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Abstract

We describe RICP, a robust algorithm for registering and finding correspondences in
sets of 3-D points with significant percentages of missing data, and therefore useful
for both motion analysis and reverse engineering. RICP exploits LMedS robust es-
timation to withstand the effect of outliers. Our extensive experimental comparison

of RICP with ICP shows RICP’s superior robustness and reliability.
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1 Introduction

This paper addresses the registration of noisy sets of 3-D points, a percentage
of which is present in one set but not in the other, and in the absence of
correspondence information. This problem has been considered mainly in two
applicative domains, motion analysis and reverse engineering. Apart from the
differences in emphasis discussed below, algorithms from both domains solve

basically the same two problems: estimating the 3-D motion (rotation matrix

Preprint submitted to Elsevier Preprint 22 June 1999



and translation vector) aligning the two sets of points, and establishing a
correspondence between points. The two problems are intimately connected;

(Wang et al., 1996) gives a nice illustration of their mathematical symmetry.

Motion estimation (Goldgof et al., 1992; Ito and Aloimonos, 1988; Lee and
Joshi, 1993; Wang et al., 1996) aims to compute the motion aligning the
point sets. Points are typically extracted by passive ranging systems such
as feature-based stereo. Least-squares (LS) solutions are well-known for the
ideal motion problem (both sets contain the same number of points affected
by moderate sensor noise (Kanatani, 1993)), but fail for the general motion
problem, whereby several points, called outliers, have no correspondence in
the other set and may lie far from matched points. (Wang et al., 1996) is
representative of recent work in this area. The authors propose an efficient,
heuristic outlier removal scheme, cast as a solution of a graph assignment
problem. Motion is estimated after correspondence is established. However,
the speed advantages are limited by several factors: the method depends on
a heuristic threshold, is ostensibly sensitive to even moderate Gaussian noise,

and can cope with only limited percentages of outliers.

Reverse engineering aims to acquire an accurate, complete surface model of a
3-D object from several range views (Chen and Medioni, 1992; Eggert et al.,
1996; Stoddart et al., 1998). Dense data points (e.g., tens of thousands of tri-
angulated points per view) are typically acquired by active ranging systems
like laser scanners (Trucco et al., 1998). Sensor noise from state-of-the-art
laser scanners is low (around one part in one thousand). Most algorithms in
this domain are variations of the Iterative Closest Point algorithm (ICP) in-
troduced in (Besl and McKay, 1992). ICP can give very accurate results for
densely sampled surfaces, but results deteriorate with outliers, created at least
by non-overlapping areas between views. In this case, the overlapping surface
portions must start very close to each other to ensure convergence, making the
initial position a critical parameter. (Bispo and Fisher, 1996; Brujic and Ris-

tic, 1996) report quantitative studies of ICP performance. The most relevant



findings for our purposes are that (i) the initial registration guess affects only
the speed of convergence (not registration accuracy), as long as it is chosen
within the convergence basin of the target minimum; (ii) accurate registration
is possible with no outliers, and requires very accurate measurements and high
numbers of points; (iii) acceptable accuracy (for reverse engineering) can be

achieved with 2-300 points.

This paper introduces RICP, an algorithm for registering robustly a limited
number of sparse 3-D points (say about 100) corrupted by significant per-
centages of outliers. Robustness is achieved thanks to the Least Median of
Squares (LMedS) regression (Rousseeuw and Leroy, 1987), which has been
used successfully in many areas on computer vision (Meer et al., 1991; Torr
and Murray, 1997). (Masuda and Yokoya, 1995) also report a robust regis-
tration method based on ICP and LMedS. Their method iterates a 3-step
sequence of processes: random sampling, estimation of the motion parameters
with ICP, and evaluation. The sequence as a whole makes up the LMedS al-
gorithm. On the contrary, in our approach, LMedS (with random sampling)
is used inside the ICP, where it replaces the LS rotation estimation. This en-
ables us to use a dynamic translation estimate based on outlier-free data in
the ICP iteration. Moreover, as shown by our experiments, RICP achieves a

larger basin of attraction and more accurate registrations than ICP.

RICP is interesting for both correspondenceless motion, in which sets of sparse
points are frequently used, and free-form surface matching, as outliers occur
inevitably when multiple views are acquired. In the latter case, RICP can both
produce initial alignments and find outliers in subsampled surface data. As it
acts on sparse point sets, RICP performs a neighbour search on a set of points
rather then finding the closest point (CP) on a true surface. This is similar
to some ICP variations (Blais and Levine, 1995; Zhang, 1994) in which dense
surface data are sampled uniformly to achieve a sparse set of control points
used for registration. Notice that RICP still works with dense data, but the

advantages over ICP are smaller unless many outliers are present.



In the following, Section 2 summarises ICP and its main features, Section 3
presents RICP, Section 4 reports our experimental evaluation of RICP, and

Section 5 discusses RICP’s contributions and limitations.

2 A brief summary of ICP

This section summarizes ICP and some features of our ICP implementation.
Let P = {p;}1* and M = {m,} "™ the two sets of 3-D points to align, which
we call respectively data and model. In general, N, # N,,. The problem is to
compute the rotation R and translation t producing the best alignment of P

and M:
M=RP +t, (1)

meaning that R and t are applied to each point in the set P. In general, this
equation will not be satisfied exactly by all points, hence the equality should

be interpreted in the least square sense.

Let us define the closest point in the model to a data point p as
cp(p) = arg min [m — pl|.

We can then summarize ICP as follows:

1. Compute the subset of CPs: Y ={m e M |p € P:m = cp(p)};
2. Compute a LS estimate of the motion bringing P onto ):

El

NP
(R,t) =argmin}_[ly; - Rp; — (2)
i=1

where y; € Y and p; € P.
3. Apply the motion to the data points:

P+ RP +t.

4. If the stopping criterion (see below) is satisfied, exit; else go to 1.



The algorithm stops as soon as one of the following conditions is satisfied:

e the mean square error (MSE) d = 1/N, S, |ly; — pi|? is sufficiently small;
e the MSE difference between two successive iterations is sufficiently small;

e the maximum allowed number of iterations has been reached.

It has been proven (Besl and McKay, 1992) that ICP converges monotonically
to a local minimum of the MSE, an index commonly used along with its
derivative with respect to the step index (Besl and McKay, 1992; Bispo and
Fisher, 1996; Stoddart et al., 1998; Zhang, 1994).

For step 1, we have implemented CP algorithms based on exhaustive search
(acceptable with small point sets) and k-D trees (Besl and McKay, 1992;
Zhang, 1994).

In step 2, motion parameters are computed using a technique involving the
SVD, which has been shown to yield the best global accuracy and stability
(Lorusso et al., 1997). Since (1) is satisfied by the centroids of the point sets

as well, we can eliminate translation by defining the centralized sets:

Pei=Pi—P and y.;,=y;—Yy

where
N, N,
p= l/Npr,- y = l/NpZCp(pi).
i=1 i=1
Note that we estimate centroids p (data) and y (model) at each iteration,
using only the N, points that are CP for at least one data point, hence a

model point increases its weight in the computation if it is the CP of several

data points.

Problem (2) is then equivalent to the following problem:

mm Z lyei — Rpeill?,  (with R rotation matrix) (3)



that is minimized when trace(RK) is maximized (Kanatani, 1993), where

NP
K=> ye.P.

i=1
If the SVD of K is given by K = VDU, then the optimal rotation matrix that
maximizes the trace is R = VU'. The optimal translation is then computed

ast =y — Rp.

Extensive experimentation with our ICP implementation confirmed ICP’s
good performance with full overlap (all points in both views) and initial mo-
tion guesses very close to the solution, and its sensitivity to outliers (e.g.,
partial overlap) (Bispo and Fisher, 1996; Brujic and Ristic, 1996). Outliers
skew the distribution of the residuals r; = ||y; — (Rp; + t)||, and consequently
LS motion estimates. In addition, outliers skew the centroid estimate, and con-
sequently rotation estimates obtained after shifting data points to the centroid

(Kanatani, 1993).

3 RICP: a Robust ICP algorithm

This section outlines RICP, our robust algorithm for correspondenceless point
matching. Problem and notation are the same as in Section 2. RICP replaces

step 2 of ICP with a robust estimation of motion, based on LMedS.

The principle behind LMedS is the following: given a regression problem, where
the number of parameters is d, compute a candidate model based on a ran-
domly chosen d-tuple from the data; estimate the fit of this model to all the
data, defined as the median of the squared residuals, and repeat optimizing
the fit. The data points that do not belong to the optimal model, which rep-
resent the majority of the data, are outliers. The breakdown point, i.e., the
smallest fraction of outliers that can yield arbitrary estimate values, is 50%.
In principle all the d-tuples should be evaluated; in practice a Monte Carlo

technique is applied, in which only a random sample of them of size m is con-



sidered. Assuming that the whole set of points may contain up to a fraction
€ of outliers, the probability that at least one of the m d-tuple consist of d

inliers is given by
P=1—(1—(1-¢%H™ (4)

Hence, given d, €, and the required P (close to 1), one can determine m:

_ log(1-P)
“Tog(l- (-8

(5)

When Gaussian noise is present in addition to outliers, the relative statisti-
cal efficiency (i.e., the ratio between the lowest achievable variance for the
estimated parameters and the actual variance) of the LMedS is low; to in-
crease the efficiency, it is advisable to run a weighted LS fit after LMedS, with
weights depending on the residual of the LMedS procedure (Rousseeuw and
Leroy, 1987).

In order to use LMedS for computing rigid motion in (step 2), we release
temporarily the constraint of R being a rotation matrix, and we cast the
problem of computing the matrix R as a linear regression problem with nine

parameters (the entries of R are considered independent).

Estimating rotation. As in the previous case, we first eliminate translation
by shifting data and model in the centroid (see next paragraph), thereby

obtaining:

Yei-- -yc,Np] =R [pc,l cee pc,Np]
which can be re-written as an over-constrained system of linear equations:

Lr=b (6)



where L is a 3N, X 9 matrix given by

ch,1
0 0
e,
ch,l
L=| o o |, (7)
P,
(le
0 0
Pl

r (9 x 1) is obtained by juxtaposing the rows of the matrix R, and b (3V, x 1)
is obtained by juxtaposing the rows of the matrix [y ...ycn,]. The unknown
vector r is then computed by solving (6) with the Monte Carlo LMedS method

as follows:

(1) select randomly 3 data points, and build a 9 x 9 system matrix L* as in

(7);
(2) let r* be the solution of the resulting linear system;

(3) compute the residuals of this solution with respect to all the points
s = Lr* — b; (8)

(4) repeat from step (1) minimizing the median of the squared residuals, until

m samples have been evaluated.

In our implementation we assume € = 0.5, and require P = 0.95, thus the size

of random sample is m = 1533.



The residuals s;, j = 1,... , 3N, of (6) are then used to generate the weights for
the final, weighted LS regression as follows. First, a robust standard deviation

estimate (Rousseeuw and Leroy, 1987) is computed as

5
5= 1.4826 (14— d 2 9
4 (+2Np—d+1)\/mf 5 (9)

where d is the number of parameters (9 in our case). Second, a weight is

assigned to each residual, such that

0 otherwise.

Notice that the w; are associated to the individual coordinates of 3-D data
point p.,;. A weight w} is assigned to each point p.;, which is zero if at least
one of its coordinates has a zero weight, and one otherwise. We therefore deem
a point p.; an outlier if at least one of its coordinates is an outlier* . Finally,
we estimate R by solving (3) with each point weighted by w}. We use SVD to
solve the weighted LS problem (similarly to Section 2), which yields a proper

rotation matrix.

Estimating centroids. As outliers skew centroid estimates, we adopt a
weighted version of the dynamic average (Section 2) taking the average on

the outlier-free data: p = Y%, w;p; and m = Y wiep(p;)-

4 Experimental results

Synthetic data. A first set of experiments was devoted to compare the
accuracy and robustness of RICP and ICP with controlled noise and out-

liers. We generated model sets of 50 random points each within a unitary

* Equivalently, a point is an outlier if the uniform norm of the point residuals s; is

above the threshold 2.56 .



cube (performance depends on shape (Brujic and Ristic, 1996), but a reason-
able indication of performance is achieved with non-elongated sets of random
points). The data sets were obtained by translating and rotating the models
(t = (0.2,0.1,0.4) T, rotation by 0.17 rad around axis (1,1,1)"; notice the
small rotation to guarantee ICP convergence to the correct alignment) and
adding Gaussian noise of varying standard deviation. Following (Wang et al.,
1996) outliers were simulated by dropping points at random from both sets,
but avoiding to drop corresponding pairs from the two sets. For each noise and
outlier level, we averaged and recorded the RMS errors, the absolute rotation

and translation errors over 50 different realizations of noise and outliers.

Figure 1 shows a typical example of final alignment for ICP and RICP with
outliers; the cubes attached to the data emphasize the different quality of
the results. Figure 2 summarizes the results, suggesting the better accuracy
of RICP. The figure plots the RMS, rotation and translation errors against
the intensities of Gaussian noise and outliers (up to 15 points, that is 30%
of the data). The rotation and translation errors are the Frobenius norms of
the difference between the true and estimated R and t, respectively. These
measures were chosen because (a) they are simple, scalar indices, (b) errors
in the direction of the rotation axis (used previously) were artificially high
with small rotations, which make axis estimates poorly conditioned, and (c)
the RMS error (but not both Frobenius norms of R and t) may be small
for completely wrong alignments with certain shapes. Notice that, with no
outliers, the RMS follows the standard deviation of the Gaussian noise, as
one expects. Sometimes RICP yields a greater RMS error, because the final
weighted LS increase the statistical efficiency of RICP, but it does not reach the
efficiency of pure LS, which is optimal with Gaussian noise only. With outliers,
the increase of all error indices with the number of outliers is much sharper for
ICP than for RICP. The performance degradation of both algorithms seems
comparable with 30% outliers (recall that the initial displacement is small to

ensure ICP convergence).
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We verified the better accuracy of RICP also with different shapes. Figure 3
visualizes an example of final registration with outliers using as model points
the corners of a standard calibration jig formed by regular grids of squares
arranged on two perpendicular planes. Notice that, unlike the cloud of points
above, which spans 3-D volumes, these data are surfaces. Figure 4 shows the

results of the same type of tests leading to Figure 2.

In a second set of controlled experiments we verified the larger basin of con-
vergence (the region in R,t space guaranteeing convergence to the correct
alignment) of RICP with respect to ICP, by observing the RMS and rotation
errors (defined as above) for increasingly different initial rotations (from 0 to
180 degrees). We used sets of 30 points within the unitary cube, corrupted
by outliers and Gaussian noise as before. Translation was fixed, as we found
that rotation has the largest influence on the basin of convergence (because
translation is eliminated by centroids subtraction). Figure 5 shows an exam-
ple of results (with rotation axis [1,1, 1]T, 20% outliers, 0.02 noise standard
deviation), showing clearly that ICP stops converging before RICP (here, by
about 35 degrees) as the initial rotation difference increases. Figure 6 visu-
alizes a case in which ICP does not converge and RICP does, at a parity of

initial displacement and noise/outliers conditions.

A final set of experiments proved that RICP leads to more accurate registra-
tions than ICP even with dense data with outliers (partial overlap between
views). For instance, Figure 7 shows two range views of a mechanical wid-
get, acquired by a laser scanner, and the registration found by RICP. Figure
8 shows the histograms of the absolute residuals for RICP and ICP, clearly
smaller for RICP; the MSE is 7.21 for ICP and 5.01 for RICP.
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5 Conclusions

We have presented RICP, a robust, ICP-based algorithm for correspondence-
less registration of sparse sets of 3-D points corrupted by sensor noise and
outliers. As ICP, RICP does not calculate derivatives or normals, and can be
applied to any shape; unlike ICP, it works on sparse point sets, and tolerates
substantial amounts of wrong measurements and missing data. With Gaussian
noise only, the performances of ICP and RICP are very similar. With outliers,
RICP achieves more accurate alignments than ICP (indeed the better the
higher the outlier percentage) and converges to the correct registration from a
wider range of initial displacements. However RICP has the same applicability
of ICP, i.e, finding a precise alignment starting from an approximate one. The

issue of finding a rough alignment to start with is not addressed in this paper.

Inevitably, RICP’s robustness comes at the cost of a higher complexity. In our
tests on a SPARCServer 10 running Solaris 2.5, RICP took, on average, 88 sec-
onds to register synthetic clouds of 50 points with noise and outliers, ICP only
half a second. This points strongly to off-line applications for RICP. An in-
triguing scenario is structure reconstruction from unregistered video sequences
acquired by an uncalibrated camera. Consider several, uncalibrated video se-
quences of the same scene. Usually each sequence spans a continuous range
of viewpoints, but the camera jumps discontinuously between sequences. Ap-
proximate, point-based Euclidean reconstructions can be computed from each
sequence (see (Fusiello, 1998) for a recent review); such 3-D data could be

registered by RICP to integrate independent sequences.

Acknowledgement

Thanks to Bob Fisher and Anthony Ashbrooks for the widget data, and to Ste-
fano Morson, Orazio Stangherlin and Gerard Martin for their help. This work

12



was partially supported by the Italian Space Agency (ASI) under contract
ARS-96-185, and by a SOCRATES grant.

References

Besl, P. and McKay, N. (1992). A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239—
256.

Bispo, E. M. and Fisher, R. B. (1996). Free-form surface matching for surface
inspection. In Mullineux, G., editor, The Mathematics of Surfaces VI,
pages 119-136. Clarendon Press, Oxford.

Blais, G. and Levine, M. D. (1995). Registering multiview range data to
create 3-d computer objects. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 17(8):820-824.

Brujic, D. and Ristic, M. (1996). Anaysis of free-form surface registration. In
Proceedings of the IEEE International Conference on Image Processing,
volume II, pages 393-396.

Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiple
range images. Image and Vision Computing, 10(3):145-155.

Eggert, D. W., Fitzgibbon, A. W., and Fisher, R. B. (1996). Simultaneous
registration of multiple range views for use in reverse engineering. In
Proceedings of the International Conference on Pattern Recognition, pages
243-247, Vienna.

Fusiello, A. (1998). Uncalibrated Euclidean reconstruction: A review. Re-
search Report UDMI/10/98/RR, Dipartimento di Matematica e Infor-
matica, Universita di Udine. Submitted for publication in Image and
Vision Computing.

Goldgof, D. B., Lee, H., and Huang, T. (1992). Matching and motion estima-
tion of three-dimensional point and line sets using eigenstructure without
correspondence. Pattern Recognition, 25(3):271-286.

Ito, E. and Aloimonos, Y. (1988). Is correspondence necessary for the percep-

13



tion of structure from motion? In Proceedings of the Image Understanding
Workshop, pages 921-929.

Kanatani, K. (1993). Geometric Computation for Machine Vision. Oxford
University Press.

Lee, C. and Joshi, A. (1993). Correspondence problem in image sequence
analysis. Pattern Recognition, 26:47—61.

Lorusso, A., Eggert, D. W., and Fisher, R. B. (1997). A comparison of four
algorithms for estimating 3-d rigid transformations. Machine Vision and
Applications, 9:272-290.

Masuda, T. and Yokoya, N. (1995). A robust method for registration and
segmentation of multiple range images. Computer Vision and Image Un-
derstanding, 61(3):295-307.

Meer, P., Mintz, D., Kim, D. Y., and Rosenfeld, A. (1991). Robust regression
methods in computer vision: a review. International Journal of Computer
Vision, 6:59 70.

Rousseeuw, P. J. and Leroy, A. M. (1987). Robust regression & outlier detec-
tion. John Wiley & sons.

Stoddart, A. J., Lemke, S., Hilton, A., and Renn, T. (1998). Estimating
pose uncertainty for surface registration. Image and Vision Computing,
16:111-120.

Torr, P. H. S. and Murray, D. W. (1997). The developement and comparison
of robust methods for estimating the fundamental matrix. International
Journal of Computer Vision, 24(3):271-300.

Trucco, E., Fisher, R. B., Fitzgibbon, A. W., and Naidu, D. K. (1998). Cali-
bration, data consistency and model acquisition with a 3-d laser striper.
International Journal of Computer Integrated Manufacturing, 11(4):293—
310.

Wang, X., Cheng, Y., Collins, R., and Hanson, R. (1996). Determining cor-
respondences and rigid motion of 3-d point sets with missing data. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 252-257.

14



Zhang, 7. (1994). Iterative point matching of free-form curves and surfaces.

International Journal of Computer Vision, 13(2):119-152.

15



Fig. 1. Cloud-of-points tests: example of registration with missing data (out-

liers). From left to right: starting position, ICP alignment, RICP alignment.

Fig. 2. RMS error, rotation error and translation error vs standard deviation
of Gaussian noise and number of outliers. Cloud-of-points tests. Top row: ICP

results. Bottom row: RICP results.

Fig. 3. Calibration jig tests: example of registration with missing data (out-

liers). From left to right: starting position, ICP alignment, RICP alignment.

Fig. 4. RMS error, rotation error and translation error vs. standard deviation
of Gaussian noise and number of outliers. Calibration jig tests. Top row: ICP

results. Bottom row: RICP results.

Fig. 5. Basins of attraction. Final RMS (left) and rotation error (right) for ICP
(dashed line and circles) and RICP (solid line and crosses) with increasing

initial rotation angle.

Fig. 6. A case in which RICP finds the correct registration and ICP does not.
From left to right: starting position, ICP alignment, RICP alignment.

Fig. 7. Two range views of a mechanical widget (top row). The registration found

by RICP, from two viewpoints (bottom row). All views are subsampled for display.

Fig. 8. Residual histograms for the widget experiment.
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