures to a state of the

4Please contact the authors to receive a copy of the full resolution
images and/or Matlab code.
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Figure 7: Performances of the view synthesis algorithm relative to the reconstruction error of the reference points. “gt” represent the optimal
strategy, “plnvp” is the method that uses a vanishing point and pair of parallel planes and “pln” is the method that uses two pairs of parallel
planes.

Figure 8: Each color corresponds to a label which is used to identify
the 3D points that belong to one of the four planes or to other objects

art structure from motion pipeline ([23], software courtesy
of 3Dflow srl). For each scene, we acquired several images
with known, constant internal parameters, from which we
obtained a sparse 3D reconstruction of the scene, i.e. a set
of 3D points. Then, we proceeded by manually segmenting
the points lying on the two sets of parallel planes in the
3D space (see Figure 8).

Such manual selection was then validated through a
RANSAC procedure that fitted the dominant planar ho-
mography, and was used to discard points that were not
pertinent with the plane. On the left side of Figure 10 one
can appreciate the output of this step. Then, among the
initial batch, we selected two images to be used as the two
reference views for the view synthesis experiment. The
keypoints corresponding to the 3D points that are visible
in the two images are used as reference for the performance
evaluation. The reference keypoints are transferred to the
virtual view point using Equation (15) (internal parame-
ters are known only for the sake of evaluation) and setting

t = 0.5. The central column of Figure 10 shows the refer-
ence images of each sequence with a subset of the corre-
sponding keypoints. Finally, the points obtained through
the view synthesis procedure are then compared against
reference points to obtain the RMSE, as in the synthetic
experiments. The effectiveness of the proposed approach
can be appreciated by observing the right side of Figure
10 that shows a visual comparison of the positioning of the
keypoints on the virtual view with respect to the ground
truth points. In Table 1 we report the RMSE scores for
each sequence.

Table 1: RMSE scores obtained for the five proposed sequences.

Sequence # points t RMSE

UniVR1 6942 0.5 0.0184

UniVR2 20418 0.5 0.3664

UniUD1 2594 0.5 0.2326

UniUD2 3236 0.5 0.6409

Milo1 28334 0.5 0.0278

7. Conclusions

In this work we provide a full discussion on the gen-
eration of synthetic images from uncalibrated cameras.
The proposed algorithm allows to smoothly interpolate be-
tween two reference views provided that the two cameras
have identical internal calibration.

The core contribution of this paper is the proof that
the knowledge of infinite homography is sufficient to syn-
thesize view from two uncalibrated images, thus eliminat-
ing the need to specify a virtual camera in the projective
frame or the need to exploit further geometric constraints.
This contribution is substantiated by two novel methods
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Figure 9: Virtual views obtained exponentiating the theoretical transformation matrix Tij and applying it to the real 3D model of the scene.
The parameter t ranges from 0 to 1. This set of 9 views constitute a ground-truth for evaluating the view synthesis algorithm. Virtual views
obtained with the view synthesis algorithm. The infinite homography is estimated from two pairs of parallel planes. The noise level is set to
σ = 1, 2, 3 pixel.
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Figure 10: Left column: the result of the plane segmentation step. Central column: reference images with matched keypoints. Right column:
comparison of the points transferred with the view synthesis procedure (red crosses) against the ground truth points (black diamonds).
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for computing infinite homography, with prior information
of (i) two pairs of parallel planes and (ii) one pair of par-
allel planes plus vanishing points not on the planes.

Depending on the geometric elements present in the
imaged scene, one can select the best technique for esti-
mating the infinite homography.

The simulations conducted on a synthetic 3D scene and
the experiments on real images confirm the effectiveness
and the robustness of the proposed approach.
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