
Synthesis of Indoor Maps in Presence of UncertaintyAndrea Fusiello, Bruno CaprileIstituto per la Ricerca Scienti�ca e Tecnologica, Via Sommerive 18, I-38050 Povo,Trento, ItalyA robotic system is presented, which is able to autonomously exploreunengineered indoor environments, thereby synthesising maps suitablefor planning and navigation purposes. Map recovery takes place throughinteraction between the robot and the world, in which either sensing andacting are a�ected by uncertainty. Kalman �ltering is applied to maintainposition best estimates, which are then fused with data coming from theobservation of landmarks.The proposed method has been implemented on a robot equipped withultrasonic range �nders, and tested in a fairly simple, real environment.Key words: Robot exploration, Map synthesis, Dead reckoning navigation, Sonar,Machine learning.1 IntroductionMaps synthesis from unsupervided exploration is a well known and challengingproblem in robotics. In this paper, a system is presented which has proven upto the task, at least when working in fairly simple indoor environments.The main objective of the research reported here is to develop a robotic systemable to successfully accomplish the so called weekend experiment [21]:(i) a robot is left alone in an o�ce building (let us suppose it is 5:30 pm onFriday night);(ii) the robot has no a-priori map;(iii) the command \travel at your leisure around the environment and builda map of accessible space (without harming yourself)" is issued to therobot;(iv) on Monday morning the robot is ready to execute commands using themap it learned on the weekend.If sensors readings and motor actions were uncertainty immune, recoveringthe map would be merely matter of time. Yet, when dealing with real environ-Preprint submitted to Elsevier Preprint 18 December 1997



ments, models should be considered which are able to tolerate the presence ofuncertainty.In modeling the environment, a distinction is typically made between geo-metric and qualitative approaches. In the �rst, the spatial structure of theenvironment is represented through geometric primitives { �xed (grid-basedrepresentations like Occupancy Grid, �rst introduced in [24,16], and the His-togram Grid [3]) or adaptive (Voronoi Diagrams [5], Generalised Cones [4],Segment Models [9], Convex Polygon Models [8] and Polygonal Region Model[23]). Albeit fairly popular, geometric techniques present a main weakness inthe use they make of error-prone metrical information.Qualitative models abstract \relevant" features of the environment, establish-ing relationships among them. Typical qualitative representations are graph-based models and feature maps, that is, collections of uncertain spatial rela-tionships among landmarks [20,21,26]. Graph-based models give a qualitative-topological representation of the environment: the world is modeled as a graphwhose nodes represent places that { on the basis of appropriate perceptual cri-teria { are regarded as distinctive, and the arcs express spatial or functionalrelationships between nodes. This approach, pioneered by Kuipers [18], was in-spired to human cognitive maps, and has more recently led to the introductionof qualitative mapping schemes [19]. Other well known works on graph-basedmapping have been authored by Mataric [22], Dean and Basye [2,11,1], andDudek et al. [13]. To the work of the latter the present paper is particularlyinspired. In [1], the environment is represented as a �nite state automaton.The robot is endowed with a set of actions and perceptions restricting its in-teraction with the world in such a way that the world/robot system behaveslike a �nite state automaton. The robot infers the structure of the automatonby experimenting with it in the presence of noise.When dealing with real, unengineered environments a number of problemsarise concerning the navigation abilities (namely, self-localisation and sensorydata interpretation) of the robot being employed. The model of environmentshould therefore be \robust" with respect to uncertainties a�icting both per-ception and motion. In the present work, Basye's approach is extended in thedirection of a greater robustness. In particular, the dead reckoning process istreated in a statistical framework [26]. Errors and uncertainties in position aredealt with Kalman �ltering techniques [17], which allow to match positions ofdistinctive places with greater reliability and 
exibility.Our mobile robot is equipped with sonar range �nders and an odometer, whichprovide sensor measurements for a set of basic reactive navigation modules [7].The system has been thoroughly tested in our Institute building. Left free toexplore the �rst 
oor, the robot is able to accomplish the task, extractingtopologically correct maps, which are also su�ciently accurate to be used for2



navigation purposes.In Sec. 2 the model of interaction is introduced, while Secs. 4, 5 and 6, containa rather detailed description of the main modules of the system. In Sec. 7results obtained when exploring a simple environment are reported.2 The ModelThe model of environment that will be adopted is inspired to early worksof Kuipers [18,19], and consists in a graph whose vertices correspond to Lo-cal Distinctive Places (LDP); the edges are elemental paths (the Conduits)connecting LDPs. To each LDP a signature is assigned which abstracts theinformation collected in sensing the LDP. In fact, neither connectivity, nor thedistinctiveness of places are to be considered in absolute terms: it is the robotthat, endowed with appropriate perceptual and sensory-motor abilities, labelsthe LDPs and probes whether connections exist between them.Our environment consists of straight corridors of di�erent width, meeting atright angles; corridors are associated to Conduits, and junctions to Local Dis-tinctive Places. The signature of the LDP consists in the position and the(oriented) shape of the junction; Conduits are labeled with the navigationcommands whose execution causes the robot to traverse them. In this simplemodel of the environment, corridors may have only four oriented directions;conventionally 1 these will be indicated with N, E, S, W.While the model of the environment is deterministic, the interaction betweenthe robot and the environment is stochastic, being a�ected by the uncertaintyarising from either inaccuracies in the measurements and the interpretation ofsensory data. We will assume that:{ outcome of navigation commands can be predicted only with a certain prob-ability;{ it is only with a certain probability that junctions are correctly distinguishedfrom one another.In Sec. 6 it will be shown how, under these assumptions, the graph underlyingthe environment can be exactly reconstructed. The idea is to cumulate a seriesof observations in a small number of stochastic matrices (one matrix for eachnavigation command). Entry i; j of matrix M� is the frequencies of observ-ing place j after the execution of the navigation command � starting from1 It may be worth stressing the fact that no relationship exists, in absolute terms,between these directions and their geographic counterparts.3



place i. Under mild assumptions [12], the adjacency matrix of the underlyingundirected graph can be recovered from such stochastic matrices.3 The ArchitectureThe Map Learning System is structured in three main layers (see Fig.1): each layer executes commands coming from the layer above by employ-ing the functionalities provided by the layers below. The bottom layer is theBehaviour Layer, which, by means of a set of sensory-motor functional-ities, interfaces the system with the world. The map learning process takesplace in the other two layers: at the top, the Cartographer builds thequalitative map, controls the learning process and maintains the position ofthe vehicle. Immediately below, the Navigator is in charge of building themetric map, and manages to execute the navigation commands coming fromthe Cartographer.
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Fig. 1. The architecture of the Map Learning System.4 The Behaviour LevelIn this section, the Behaviour Layer is brie
y illustrated (for more details,refer to [6,7]).Its basic elements are (see Fig. 2):{ sensors and actuators; 4
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Fig. 2. The Behaviour Layer. Motor-actions, predicates and perceptions, as well assensors and actuators, are executed as threads of a single process, called ARCA [7],which provides the runtime environment.{ motor-actions: modules implementing motor activities;{ predicates: modules implementing perceptual activities aimed at answeringquestions related to events relevant for the navigation;{ perceptions: modules implementing perceptual activities aimed at estimatinginteresting (physical or geometric) quantities.A termination condition is a form composed by combining predicates. It typ-ically triggers the disactivation of the motor action being executed or theactivation of other motor actions, predicates or perceptions.A basic behaviour is a pairing of a motor action and a termination condition(plus a set of optional �elds); the former conveys the motor action that hasto be performed and the latter the events upon which the motor action is tobe ended. The syntax of a basic behaviour is the following:(BASIC-BEHAVIOUR:motor-action <motor-action>:termination <termination>:report <perception> )The interpretation and execution of basic behaviours is performed by the Ac-tion Manager. This receives the description of a basic behaviour from theNavigator; after verifying its correctness, the Action Manager handlesthe activation and disactivation of appropriate modules { thereby supervisingtheir execution. Upon termination, the Action Manager reports on the ex-ecution back to the Navigator, adding the information corresponding to theactivated perceptions. 5



The Behaviour Layer consists of several modules. The motor actionsrelevant for the map learning process are:Follow-the-Corridor: move along corridors;Move: move straight ahead;Rotate: rotate on place.The predicates are:Rotated-Angle-Greater-Than: it signals when the angle between the robotheading at the activation time and the current heading is greater than agiven value;Left(Right)-Corridor-Detected: it signals the presence of the left (right)lateral corridor;Frontal-Distance-Lower-Than: it signals when the distance between thevehicle and a persisting frontal obstacle becomes lower than a given value.Important perception for the exploration are:Get-Position: it returns an estimate of the absolute position and orienta-tion (px; py; �) computed by the odometer. It also gives the 3� 3 covariancematrix expressing the uncertainty of the position's estimate on the basis ofthe odometer's model (see appendix A);Get-Open-Space-Directions: it returns a set of unobtructed directions asseen from the robot. When activated in a junction, it returns the directionsof the departing corridors (see Appendix B);Store-Lateral-Sonar-View: it provides the sequence of range measure-ments returned by the lateral sonars.5 The NavigatorTwo are the main tasks that the Navigator is called to accomplish: (1)to execute the requests coming from the Cartographer ; (2) to build themetric map.The Navigator receives from the Cartographer high level commandsdescribed by one of the four directions N, E, S, W { their meaning being that ofrequesting the robot to navigate towards the indicated direction, until eithera junction or the end of the corridor is met. In order to execute the commandstheNavigator builds appropriate sequences of basic behaviours, and controlstheir execution by interacting with the Action Manager. When a failureoccurs, the Navigator tries to apply simple recovery procedures. At the end,it reports back to the Cartographer a data structure (called signature)6



containing information about the current place. The syntax is:object SIGNATURE isshape: SHAPE TYPE;position: ARRAY[3]fDOUBLEg;covariance: MATRIX[3]fDOUBLEg;end;The �eld shape encodes the shape of the junction as perceived by the robot;for example, the label NSE (to be intended as the set fN; S;Eg) means thatthe robot has detected a junction with three corridors along the directions N,S, E.On the basis of distances detected by the lateral sonars, theNavigator buildsalso the metric map { a gray level image representing a quantised top view ofthe environment. Each pixel corresponds to a square cell of side equal to 0.1m; the grey value of each pixel (the occupancy value) re
ects how many timesthe corresponding cell has been classi�ed as obstructed or free during the ex-ploration. At the beginning, all the pixels are given the same value (128); foreach sonar return, the occupancy value of every cell is updated in agreementwith a simple sonar model (see Appendix D), increasing the value of the cellwhen it is occupied, and decreasing it when it is free.6 The CartographerAs previously outlined, the main goal of the Cartographer is to buildthe qualitative map while guiding the whole learning process. Moreover, theCartographer maintains an estimate of the current position of the robot,by applying the algorithm described in Sec. 6.2.The Cartographer sends the navigator commands like \move along thecorridor in the direction of N". From the Navigator, it receives the signatureof the distinctive places reached by the robot.As explained in Sec. 1, the qualitative map contains both symbolic and metricinformation about the environment: it is structured as a labelled orientedgraph whereby a node represents a distinctive place identi�ed by the signature.In analogy with the Tour Model proposed by Kuipers [18], an arc between twonodes corresponds to a navigation command that has been observed to causethe robot go from the �rst to the second place.Even though the adopted model is qualitative, metric information can beextracted from the graph: nodes contain the absolute position of distinctive7



places, and arcs are given the orientation of the corresponding corridors.6.1 The Learning AlgorithmThe main idea underlying the learning algorithm is to recover the graph byexperimenting with it [1]: an \agent" executes actions, consisting in travelingalong edges, and observes the resulting state { the node. Were the processcompletely deterministic, it would be su�cient, in order to recover the graph,that any one of the following conditions held:(i) each node has a unique \signature";(ii) the graph has a \distinguishing sequence" [11];(iii) the agent is allowed to use a single marker that it can pick-up and leavein nodes [14].At least in principle, the odometric position uniquely identi�es each distinctiveplace. In practice, however, cumulative errors a�ecting dead reckoning maycorrupt the position estimate to the point it becomes useless. Uncertaintyin the position can be reduced whenever the robot visits an already visitedplace. Moreover, local sensory information can be exploited to identify places.The same sources of uncertainty a�ecting LDPs identi�cation also a�ect theexecution of commands. Since commands are based on sensory-motor loops,the uncertainty in sensing has an impact on the outcome of commands. Itshall therefore be assumed that results of commands are not deterministic.The algorithm described in [1], recovers the graph from noisy experiments,provided that the signature of every node is unique. The algorithm employstwo basic data structure: a list, L, contains the signatures of the already visitedplaces, while the adjacency information is stored in four matrices,M� , � beingequal to one (and only one) of the four direction N, E, S, W.The strategy is fairly simple: for each pair of signatures (�i; �j) and for eachcommand �, the algorithm cumulates in the i; j entry of matrix M� the num-ber of times that the observation of �i followed by the execution of � lead tothe observation of �j. Provided that the frequency of visits at nodes is approx-imatively uniform, a number of visits exists that is su�cient to recover thegraph from the stochastic matrices. In particular, if �j is the most frequentlyobserved signature after the execution of � starting from �i, and �i is themost frequently observed signature after the execution of ��1, starting from�j, then the labeled edge (�i; �; �j) is added to the graph. Notice how it isrequired that for each arc oriented along a given direction, another ought toexist between the same two nodes, but in the opposite way.8



for each command �Initialize(M�)L ;G ;�i  NULLloop beginGetSignature(�p);�j = BestMatch(�p; L)if �j = NULLthen Insert (�p; L);�j  �pelse �j  Merge (�j; �p)Increment(M�(�i; �j));Increment(M��1(�j; �i));for each unfeasible command �do Increment(M��1(�j; �j);�i  �j� ChooseCommand();ExecuteCommand(�);endfor each command �for each �i 2 Ldo begin�j  maxM�(�i; :))�p  maxM��1(�j; :))if �i = �pthen AddEdge((�i; �; �j); G)endFig. 3. The Learning Algorithm.The core of the algorithm (see Fig. 3) is implemented by the following threeprocedures:{ BestMatch: it returns the signature in L that best matches signature �paccording to their Mahalanobis distance (see Eq. B.1) and shapes. In par-ticular, two signatures are de�ned as equivalent when the Mahalanobis dis-tance between their respective positions is smaller than 7.81 (correspondingto 95% �2 con�dence) and their shapes di�er in no more than one element;{ Merge: it merges two matching signatures. It uses Kalman �ltering (seeEq. B.4) to obtain a better position estimate and performs the intersectionof the shapes. 9



{ ChooseCommand: taking into account the current junction shape, it re-turns the less traversed direction among those along which the robot is ex-pected to navigate successfully. This strategy makes the visiting frequenciesasymptotically equalised.6.2 Position EstimateThe process of learning the qualitative and metric maps heavily relies onthe capability of maintaining good estimates of the position. Unfortunately,dead reckoning is prone to cumulative errors that cause position estimates tobecome quickly useless [27,15,20].When two signatures are recognised as equivalent (BestMatch), their re-spective positions 2 and the two covariance matrices are merged into a newposition and a new covariance matrix by using a Kalman �lter (Merge). Theuncertainty on the position estimate is therefore reduced in the new signature(see Appendix A). The special command Set-Position is then issued to theBehaviour Layer, thereby causing the odometer to be set to the new valuesof the position and covariance matrix.7 Testing the SystemThe map learning scheme described in the previous sections has been imple-mented on a real robot and tested in an indoor, unengineered environment {the �rst 
oor of our Institute.The robot is equipped with 8 Polaroid sonar range �nders detecting re
ectingsurfaces in the range [0:2; 4:0] m. The kinematics consists in two driving wheelsplus a pivoting one in the rear. The computing power is provided by twoon board Intel 486DX2 microprocessors, connected through a local Ethernetnetwork.The Cartographer and the Navigator are implemented as distinct pro-cesses running on the same processor, and exchanging data through sockets.The output of the Navigator is a grey-level image representing the occu-pancy grid as recovered from exploration of the environment (see Fig. 5); theoutput of the Cartographer is an undirected graph from which a map likethat reported in Fig. 4b can be obtained by placing the nodes in the positionsof the corresponding signatures.2 The position is a signature's �eld. 10
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Fig. 5. The reconstructed grid-map. The grey level represent the occupancy value:the darker is the pixel, the more likely that the cell is occupied.11



8 ConclusionsIn this paper, a robotic system able to synthesise maps of unengineered in-door environments was presented. The robot autonomously navigates alongthe corridors, gathering data from the world. Starting from an explorationalgorithm introduced by Basye, Kalman �ltering was applied to reduce errorsa�ecting position measurements.The map that our system provides appears suitable for a systems needing onlytopologic information for planning and navigation, since any path on the mapcorresponds to a sequence of navigation commands. OurMap Learning Sys-tem was developed in the framework of MAIA (Advanced Model of Arti�cialIntelligence) [25] { an integrated system aimed at executing fairly sophisti-cated missions in working environments. In order to evaluate the performanceof our system in the light of the week-end experiment, it is therefore natural forus to compare its output with that needed by the navigation system of MAIA{ an annotated bitmap encoding geometric and structural information. Whileeither metric and topological information extracted by the Map LearningSystem are in this respect su�ciently accurate, methods to integrate the twoare presently under investigation.AcknowledgementAuthors wish to thank R. Cattoni for many helpful discussions. B. Crespi andS. Messelodi read early drafts of the paper and made useful comments. Re-marks and suggestions by an anonymous referee helped improving the paper.A OdometryThe position of the robot, p(t) can be computed as the integral over time ofits speed: p(t) = tZt0 K(@u@t )dt; (A.1)where K is the kinematics and u is the vector of shaft encoder readings.This process is called dead reckoning. A problem arises from the fact thatthe measurements from the encoders and the kinematic parameters are noterror-free, so the computed position is a�ected by a cumulative error.12



A.1 The Odometer ModelThe vehicle has two opposed drive wheels, mounted on an axis of length L.Steering is obtained by imposing di�erent speeds to the wheels. Main advan-tage of this con�guration, called di�erential drive, is that of possessing a zeroturning radius.The kinematic state of the vehicle can be expressed as a triplet:x(k) = (px(k); py(k); �(k))>; (A.2)where px(k) and py(k)) are the coordinates of the midpoint of the axis, and �is the heading of the vehicle (that is, the angle between the perpendicular tothe wheel axis and the x-axis taken counterclockwise).
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Fig. A.1. Vehicle's kinematics. The robot reference point is the midpoint of axisP ; the right and left drive wheels are indicated by A and B, respectively. As thevehicle moves from P to P 0, an arc of length �D is covered while heading changesby ��.As shown in Fig. A.1, the traveled distance, �D, and the heading increment,��, can be computed in terms of the distances covered by the right and leftwheels, which will be indicated with �Dr(k) �Dl(k), respectively:�D(k) = �Dr(k) + �Dl(k)2 (A.3)��(k) = �Dr(k)��Dl(k)L : (A.4)Simple geometric arguments give:px(k + 1)= px(k) + S�D(k) cos(�(k) + ��(k)=2) (A.5)13



py(k + 1)= py(k) + S�D(k) sin(�(k) + ��(k)=2) (A.6)�(k + 1)= �(k) + ��(k) (A.7)where S = sin(��(k)=2)��(k)=2 :In the �rst-order approximation this term vanishes, corresponding to considerPP 0 as a straight segment. A discrete dynamical system is then de�ned:x(k + 1) = f(x(k);u(k)); (A.8)where u(k) = (�Dr(k);�Dr(k))>is the input.A.2 Adding Noise to the ModelDue to various sources of error (weight distribution, the condition of the rubberof the wheels, the condition of the 
oor) the actual state of the robot mayconsiderably di�er form that obtained applying Eq. A.5. A way to account forthese discrepancies is to assume that the system's input is perturbed additive,zero-mean noise, v(k), with known covariance matrix:u�(k) = u(k) + v(k) (A.9)E[u�(k)] = u(k) (A.10)C[u�(k)] = C[v(k)]: (A.11)The covariance matrix, C[v(k)] of the input noise has the following form:C[v(k)] = 0B@�2�Dr(k) 00 �2�Dl(k)1CA ; (A.12)where it has been assumed that: (1) relative errors on encoders readings areindependent from one another and identically distributed; (2) their distribu-tion has zero mean and variance �2, which can be estimated empirically; (3)the variance of the absolute error is proportional to the measured distance.14
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B Position Best EstimatesIn the following p̂ will denote an estimate of the position (px(k); py(k)) of thevehicle, and � = C[p̂] its 2� 2 covariance matrix.Let us assume that, given a position estimate (p̂o;�o), we want to compare itwith another estimate (p̂m;�m). More precisely, in the assumption that eachestimate is a sample from some (unknown) normal distribution, we want to testthe hypothesis that both are drawn from the same distribution. A well knownmetric to compare gaussian distributions is the Mahalanobis distance [10]:kp̂m � p̂okM = (p̂m � p̂o)>(�m + �o)�1(p̂m � p̂o): (B.1)Since (p̂m�p̂o) has a n-variate normal zero-mean distribution (with covarianceequal to (�m + �o)), the Mahalanobis distance has a �2 distribution with ndegrees of freedom. The hypothesis that (p̂o;�o) and (p̂m;�m) are taken fromthe same d-dimensional distribution at a � con�dence level is rejected whentheir Mahalanobis distance is greater than �2d(�). For 2-dimensional normaldistributions at 0:95 con�dence level, �2d(�) ' 7:81.
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Fig. B.1. Merging two estimates: uncertainties regions for pm and po (� = 0:95).The shadowed ellipse represents the uncertainty region of pn, as resulting from themerging process.When two estimates, (p̂m;�m) and (p̂o;�o), are recognised as correspondingto the same physical position, one may want to merge them into a new (andpossibly better) estimate. The Kalman Filter [17] provides the resulting bestunbiased linear estimate (p̂n;�n), which can be computed from the followingformul�:K=�m[�m + �o]�1 (B.2)p̂n= p̂m +K(p̂o � p̂m) (B.3)�n=(I�K)�m : (B.4)16



A slightly di�erent version of above formula for �n can be considered in orderto force the covariance matrix to be positive de�nite:�n = (I�K)�m(I�K)> +K�oK>: (B.5)It is by construction that the two terms of the sum are positive de�nite (andsymmetric), this implying that �n is positive de�nite (and symmetric).
C Open Spaces DetectionWhen activated in a junction, the Get-Open-Space-Directions perceptionis expected to return the directions corresponding to the departing corridors.Our robot is equipped with 8 Polaroid Ultrasonic Range Finder, which canmeasure distance from surfaces in the range [0.2, 4.0] meters. As it is wellknown, raw sonar readings are of limited accuracy and reliability. In our casethe emission beam width is equal to 25:4o and the wave length is 6:95 mm,hence angular resolution of the device is fairly poor (about 12:7o) and mostsurfaces in the environment give rise to specular re
ections.The perception starts with an on-place rotation of the vehicle, during which a360-view is obtained by combining two 180-views from taken from oppositelydirected sonars. Referring sonar readings to a common, robot-centered refer-ence frame, polar plots of the range pro�le can be obtained (see Fig. C.1).As it can be observed, measurements are fairly noisy; they are therefore �l-tered with a Gaussian kernel of semi amplitude approximatively equal to theangular resolution of the sonar. This process, �ltering out high frequency arti-facts, yields a smooth and more reliable depth pro�le, in which local maximacorrespond to deep and broad obstruction-free areas. The �ltered pro�le isthen convolved with a simple derivative kernel: points of local maxima willcorrespond to decreasing derivative zero-crossings.Some heuristics is now introduced. In particular:{ only su�ciently high maxima may correspond to corridors;{ maxima corresponding to corridors should be (approximately) spaced bymultiples of 90o. 17
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Trivially, the position and orientation of the same sensor in the global referenceframe are given by:0B@ sxsy 1CA = 0B@ pxpy 1CA+ 0B@ cos � � sin �sin � cos � 1CA0B@ s0xs0y 1CA (D.3)� = �0 + �: (D.4)If the sonar sensor returns a range reading r, in the simple model we adopt,the position of the re
ecting target is computed as follows:0B@ txty 1CA = 0B@ sxsy 1CA+ r0B@ cos�sin� 1CA (D.5)The occupancy value of the discrete cell to which the target belongs is decre-mented (obstructed space), while the cells crossed by the sonar axis are incre-mented (they are free space). In the global reference frame this is the segment:0B@uxuy 1CA = �0B@ sxsy 1CA+ (1� �)0B@ txty 1CA ; 0 < � < 1: (D.6)This approach, inspired to the Histogram Grid [3], may appear to be oversim-pli�ed, when compared with others [16] which assign a probability distributionfor the target location inside the sonar emission cone. Yet, a probability distri-bution is actually obtained by dense sampling of the sensor while the vehicleis moving.References[1] K. Basye. Graph-based mapping by mobile robots. In Wolfe and Chun,editors, Mobile Robot VII, pages 643{649. The International Society for OpticalEngineering, November 1992.[2] K. Basye and T. Dean. Map learning with indistinguishable locations. InLemmer and Kanal, editors, Uncertainty in Arti�cial Intelligence 5, pages 331{341. Elsevier, 1990.[3] J. Borenstein and Y. Koren. Histogramic in-motion mapping for mobile robotobstacle avoidance. IEEE Transactions on Robotics and Automation, 7(4):535{539, August 1991. 19
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