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Abstract

In this paper we propose a technique to robustly estimate
the background in a cluttered sequence, i.e., a sequence
where occluding objects persist in the same position for a
considerable portion of time. As pixel-level heuristic are not
sufficient in this case, we introduce spatial support. First the
sequence is subdivided in patches that are clustered along
the time-line in order to narrow down the number of back-
ground candidates. Then the background is grown incre-
mentally by selecting at each step the best continuation of
the current background, according to the principles of vi-
sual grouping. The method rests on sound principles in all
its stages, and only few, intelligible parameters are needed.
Experiments with real sequences illustrate the approach.

1. Introduction

Segmenting moving objects from a static background is a
relevant issue in areas such as video surveillance, perceptual
interfaces, and content-based video encoding (MPEG4).
Foreground objects can be extracted effectively by subtract-
ing the background in the image frames, provided that the
background can be estimated. The problem — also called
background initialization — is defined as follows: Given a
video sequence taken with a stationary camera, in which
any number of moving occlusors (clutter) can be present,
output a single image of the scene without clutter, even if
such an image have never been captured.

In the most fortuitous cases, clutter has the property to
insists on each pixel location for less than 50% of the entire
sequence length. In this case background is obtained as the
median of each pixel color distribution. Other techniques
[16,4, 19] have been proposed which, like the median, oper-
ate at pixel-level, making decisions independently for each
pixel. The Adaptive Smoothness Method [10], for example,
finds intervals of stable intensity in the sequence. Then, us-
ing some heuristics, the longest stable value for each pixel
is selected and used as the value that most likely represents
the background. However, pixel-level data can be useful in

narrowing the number of possible candidate values for the
background, but, if clutter is stationary for a long period of
time, these techniques fail.

Spatial support must be taken into consideration as an
additional heuristics in order to overcome this problem
[12, 7, 9]. The Local Image Flow algorithm [2], for in-
stance, considers also information generated by the neigh-
boring locations, namely the local optical flow. Background
values hypotheses are generated by locating intervals of rel-
atively constant intensity, which are weighted with local
motion information. This technique, however, cannot cope
with occlusors that move only in few frames, or equiva-
lently, with the problem of estimating the background from
two images only.

Our approach is able to cope with sequences where oc-
clusors persist in the same position for a considerable por-
tion of time. First the sequence is subdivided in patches that
are clustered along the time-line in order to narrow down the
number of background candidates. Then the background is
grown incrementally by selecting at each step the best con-
tinuation of the current background. Spatial continuity is
enforced through the principles of visual grouping [17].

Related works can be found in the areas of video inpaint-
ing [18, 13, 8] where the problem is to repair holes in a
video sequence with plausible values. Background initial-
ization could be cast as video inpainting if the occlusion
masks were known beforehand, which do not makes sense
in our case. Moreover we seek to estimate a physically
valid view of the background, by choosing pixel values only
along the same time-line, whereas this is not usually a con-
straint in video inpainting.

The closest works to ours are [1] and [14], that deals
with background initialization and mosaic completion re-
spectively. They are based on the same scheme: (i) identify
an initial region which is sure to be background and then (ii)
fill-in the remaining unknown background incrementally by
choosing values from the same time-line. At each step, the
patch that maximizes a likelihood measure with respect to
the surrounding zone, already identified as background, is
selected. This entails that the the background should be



self-similar (like a building’s facade) and that the starting
region should be large enough to provide sufficient infor-
mation. On the contrary, this need not be assumed in our
algorithm.

2. Method

Consider a video sequence taken with a stationary cam-
era: Starting from a single pixel in one frame, a temporal
line (or time-line) piercing all the aligned frames will in-
tersect pixels that correspond to the background and pixels
belonging to occlusors. Our method is based on the follow-
ing hypothesis (as in [2]):

i) the background is stationary;

ii) along each time-line the background is revealed at least
once.

The first hypothesis implies that the same background
point is imaged always onto the same pixel. The second hy-
pothesis implies that no object can occlude the background
for the entire sequence. Please note that this is necessary as
we want to use only observed values to fill the background
at each location.

If hypothesis ii) were stronger, requiring that along each
time-line the background is revealed for more than 50% of
the entire sequence length, the background could be easily
obtained as the median value along the time-line. The tech-
nique presented here can deal, in principle, with sequences
where background is revealed exactly once.

We model the stabilized video sequence as a 3D array
Vz,y,¢ Of pixel values. Each entry contains a color value,
which is a triplet (R,G,B). A 3D patch vs is a sub-array of
the video sequence, defined in terms of the ordered set of
its pixel coordinates: S = I, x I, x Iy, where I, I, I
are set of indexes. The set W = I, x I is the spatial
footprint of the patch. A 2D patch vy (or image patch) is
a 3D patch with a singleton temporal index: R = W x {t}
or R = (W,t).

2.1. Estimating image noise.

The first step is to estimate the noise affecting pixel val-
ues in the video sequence. In the following we shall assume
that the three color channels are statistically independent,
therefore we will consider here one color channel at a time.

Assuming that noise is i.i.d. Gaussian with zero-mean
N(0,02,), the pixel values of the video sequence of length
L — 1 obtained by subtracting each frame from the consec-
utive one: Ny 4 = V4141 — Vg,y,¢ are distributed with
N(0,202)) plus outliers due to occlusions. The noise stan-
dard deviation o, is then robustly estimated from ng , ;.
In order to get more statistics, we consider not only the dif-
ference between consecutive frames but also frames of dis-
tance two and three.

A robust estimator of the spread of a distribution is given
by the Median Absolute Difference (MAD):

It can be seen [3] that, for symmetric distributions, the
MAD coincides with the inter-quartile range, hence, in our
case:
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where @71 () is the a-th quantile of the cumulative normal
distribution.

2.2. Temporal clustering

The spatial indexes are subdivided into windows W, of
size N x N, overlapping by half of their size in both dimen-
sions as shown in Fig. 1. Let vs, S = W, x {1--- L}, be
a patch of footprint VV; which extends in time from the first
to the last frame. In order to reduce temporal redundancy,
in each 3D patch S we cluster image patches that depict the
same portion of the scene with single linkage agglomerative
clustering [6]. In agglomerative clustering, starting from all
singletons, each sweep combines two clusters into a sin-
gle cluster. After establishing a distance between objects, a
method needs to be chosen to determine which two groups
should be linked. The simple linkage rule says that the two
groups that achieve the smallest inter-group distance be-
tween any pair of objects are linked. A cutoff distance, i.e.,
a distance behind which two clusters are not linked, can be
set.

In our case, the distance between two image patches
Vw,t,) and vy 1,y is given by the Sum of Squared Dis-
tanced (SSD):
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The cutoff distance should prevent clustering together
image patches that do not depict the same objects. It is ob-
tained from a statistical test, based on the expected distribu-
tion of the SSD between two image patches that depict the
same static portion of the scene. The SSD has a Chi-square
distribution with 3/N2 degrees of freedom, which is evident
if we re-write (3) as a Mahalanobis distance:

SSD(W,tl,tQ) = (‘_’W,tl - ‘_/W,tg)T(20'3nI)_1
(VW,tl - vW,tg) (4)
where Vyy; is the 3N2-dimensional vector obtained by

“vectorizing” vyy ; (because N2 = |W|, and 3 is the num-
ber of color channels).



Therefore, given a desired confidence level o, we deem
that image patches vyy ¢, and vyy ;, depict the same static
portion of the scene (hence they can be linked in the clus-
tering) if:

SSD(W, t1,t2) < Xzn2 () (5)

where ., !(a) is a-th quantile of the cumulative Chi-square
distribution with n d.o f.

Although clusters are made of image patches instead of
pixels, the clustering phase implements the same idea as
the intervals of stable intensity defined in [10], except for
clusters need not form a connected temporal interval, and
there are no fancy thresholds.

The resulting clusters are 3D patches, with possibly not
consecutive temporal indexes. Let W x 7;, denote cluster
k over spatial footprint WV, a representative image patch for
that cluster is obtained by averaging pixel values along the
time-line:

1
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As a consequence, the noise affecting the values u, 1 is
iid. N(0,07) with 07 = 7.

In each spatial footprint ¥V we have now a variable num-
ber of cluster representatives Uy y k, - - - Ug,y,k, - Lhe under-
lying assumption is that (at least) one of them depicts only
static background: The subsequent stage is devoted to find
out which one.

A heuristic that demonstrated helpful to cull the clusters
is discarding clusters of size one (i.e., composed by only
one frame) provided that this do not eliminate all the clus-
ters insisting on a footprint. This is related to the practice of
discarding patches with high motion energy [14, 2], com-
puted with optical flow or temporal differencing. In our
case, as the SSD is related to the motion energy, image
patches with high motion energy tends to form clusters of
size one.

By introducing this heuristic, we implicitly relax our hy-
pothesis, requiring that along each time-line the background
is revealed at least twice. However, the method can still
cope also with the extreme case of recovering the back-
ground from two images only, thanks to the fact that when
the clusters insisting on a footprint are all singletons, they
are kept.

Clustering pixels according to their color along a time-
line is analogous to learning a multimodal distribution on a
per-pixel basis [16] or finding intervals of stable intensity
[2]. In this work, spatial support is introduced by consider-
ing rectangular regions instead of single pixels, and the role
of clustering is only to reduce the number of background
candidates. A decision will be taken based on spatial con-
siderations (Sec. 2.3).

2.3. Background tessellation

The background is constructed following a sequential
approach: Starting from seed patches, a tessellation is
grown by choosing, at each site, the best continuation of
the current background.

The background seeds are the representatives of the
largest clusters. Since we assume that no occlusor is sta-
tionary in all the frames, if the largest clusters have size L
(maximal), the seeds are fully reliable. Otherwise, mistakes
are possible.

Figure 1. Overlapping footprints.

The growing proceeds as follows. Let W, be a spatial
footprint where a background patch has already been as-
signed. We consider in turn each of the four footprints that
overlap with it: W;,7 = 1,...,4 (see Fig. 1) and try to
assign a background to each of them (if it was not already
assigned) by choosing one of the cluster representatives that
insist on W;. The selected patch has to fulfill two require-
ments:

1) in the part that overlaps with W it has to depict the
same scene points as the background patch, so that it
can be stitched seamlessly to it;

ii) in the non-overlapping part it has to represent the “best
continuation” of the background.

This procedure is repeated for all the footprints, until all
the background has been assigned.

As for the first requirement, the discrepancy of a can-
didate image patch u(y, 1) with the background patch
(W), k) in the overlapping part is measured with:

SSD(Wo N Wi, ko, k) =

1
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where M = |W, N W;|. By the same token as before
(Eq. (5)), ugw, k) is considered for inclusion in the back-
ground with confidence « if

SSD(W() n WZ', k(), k) < X;I\l/j(a) (8)

If W; happens to overlap with other footprints than W)
where the background has already been assigned, the same
test is applied, mutatis mutandi, to the entire area of overlap.



As for the second requirement, we propose here a
method to compare two candidates (if there are more candi-
dates a round robin tournament is used), based on the princi-
ples of visual grouping [17]. The approach rests on the ob-
servation that occlusors generally introduce a discontinuity
with the background (as in [5]). When a pure background
patch is compared to an image patch containing clutter, their
binarized difference defines a partitioning of the pixels into
two groups (Fig. 2), i.e. a segmentation. The previous ob-
servation implies that the score of this segmentation accord-
ing to the principles of visual grouping (similarity, proxim-
ity, and good continuation) has to be higher in the cluttered
patch than in the one containing background. This links
the problem of selecting the best continuation of the back-
ground to visual grouping.

Figure 2. From left to right: Two cluster representatives that are
candidates to fill a background patch and their binarized differ-
ence.

Graphs cuts have been proposed in [15] as general com-
putational framework for grouping. The image is rep-
resented as a complete weighted undirected graph G =
(V, E), by taking each pixel as a node and connecting each
pair of pixels by an edge. The weight on that edge reflects
the likelihood that the two pixels belong to the same region.
Grouping is cast as the problem of partitioning the vertices
into disjoint sets, where the similarity among the vertices
in a set is high and across different sets is low. The edge
weight connecting two nodes ¢ and j is defined as [15]:

wij = o (Fi—£;) T (2A) 71 (£i—1;) 9)

where f; is a feature vector containing the spatial position
of a pixel 7, x; and y;, and its RGB color values, R;, G;, B;:
f; = [xi,y:, Ri, Gy, B;]. The diagonal matrix A contains
normalizing values, which are approximately (the square
of) 1/4 of the range of variability of the respective com-
ponent: A'/2 = diag(N/4,N/4,0% ¢ oB).

The graph can be partitioned into two disjoint sets, A
and B, AUB =V, AN B = (), by simply removing edges
connecting the two parts. This set of edges constitute a cut.
The cost of the cut, which measures the degree of similarity
between the two regions A and B, is the sum of all its edge
weights:

cut(A, B) = Z (I (10)
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The optimal segmentation is the cut with the minimal cost.

Going back to the problem of choosing between two im-
age patches the one that yields the best continuation of the
background, let us consider the cut defined by their bina-
rized difference:

A = {(1.7 y) : (uz,y,kl - ux,y,kz)T(UlzclI + 0—1262]:)71

(W ke — Uy ky) < Xs_l(a)} (11)

The patch where cut(A, B) is lower is the one containing
the occluding pixels (because the cut is along the disconti-
nuity), whereas the same cut in the background patch has a
higher cost, because — not being correlated with the struc-
ture of the background patch — it is more likely to contain
expensive edges.

Our method based on graph-cuts can be seen as a princi-
pled way of applying the same continuity criterion as in [5],
where a heuristic based on the comparison of the inner and
outer boundaries of the difference region is employed.

2.4. Summary of the method

1. Estimate the image noise o2, as the sample variance of
frames difference, using the MAD (Eq. (2)).

2. Subdivide the spatial domain into overlapping win-
dows W (footprints).

3. On each footprint WV, cluster image patches vyy ; us-
ing single linkage agglomerative clustering (see MAT-
LAB), using SSD (Eq. (3)) as the distance and a cutoff
based on the Chi-square test (Eq. (5)).

4. For each cluster, compute its representative by averag-
ing (Eq. (6)). Discard clusters of size 1.

5. Select the clusters of maximal length, insert their rep-
resentatives in the background B.

6. Select a patch in B, select a neighboring footprint W;
which is not represented in B.

7. For each cluster representative uyy, , evaluate the
overlap with B (Eq. (7)) and select candidates patches
for insertion in B according to Eq. (8).

8. The candidate patches enter into a round robin tourna-
ment, where the comparison between two of them is
done according to the cost of the cut (Eq. (10)) defined
by their binarized difference (Eq. (11)). The higher
cost wins. The winner of the tournament is inserted in
the background B.

9. Repeat from Step 6 until the background image is com-
plete.
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Figure 3. Results with real sequences. From top to bottom: “Granguardia”, “Ca’ Vignal”, “Board”, “Foliage”. From left to right: Three

sample frames from the sequence, median, output of our algorithm (background).

As the footprints are overlapping, in the final background
image up to four patches might insist on a single pixel
(z,y). Let 7 be the set of temporal indexes of the frames
that contributed to the background value at (z,y), via the
cluster representatives. The estimate of the background
color ¢, and its variance o7 ,, are obtained as the sample
mean and variance — respectively — of the values v, , 7.

3. Experiments

In the experiments we used the following parameter set-
ting. The windows size N must be small enough so as to
have the background revealed at least once in every win-
dow, but large enough for the overlap test to be reliable. We
used N = 17 with images 200 x 260. The confidence level
was a = 0.999999 in all the tests.

We performed experiments with real sequences (Fig. 3)
presenting different challenges. The “Granguardia” is char-
acterized by lots of motionless clutter due to people waiting
for the bus, together with a large occlusion due to the bus
itself. “Ca’ Vignal” depicts a person standing in the same
position for most of the time. “Board” is an indoor sequence
where moving objects cast shadows on the background. Fi-
nally, “Foliage” presents a serious occlusion due to some
foliage shaken in front of the camera, giving rise also to
motion blur. For each experiment we report few selected
frames of the original sequence, the output of the median

(in order to emphasize the toughness of the clutter) and the
output of our algorithm.

Our method works with any number of frames, including
the minimum, which is two. Fig. 4 shows how the back-
ground is recovered without artifacts from a sequence com-
posed by two frames of “Ca’ Vignal”.

One way of verifying the goodness of the resulting back-
ground is to use it for foreground recovery. We subtracted
each frame to the estimated background and thresholded
the result like in Eq. (11). Selected foreground frames are
shown in Fig. 5.

4. Conclusions

We illustrated a method for background initialization
from cluttered video sequences. The method is robust, as
it can cope with serious occlusions caused by moving ob-
jects. It is scalable, as it can deal with any number of
frames greater or equal than two. It is effective, as it always
recovers the background when the assumptions are satis-
fied. Moreover, our method rests on sound principles in all
its stages, and only few, intelligible parameters are needed,
namely the confidence level for the tests and the patch size.
Future work will aim at estimating it from the data, using a
multi-resolution approach.

Our method can be straightforward extended to the case
of moving camera, provided that we can compensate for
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Figure 4. Background recovery from two frames. From left to right: Original frames, background after step 5, output of the algorithm.
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Figure 5. Selected foreground from the test sequences.

camera motion with respect to the background, as in the
case of mosaicing [11]. In that case, clutter can be due either
to moving objects or to motion parallax.
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