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Abstract

This paper introduces a novel method for performing motion–stereo, based on dynamic integration of depth (or its
proxy) measures obtained by pairwise stereo matching of video frames. The focus is on the data fusion issue raised by
the motion–stereo approach, which is solved within a Kalman filtering framework. Integration occurs along the temporal
and spatial dimension, so that the final measure for a pixel results from the combination of measures of the same pixel
in time and whose of its neighbors. The method has been validated on both synthetic and natural images, using the
simplest stereo matching strategy and a range of different confidence measures, and has been compared to baseline and
optimal strategies.
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1. Introduction

This paper deals with the problem of motion-stereo,
i.e., depth estimation in a monocular sequence of images
taken by a moving camera [31]. Whereas in binocular
stereo two cameras separated by a fixed baseline are em-
ployed, in motion-stereo a single camera moves through a
static scene. As a result, over a period of time, the cam-
era traverses a “baseline” of undetermined length. The
grounds for addressing such problem lie in the attempt to
solve the accuracy-precision trade-off in stereo matching,
which can be summarized as follows: due to quantization
errors, the estimated disparity is more precise with a larger
baseline, but the matching is less accurate, because the of
the exacerbation of perspective and radiometric nuisances
that cause false and missing matches. There is manifestly
a conflict between accuracy and precision, which motion-
stereo approaches attempt to reconcile.

Early work in motion-stereo [28, 16, 22], integrates
depth maps from different frames into a single map. They
require motion and camera parameters to be known, and
most of them restricts to lateral motion. A common draw-
back is that they warp the disparity map from frame to
frame, thereby introducing errors and approximations that
disrupt the prediction, and make the integration pointless.
More recent motion-stereo approaches aggregate measures
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in a discretized 3D volume [30, 18, 32], but they need cal-
ibrated cameras as well.

The multiple-baseline approach [13, 19, 11] generalizes
binocular stereo by computing an aggregated matching
cost which considers all the images simultaneously, and
then proceeds as in the binocular case. These methods re-
quire camera centers to be collinear (equivalent to lateral
motion). Generalizations of these approaches can be found
in the multi-view stereo literature, where the aggregated
cost is computed along the optical ray in a discretized vol-
ume [7, 6].

From the geometrical point of view, the problem raised
by motion-stereo is how to set a common reference frame
where measures from different images can be integrated.
The discretized volume seems the natural choice, however
computation in 3D space can be avoided by considering
image-based quantities such as depth, binocular disparity
or planar parallax. It will be shown in Section 2 that when
camera parameters and its motion are unknown, planar
parallax is a suitable depth–proxy that generalizes dispar-
ity and depth. This approach based on pixel-based mea-
sures – also called “iconic” – is motivated by applications
like view synthesis, video interpolation and enhancement
(frame rate up-conversion) and free viewpoint 3D TV.

In this work we concentrate on the data fusion problem
posed by the motion–stereo approach, being agnostic with
respect to: i) the depth–proxy that is being used ii) the
binocular stereo matching algorithm, which is considered
as part of the input of our method. As in [16, 28], we use a
dynamic approach, as we apply Kalman filtering for recur-
sive estimation of depth maps by combining measurements
along the time line and within a spatial neighborhood.
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Pixel–wise depth measures are relaxed by considering the
information coming from the neighbors within the same
superpixels, using a spatial Kalman filter. In both tempo-
ral and spatial dimensions, the depth measures are trusted
using confidence metrics attached to the measures.

An analogous result has been obtained in [16] by smooth-
ing disparity maps with piecewise continuous splines, where
a regularization-based smoothing is used to reduce mea-
surement noise and to fill in areas of unknown disparity.
Other methods perform adaptive smoothing in a edge–
aware fashion, e.g. [12] where temporal consistency is en-
forced among different depth maps using an edge-aware
Gaussian filtering extended to the temporal dimension in
video volumes, or [25] where the depth map is filled by
solving a least square error problem using edge and tempo-
ral information as weights. With respect to our approach,
the key difference is that these works are post–processing
approaches that aim at improving the quality of depth
maps whereas our method uses edge information (in the
form of superpixels) to be aware of which neighbors are rel-
evant while updating depth values on the current reference
map.

A preliminary version of this work appeared in [14]
without the spatial relaxation.

Contribution

The main contribution of this paper is a data-fusion
framework for motion-stereo, integrating both temporal
and spatial information. Also, a comprehensive review of
the available depth-proxies is presented in a unified frame-
work and it is shown how planar parallax can be applied
with general motion and unknown camera parameters.

The paper can be seen as a general-motion, uncali-
brated extension of a classical work [16], which constrained
motion to be lateral and required camera internal parame-
ters. Moreover, [16] warped the disparity map from frame
to frame, thereby introducing errors and approximations
that disrupted the prediction (as shown by our experi-
ments), whereas we fix this by keeping the reference frame
constant.

We also report an extensive comparison of several con-
fidence measures in the context of our approach.

Paper Structure

This paper is structured as follows: in Section 2 we sur-
vey some background knowledge, in particular we present
three suitable candidates for the depth–proxy. In Section 3
we present our method: stereo processing is described in
Section 3.1, which produces the input data for the sub-
sequent step in the form of depth measures. Then, the
actual core of the algorithm (described in Sections 3.2 and
3.3) merges input measurements into the final result. In
Section 4 we report experimental results and we draw con-
clusions in Section 5.

2. Background: depth–proxies

We do not make any hypothesis on whether the camera
is calibrated or not, or if motion is constrained/known or
not. These assumptions affects the choice of the depth–
proxy. Several depth–proxies can be computed depending
on factors such as the constraints on the motion of the
camera and/or the availability of the perspective projec-
tion matrices. The depth–proxy must depend only on the
reference frame and not on the other frames being consid-
ered. In this way each iteration provides a new estimate
commensurate with the others. In this section we present
three suitable candidates.

2.1. Depth

The depth of a point is its distance from the focal plane
of the camera. If the interior camera parameters are avail-
able, stereo correspondences can be converted directly into
depth values. The depth values for a given pixel obtained
from subsequent frames are directly comparable.

mi

ζi

M

f

Figure 1: The depth ζi is the distance of the 3D point from the focal
plane of the camera (shaded in the picture).

Let M be a 3D point and let (mr,mi) be its projections
onto the image planes Ir and Ii respectively. Let Pr =
Kr[Rr|tr] and Pi = Ki[Ri|ti] be the perspective projection
matrices of the two cameras (that must be known). The
equation of the epipolar line of mr in Ii is

ζimi = ei + ζrKiRiR
>
r K

−1
r mr (1)

where ei := Ki(ti − RiR>r tr) is the epipole and ζr and ζi
are the unknown depths of M (with reference to Pr and
Pi, respectively). Thus we can write

ei = ζimi − ζrm′r (2)

where m′r := KiRiR
>
r K

−1
r mr. Since the three points ei,

m′r and mi are collinear, one can solve for ζr using the
following closed form expression [10]

ζr =
(ei ×mi)(mi ×m′r)

‖mi ×m′r‖2
. (3)
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Since in real situations camera parameters and im-
age locations are known only approximately, the back–
projected rays do not actually intersect in space. However,
it can be shown [10] that Formula (3) solves Equation (2)
in a least squares sense.

The actual computation of depth values is performed
by applying Equation (3): ei is obtained as the projection
of the optical center of the reference camera Cr, through
the second camera Pi; the set of dense correspondences
(mk

r ; mk
i ) with k = 1, . . . ,K, where K is the number of

correspondences for the current image pair, is known from
the stereo matching step; image points m

′

i are computed
according to Equation (2).

Please observe how this formulation elegantly avoids
the explicit triangulation of M, which would be required
in a naive approach.

2.2. Disparity

If interior camera parameters are unavailable, the binoc-
ular disparity is the first depth–proxy that is readily avail-
able from stereo correspondences. However, the disparity
values of a pixel computed from subsequent frames are
commensurate only if motion is constrained such that all
cameras share a common focal plane (the focal plane is
parallel to the image plane and contains the camera cen-
ter ).

When two focal planes are coplanar (i.e. up to coor-
dinate change, motion is along X axis) then ζi = ζr := ζ

and the epipole is ei =
[
bif 0 0

]>
, where f is the focal

length b is the magnitude of the translation. Moreover, if
Ki = Kr then m′r = mr, hence Equation (2) simplifies
to:

mi −mr =
[
bif/ζ 0 0

]
(4)

This configuration is also called normal case (for stereo).
The disparity, defined only in the normal case, is the non-
zero (horizontal) component of the pixel coordinates differ-
ences. Two cameras can be always brought to the normal
case by rectification [5, 4].

In the case of multiple cameras, since disparity is pro-
portional to the reciprocal of the depth and the depth is
defined with respect to the focal plane, there must be a
common focal plane in order for disparities to be commen-
surate. This can always be achieved for N ≤ 3 cameras by
rectification (rotating the focal planes around the optical
centers until they coincide with the plane defined by the
three centers), but cannot be guaranteed for more cam-
eras, unless camera centers lies on a plane.

2.3. Planar Parallax

In the case where camera calibration is unavailable and
the camera undergoes a general motion, planar parallax
can be profitably employed instead of depth. Planar par-
allax represents the displacement in the apparent position
of objects imaged from different points of view with re-
spect to a reference plane [23], and can be computed from
stereo correspondences.

In this section we review some background notions nee-
ded to understand the proposed methodology. A complete
discussion and formulation of the planar parallax theory
can be found in [26, 9].

Let us consider a 3D point M belonging to some space
plane Π and its projection (mr,mi) onto the image planes
Ir and Ii respectively. There exists a non–singular linear
transformation, or homography, that maps mr onto mi,
that is

mi ' HΠmr (5)

where HΠ is the homography induced by plane Π and '
means equality up to a scale factor. For 3D points M not
belonging to plane Π, the following more general relation
holds:

mi ' HΠmr + eiγ (6)

where ei is the epipole in Ii and γ is the planar paral-
lax (or, simply, parallax if the context is clear), which
can be interpreted as the displacement between the point
HΠmr mapped via the homography HΠ and its actual cor-
responding point mi.

mr

mi ei

HΠmr γi

M

Figure 2: The parallax γi is the length of the segment joining
mi and HΠmr. The reference plane Π is shaded in the picture.

Given point correspondences and a plane homography
HΠ, parallax values can be obtained for each pixel of the
reference frame by solving for γ in Equation (6):

1

γ
=

(ei ×mi)
T (mi ×HΠmr)

‖mi ×HΠmr‖2
. (7)

One can contrast this equation with Equation (3) and
observe that they coincides if m′r = HΠmr, in which case
1
γ = ζr. In particular, it can be seen that this condi-
tion is equivalent to the special choice HΠ = H∞, where
H∞ is the infinite plane homography, i.e. the homography
induced by the infinite plane between the pair of images
(Ir,Ii).

Furthermore in the stereo normal case then H∞ is the

identity and the epipole is ei '
[
1 0 0

]>
, thus paral-

lax in Equation 6 results to be proportional to binocular
disparity.
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To summarize: when HΠ = H∞ the parallax γ reduces
to the reciprocal of the depth (while in general it is pro-
portional to it), and in the normal case it is proportional
to disparity. Moreover, it can be demonstrated that γ de-
pends only on the reference image and the plane Π, and
not on the parameters of the second image. This is why
the parallax can be seen as a useful generalization of the
depth and (inverse) disparity.

By setting the reference image, together with a fixed
reference plane Π, one can thus obtain a projective proxy
for the depth of a point that is consistent across several
images of a same, modulo a global scale factor. In fact,
independent estimates of parallax derived from different
image pairs (Ir, Ii), i = 2, . . . , N differ from each other by
an unknown scale factor, which must be estimated inde-
pendently.

In practice, parallax values are computed using (7) for
each pixel: as for the depth, the dense set of correspon-
dences (mk

r ; mk
i ) on the pair of images (Ir, Ii) is known

from the stereo matching step; the homography HΠ
ri is ob-

tained according to the procedure explained in [14] and
epipole ei is estimated from epipolar geometry.

Finally, we saw that Equation (6) describes the re-
lationship between two views through a reference plane.
Since γ does not depend on the position of the second
camera, we can replace the second image with a new one,
thus we can transfer or warp, pixel mr onto mn with:

mn ' HΠmr + enγ (8)

where HΠ and en define the position of the new camera.
This can be used to transfer a parallax map from one ref-
erence frame to another. This operation brings in several
issues related to non-injectivity and non-surjectivity of the
transfer map, that are well known in the context of view-
synthesis [17].

3. Proposed Method

The input of the method is a monocular video sequence
of N frames, of which one is set as the reference, denoted
by Ir. For every pair of images (Ir, Ii) (where, for example,
if Ir = I1 and i = 2, . . . , N), estimates of the depth–proxy
map relative to the reference frame are computed indepen-
dently by binocular stereo matching.

We designate parallax as the depth–proxy, for it is the
more general one and subsumes all the others. However
disparity or depth can be used instead when certain con-
ditions are fulfilled. Regarding camera motion, the only
assumption made is that a relevant portion of the refer-
ence frame is kept visible at all the subsequent frames of
the video segment. When this assumption fails, a new ref-
erence frame is set and the filter is restarted. Note that
information about the temporal trajectory is not used, i.e.
the pairs could be processed in any order. This prop-
erty has two main advantages: i) pairwise processing can
be performed independently, making the algorithm highly

parallelizable ii) sets of still images as input, instead of
video sequences, can be processed.

Each of the N−1 independent estimates of the parallax
map contains errors and valuable information: the goal of
the data fusion is to enhance the latter while smoothing
out the former. In our framework all these parallax maps
are combined together using spatial and temporal coupled
Kalman filters, achieving more stable and accurate values.
Superpixels provide the spatial support for the relaxation
of parallax values among the image neighbors.

The rationale behind motion-stereo is to break the ac-
curacy vs precision trade-off by using multiple baseline
lengths: a small baseline implies few occlusions, easier
stereo matching but raw quantization of the parallax, whereas
a large baseline implies better quantization of the parallax
but more occlusions and harder matching.

3.1. Stereo Matching

The image pairs (Ir, Ii) needs to be rectified for the
subsequent stereo matching step to work. In particular,
each pair must be rectified independently, unless the cam-
era centers are coplanar. In the calibrated scenario, we use
[5], where the algorithm takes the perspective projection
matrices of the original cameras and computes a pair of
rectifying projection matrices. When internal parameters
are unknown, we use [4], which assumes that a number of
corresponding points are available and we seeks the recti-
fying homographies that make the original points satisfy
the epipolar geometry of a rectified image pair.

Dense correspondences between Ir and Ii can be ob-
tained using any stereo matching algorithm. In our ex-
periments, since we focus on the integration framework
and not on the performance of the stereo itself, we used a
simple block–matching with Normalized Cross Correlation
(NCC) as a matching score:∑

n∈W
(Ir(xn, yn)− µr)(Ii(xn, yn)− µi)

√∑
n∈W

(Ir(xn, yn)− µr)2

√∑
n∈W

(Ii(xn, yn)− µi)2

(9)

where µr and µi are the averages of window W in images
Ir and Ii, respectively.

After the block–matching step, we perform a left–right
consistency (LRC) check, which is a standard procedure
based on the uniqueness principle [15]. The consistency is
verified if p is matched with p′ when searching on the pair
(Ir, Ii) and p′ is matched with p when searching on the
pair (Ii, Ir), where p is a point in Ir and p′ is a point in Ii.
All non–consistent matches are discarded. This procedure
skims the results from occluded pixels and bad matches.
Dense correspondences are then transferred back to the
original reference images by applying the inverse of the
rectifying homographies (de–rectification).

During the stereo matching step, a confidence map,
associated to the parallax map, is also computed. For
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each pixel we integrate the LRC check with a confidence
indicator based on the matching score profile.

Thus, the confidence associated to the parallax com-
puted at pixel i is,

ϕ(i) :=

{
0 if pixel i fails the LRC check

φ∗(i) o/w
(10)

where φ∗(i) is one of the confidence metrics discussed in
Appendix A. The confidence ϕ(i) varies in [0, 1], where 0
means that pixel i is totally unreliable and 1 means maxi-
mally confident.

3.2. Temporal integration

Temporal integration of parallax data is performed thro-
ugh a simple 1-d Kalman filter with constant (up to a
scale) state and direct measurement model. Let xt(m)+

be the best parallax estimate (the state) available at time
t for pixel m, let pt(m)+ be its variance; let zt(m) be
the parallax measured at pixel m of frame t (via stereo
matching), and let rt(m) be its variance. The Kalman
filter equations write:

Process: xt = s · xt−1 + wt Var(wt) = qt (11)

Measure: zt = xt + vt Var(vt) = rt (12)

Prediction: x−t = s · x+
t−1 p−t = s2 · p+

t−1 + qt (13)

Update: x+
t =

x−t rt + zt p
−
t

p−t + rt
p+
t =

p−t rt

p−t + rt
(14)

Where x−t and p−t represent the a priori estimations of
the state and its variance respectively, whereas x+

t and p+
t

are their updates using measurement zt and its variance
rt. The variable m has been omitted as the treatment is
uniform over the pixels.

It turns out to be more convenient to formulate the
update equations in terms of the inverse variance, which
will be henceforth called information (the Fisher informa-
tion of a random multivariate distribution is the inverse
covariance [3]). Let ip = 1/p and ir = 1/r, then Equation
(14) becomes:

x+
t =

zt
irt + x−t

ip−t
irt + ip−t

ip+
t = irt + ip−t . (15)

The process model contains a multiplicative factor s
which takes into account the fact that independent mea-
sures of the parallax are scaled by an unknown factor: in
fact, the current state is always scaled to match the mea-
sure. The scale s is estimated by comparing x+

t−1 with zt
in a robust (outliers resilient) way. First the ratio between
the two maps is computed pixelwise, considering only the
pixels that, given their information value, are the most
reliable (i.e. upper quartile of the irt map); then the ra-
tios which are greater than 5.2 median absolute deviations
from the median are discarded as outliers (a.k.a. x84 rejec-
tion rule [21]); finally the scale is computed as the mean
of the inlier ratios.

The process noise wt accounts for the errors introduced
in predicting the state. Since the state we are estimating is
constant (up to a scale), and no approximation are made
in the prediction, our temporal model has qt = 0.

The measurements noise vt models errors that affect
the parallax estimation, hence its information irt is di-
rectly related to the confidence ϕ defined in Equation (10).
We use irt = 12ϕ, which sets the maximum information
for a correct parallax value to the reciprocal of the variance
of the quantization noise (which is 1/12).

The update of the filter state takes place through a
validation gate to ensure that outliers do not skew the
estimate. In particular, we consider the Mahalanobis dis-
tance as a gating criterion [27]. The update is accepted
only if:

(x−t − zt)2

p−t + rt
≤ χ2

1(α) (16)

where χ2
1(α) is the upper 100αth percentile of a chi-square

distribution with 1 d.o.f. (we used α = 0.98).
The update equation fails when ip−t = irt = 0, because

a 0/0 form is obtained. This happens at t = 1 if a reliable
measure (ir1 6= 0) is not available, and at any subsequent
t until a reliable measure is found. This special case is
handled within the validation gate by simply skipping the
update whenever irt = 0. Please note that irt = 0 means
that the pixel is unmatched (not visible in the conjugated
image).

In the most general case, the filter starts with ip−0 = 0
and x−0 undefined, however, if a parallax map is available
for the reference frame of the previous video segment, it
can be warped to the current reference frame with Equa-
tion (8) and provides a partial initialization for the state.
The information of the warped parallax is downweighted
by a factor 10 to account for errors introduced by the warp-
ing.

Finally, it is worth noting here that this simple Kalman
filter – ignoring the scale s – reduces to a weighted aver-
age of the measures zt with the information values irt as
weights, as can be observed by solving the recursive update
equations, thus obtaining:

ip+
t =

t∑
k=0

irk (17)

x+
t =

zt
irt + x+

t−1

∑t−1
k=0

irk∑t
k=0

irk
=

∑t
k=0 zk

irk∑t
k=0

irk
. (18)

Indeed, the middle term of Equation (18) is the well known
formula for the recursive computation of the average. A
matrix equivalent of Equations (17) and (18) can be also
derived as the least squares solution to the problem of op-
timally (in terms of Mahalanobis distance) combining an
ensemble of independent (multivariate) random variables
which estimate the same true parameter [20]. The advan-
tage of the Kalman filter is in its recursive formulation,
which leads to a causal filter that produces at each time
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instant (dynamically) the best estimate based on the past
measures, whereas the weighted average considers all the
measures in a batch.

3.3. Spatial integration

The spatial relaxation requires to identify a neighbor-
hood of each pixel in the reference image where the depth
is ideally constant. This is achieved by computing su-
perpixels, i.e., compact and almost uniform regions of the
image, using the Simple Linear Iterative Clustering algo-
rithm (SLIC) [2], which starts with a regular grid of cen-
ters and then locally clusters pixels in the combined five–
dimensional color (CIELab) and image coordinates space.
The density of the initial grid plus a regularization coeffi-
cient are the only two parameters that need to be set. The
(approximated) desired size of the superpixels is specified
so that

number of initial cells =
reference frame resolution

desired size of the superpixel
.

Some segmentation examples are shown in Figure 3.
Once the superpixels are extracted, in principle, the in-

tegration with the spatial neighborhood should take place
by introducing spatial correlations between neighboring
pixels, which entails a state vector of the size of the image
(M) and a non-diagonal (M×M) covariance matrix. How-
ever, this would become too computationally demanding,
so we approximate its effect by modifying the prediction
step of the temporal 1-d Kalman filter, without changing
its structure. In particular, in the prediction formula (13),
we substitute the state x+

t−1 with a smoothed state x̂+
t−1

that depends on the neighboring pixels within the same
superpixel (and the information ip+

t−1 accordingly).
To be consistent with the temporal dimension, we de-

rive x̂+
t within the Kalman filter framework. As mentioned

in [16], an alternative approach to the prediction of state
variance is the so called “exponential age-weighting” of
measurements, where the current variance is inflated by a
small multiplicative factor [3]:

p−t = (1 + ε)p+
t−1. (19)

Equations (17) and (18) can be generalized to:

ip+
t =

t∑
k=0

irkδ
t−k (20)

x+
t =

∑t
k=0 zk

irkδ
t−k

ip+
t

(21)

where we introduced δ = 1/(1 + ε) which is the inverse of
the exponential age-weighting, since we are dealing with
information instead of variance.

These formulae can be translated into the spatial do-
main by substituting the exponential age-weighting term,
which gives smaller weights to older measures, with an ex-
ponential distance-weighing term (with a parameter ρ < 1)

which serves the purpose of weighting the measure accord-
ing to the distance to the current pixel. Let x(m)+ be the
parallax (state) at pixel m and let ip(m)+ be its informa-
tion value:

ip̂+(m) =
∑

q∈Ω(m)

ip+(q)ρ‖m−q‖ (22)

x̂+(m) =

∑
q∈Ω(m) x

+(q) ip+(q)ρ‖m−q‖

ip̂+(m)
(23)

where Ω(m) is the superpixel to which pixel m belongs. In
this paragraph we will omit the constant temporal index,
as we are dealing with the spatial dimension only.

The information of the combined measure is the sum
of the information values of the original measures (with
exponential distance-weighing), so it is much greater than
the original point-wise information. This would be correct
only if the combined measures are not correlated, but this
is not the case here, for neighboring parallax measures are
indeed correlated.

The problem of combining correlated measures of the
same variable has been addressed in the data fusion liter-
ature, and one solution that provides consistent estimates
is the Covariance Intersection approach [29], where “con-
sistent” means that the estimated covariance is an upper
bound of the true covariance. When considering scalar
variables, Covariance Intersection boils down to selecting
the measure with the highest information value:

ip̂+(m) = max
q∈Ω(m)

{ip+(q)ρ‖m−q‖} (24)

q̄ = arg max
q∈Ω(m)

{ip+(q)ρ‖m−q‖}

x̂+(m) = x+(q̄) (25)

Please note that Equation (25) would yield the same
value of x̂+(m) for each pixel m ∈ Ω(m) if ρ = 1, whereas
with ρ < 1 it produces different values within the same su-
perpixel. The value of ρ can be computed as a function of
the cut-off radius θ (in pixels) at which the function ρ‖m−q‖

falls below a given threshold, 10−2 in our implementation.
The value of θ should be of the order of the stereo matching
window size. Please note that, as the smoothing is limited
within the superpixel, there is no point in choosing θ larger
than the superpixel radius.

The following Matlab pseudo-code illustrates one iter-
ation of the filter: the function takes in input the current
state estimate (x,ip) and the measure (z,ir) and up-
dates the state estimate accordingly. This also shows how
temporal and spatial integration are iterated.

f unc t i on [ x , ip ] = STKalmanStep (x , ip , z , i r )
% update s t a t e (x , ip )
% in the f a c e o f measure ( z , i r )

% p r ed i c t i o n
s=compute sca le (x , z ) ;
x=s ∗x ;
ip=1/s ˆ2 ∗ ip ;
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Figure 3: Examples of superpixel extraction using different values for the grid density, which controls the size of the superpixel.

% va l i d a t i o n gate
r e s =((x−z ) . ˆ 2 ) . / ( 1 . / ip + 1 ./ i r ) ;
v=( r e s <= Chi ) & i r >0;
% temporal update
x (v)=(z (v ) . ∗ i r ( v)+x(v ) . ∗ ip ( v ) ) . / ( i r ( v)+ ip (v ) ) ;
ip ( v)= ip (v ) + i r ( v ) ;
% s p a t i a l r e l a x a t i o n
f o r k=1:numel ( s up e rp i x e l s )

pix=sup e rp i x e l s ( k ) . P i x e l L i s t ;
f o r j =1: l ength ( pix )

w=rho . ˆ sum( sq r t ( ( pix−pix ( j ) ) . ˆ 2 ) , 2 ) ;
[ val , pos ]=max( ip ( pix ) . ∗w) ;
ip ( pix ( j ))= va l ;
x ( pix ( j ))=x ( pix ( pos ) ) ;

end
end

The compute_scale function implements the robust
method described in the text (after Equation (15)). In the
for cycle we have been sloppy about the difference be-
tween linear indexing and subscripts (row, column), for the
sake of readability. Also the subtraction in pix-pix(j)

is not syntactically correct, as pix(j) should have been
replicated. The actual working code is available on-line
[1].

4. Experiments and Results

We run two set of experiments. In the first one we
consider images from the Middlebury 2006 datasets [24]

with a ground truth in order to validate our method and
quantify the benefit of the spatial integration. In the sec-
ond set we use more general sequences, both outdoors and
indoors, without ground truth.

It is important to stress that the method presented here
focuses on the fusion of depth measurements, so the results
reported should not be evaluated in absolute terms, but
relatively to the input data, in this case disparity maps
produced by NCC block–matching. More sophisticated
stereo algorithms coupled with a global optimization yield
better depth maps, as those reported, e.g., in [32]. For
these reasons a comparison with other stereo methods is
pointless, since any of them could be plugged in our frame-
work.

4.1. Middlebury datasets

In the Middlebury datasets the camera motion is con-
strained along the X axis, so the integration takes place
at the disparity level.

The error rate is defined as the percentage of computed
disparities values whose difference with the ground truth
is > 1, as in [24]. Pixels marked as occluded in the ground
truth have not been counted.

In all the experiments in this section, we used a square
3 × 3 window for the NCC stereo matching, and the size
of the superpixels is set at 800 pixels.

First we performed a systematic evaluation of the con-
fidence measures described in Appendix A with the Mid-
dlebury 2005 datasets. Results are reported in Table 1,
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Table 1: Error rates [%] of disparity maps obtained with different confidence measures (see Appendix A for explanation). Best and worst
results are highlighted in boldface/green and lightface/red respectively.

Data GT MSM CUR PKR MMN MLM AML WMN UNI

Art 9.58 19.68 20.91 19.60 20.11 19.70 19.73 19.67 19.64

Books 8.78 23.14 24.17 22.90 23.51 22.97 23.01 22.83 23.03

Dolls 7.95 16.05 16.93 16.12 16.69 16.09 16.16 16.16 16.14

Laundry 13.37 28.71 31.73 28.84 30.23 28.96 29.08 28.37 29.02

Moebius 8.60 20.34 21.43 20.35 20.64 20.54 20.49 20.20 20.36

Reindeer 7.33 14.24 15.60 14.28 15.01 14.23 14.15 14.30 14.27

Mean 9.27 20.36 21.79 20.35 21.03 20.41 20.44 20.25 20.41

Table 2: Error rates [%] of disparity maps obtained with different confidence measures (see Appendix A for explanation), without the LRC
check. Best and worst results are highlighted in boldface/green and lightface/red respectively.

Data GT MSM CUR PKR MMN MLM AML WMN UNI

Art 10.61 23.00 25.69 23.19 22.74 23.08 23.10 23.27 23.14

Books 11.58 42.90 28.25 25.29 24.89 27.42 26.34 25.28 25.53

Dolls 6.29 18.48 20.17 18.62 18.19 18.51 18.59 18.61 18.61

Laundry 57.15 44.91 46.94 40.46 32.39 44.28 41.33 39.04 41.35

Moebius 6.06 28.42 24.32 22.26 21.90 22.70 22.28 22.11 22.20

Reindeer 6.70 18.58 18.95 16.86 17.24 22.00 17.91 16.87 16.85

Mean 16.40 29.38 27.39 24.45 22.89 26.33 24.92 24.20 24.61

where each entry contains the error rate of the dispar-
ity map produced by our method with a given confidence
measure.

Table 2 reports the results of a similar experiment in
which the confidence measures do not include the LRC,
i.e., ϕ = φ∗. These figures compel us to make some obser-
vations:

• all confidence measures are equally suited to repre-
sent pixel’s reliability, for in Table 1 all the entries
are very close; however WNM obtains the lowest er-
ror rate, probably thanks to the fact that it considers
distinctiveness of the match by looking at the second
best match, the same recipe that proved so effective
in SIFT matching (in fact, PKR, that uses a similar
strategy, performs closely to WNM).

• the UNI metric has surprisingly good performances,
confirming the robustness of the integration frame-
work; in other words, the data fusion works so well
that the confidence becomes nearly irrelevant;

• if LRC is switched off, MMN is the best performer,
although by a narrow margin; this suggests that MMN
could be a proxy for occlusions detection if LRC can-
not be performed;

• the comparison of the two tables indicates that the

most important contribution to confidence is the the
binary response of the LRC check.

Since WMN obtains the lowest error rate, we chose
it as the default confidence measure for the rest of our
experiments, although other choices would likely produce
similar results.

Then, we assess the benefits of the spatio–temporal
integration. Following [8], we consider two touchstones
against which to compare the error rate obtained with our
method (Kalman ST): the Optimal map obtained by
an oracle that selects the disparity value closest to the
ground-truth among all the input estimates for each pixel,
and the Best Map, obtained selecting the map with the
minimum error rate among all the input disparity maps.

Observe that the former represents the theoretical op-
timum that one can achieve with the given input disparity
maps using the temporal dimension, while the latter is an
indicator of whether the data-fusion is beneficial with re-
spect to a simple two-views stereo. We also considered
other integration strategies: the maximum confidence se-
lection (Max conf), which consists in selecting, for each
pixel, the disparity that achieves the maximum confidence
ϕ, the temporal fusion (Kalman T), that consists in ap-
plying only the temporal Kalman filter, without spatial re-
laxation, as in [14], and our implementation of [16] (hence-
forth MKS), for comparison with another method from
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Table 3: Error rates [%] of disparity maps obtained with different fusion strategies (see text for explanation) and WMN as the confidence
measure.

Data Best map Max conf Average MKS [16] Kalman T Kalman ST Optimal

Art 49.76 53.12 48.15 61.79 35.13 19.67 21.54

Books 55.89 68.37 59.04 76.89 48.57 22.83 29.32

Dolls 42.01 54.71 38.52 57.70 29.01 16.16 15.95

Laundry 75.67 69.22 69.27 81.54 58.16 28.37 44.23

Moebius 45.73 63.53 45.98 68.19 35.70 20.20 22.21

Reindeer 45.11 57.24 49.95 65.05 32.49 14.30 17.13

Mean 52.36 61.03 51.82 68.53 39.84 20.25 25.06
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Figure 4: Each graph shows the error rate decreasing as more measures are integrated in the estimation for the three approaches, the Kalman
T (temporal–only), the Kalman ST (spatial support) and the MKS (our implementation of [16]).

the literature.
Results with the Middlebury 2005 datasets are reported

in Table 3, where it can be appreciated that Kalman ST
(in boldface) achieves the lowest scores, when compared to
the other strategies; in particular spatio–temporal integra-
tion always improves the pure temporal Kalman filter and
always outperforms the results obtained by MKS. More-
over our method always exceeds the best map and, in some
cases, it also exceeds the optimal one, due to the spatial
relaxation.

Figure 4 reports, for the same experiments, how the
error rate decreases as more measures are integrated. Ob-
serve that MKS, despite the integration and spatial relax-
ation steps, only slightly improves the results obtained by
the regular stereo matching algorithm. This confirms the
idea that the warping of the disparity map from frame to
frame severely limits the benefits of the integration mech-
anism. Figures 5 and 6 show qualitative results for the

above sequences.

We also considered the 21 sequences of the Middlebury
2006 datasets; results are available on the web [1] and they
lead to the same conclusions.

Finally, please note that what we refer to as Kalman T
is the same implementation of the Kalman ST with the
spatial step switched-off, which is slightly different from
the original one described in [14] because of the validation
gate and other tweakings and also because we are using a
NCC based stereo algorithm instead of the Census trans-
form. Consequently, figures reported in Tab. 3 are different
from those reported in [14].

4.2. Casual video sequences

In the second set of experiments we test the method
on the “Flower”, “Road”, “Lawn”, from [32]. These are
casual, uncalibrated sequences, hence we used parallax as
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Figure 5: From top to bottom: the reference frame, the Best Map, the result of MKS, the result of Kalman T (temporal–only) and the
result of Kalman ST. Images are automatically scaled in the range [0,255], hence the gray levels changes from row to row. Full resolution
images can be seen on line [1].
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Figure 6: From top to bottom: the reference frame, the Best Map, the result of MKS, the result of Kalman T (temporal–only) and the
result of Kalman ST. Images are automatically scaled in the range [0,255], hence the gray levels changes from row to row. Full resolution
images can be seen on line [1].
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Figure 7: From top to bottom: the reference frame, the qualitative Best Map (manually selected), the result of MKS, the result of Kalman
T (temporal–only) and the result of Kalman ST. Images are automatically scaled in the range [0,255], hence the gray levels changes from
row to row. Full resolution images can be seen at www.diegm.uniud.it/fusiello/demo/dsp.

a depth-proxy and went trough all the stages required to
compute it.

Since ground truth is not available, the evaluation will
be only qualitative. Results, in Fig. 7, show a significant
improvement on the strategy without spatial support, and
are more consistent with the scene content, especially on
occluded or badly measured pixels. MKS could not be
evaluated on these images, as it is restricted to pure lateral
motion.

5. Conclusion

In this paper we presented a framework that allows
to combine parallax measurements obtained by processing
the frames of a monocular video sequence. The integration
takes place at two levels: i) temporal, where different esti-
mates of depth values are merged along a timeline, and ii)
spatial, where estimates are relaxed over pixel neighbor-
hood. A segmentation into superpixels provides a spatial

support that – in principle – does not cross objects bound-
aries.

Both spatial and temporal integration are derived as
simple Kalman filters and are consistent with a data fusion
framework based on the Mahalanobis distance [20]. They
exploit confidence values provided by the stereo match-
ing step. In our experiments all the confidence measures
provided comparable results, so there is no clear indication
that one measure is superior to the others. Instead, it turns
out that singling out occlusions (with LRC) makes a real
difference. The spatio–temporal integration has shown to
be effective, and the benefits of the spatial step have been
demonstrated with respect to the temporal-only version.
The method is also compared with MKS and obtains con-
sistently better results.
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Appendix A. Confidence Measures

This appendix summarizes the different confidence mea-
sures that have been considered in the paper. The reader
is referred to [8] for a more detailed description.

In the following c(d) denotes the matching cost – nor-
malized in [0, 1] – associated to disparity hypothesis d.
Since NCC is a similarity measure and all the confidence
measures are defined using a cost function, 1 − NCC will
be used instead.

The minimum cost for a pixel and its correspondent
disparity value are respectively denoted by c1 and d1 (i.e.
c(d1) = c1 = min(c(d))). The second smallest cost value is
denoted by c2, while the second smallest value that is also
a local minimum is represented by c2m (see Figure A.8).
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Figure A.8: Example of a cost function within a 10 pixel disparity
range.

The confidence φ(i) varies in [0, 1], where 0 means that
the value at pixel i is totally unreliable and 1 means fully
confident.

A very simple confidence metric is the matching score:

Matching Score (MSM):

φMSM = 1− c1. (A.1)

The first group of measures assess the cost function
around its minimum by comparing it to the following smaller
cost values (c2 or c2m) or to the disparity neighbors.

Curvature of the cost function (CUR):

φCUR =
2 + (−2c1 + c(d1 − 1) + c(d1 + 1))

4
(A.2)

Peak Ratio (PKR):

φPKR = 1− c1
c2m

(A.3)

Maximum Margin (MMN):

φMMN =
c2 − c1
c2

(A.4)

The following metrics take into account the entire cost
curve and by assuming that it follows a normal distribu-
tion.

Winner Margin (WMN):

φWMN =
c2m − c1∑

d c(d)
(A.5)

Maximum Likelihood Measure (MLM):

φMLM =
e
− c1

2σ2
MLM∑

d e
− c(d)

2σ2
MLM

(A.6)

Attainable Maximum Likelihood (AML):

φAML =
1∑

d e
− (c(d)−c1)2

2σ2
AMLM

(A.7)

We also considered two special measures to use as a
touchstone. GT assigns confidence 1 if the corresponding
pixel’s disparity is correctly computed and 0 otherwise, ac-
cording to the ground truth. UNI is an uninformed metric
that assigns the same confidence to all the pixels.

Ground truth (GT):

φGT =

{
1 if disparity is correct

0 o/w
(A.8)

Uniform (UNI):
φUNI = cost (A.9)
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