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Abstract—In this paper we address the Wireless Sensor
Networks localization problem in a realistic scenario with
outliers and structured missing data (i.e. non-random).
Our approach couples SMACOF, which handles incomplete
data, with IRLS, which is resilient to outliers. In addition,
we provide a new insight on how the initialization method
– which is crucial to ensure fold-free solutions – should be
adapted to the pattern of missing measures. Experiments
shows that the proposed method compares favorably with
the state-of-the-art.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are collections of
autonomous electronic devices spread over an indoor or
outdoor area that are able to record physical data and
cooperate over a wireless link. Typically, the network
is ad-hoc, and sensors can be fixed or mobile. Each
node consists – at least – of a low power processor, a
limited amount of memory, a sensor board and a wireless
network transceiver.

WSNs are usually deployed in several applications,
including environmental monitoring, failure detection
or reporting in smart buildings, and target tracking. In
such applications it is necessary to orient the nodes
with respect to a global coordinate system in order to
express all the measurements in a common reference
frame, and report data that is geographically meaningful.
Additionally, basic network services such as routing
often rely on location information.

Instead of using globally accessible beacons or GPS
to localize each sensor, Sensor Network Localization
(SNL) requires the sensors to self-organize a coordinate
system. Only a few nodes, known as anchor nodes,
have prior knowledge about their coordinates, either hard
coded, or acquired through some additional hardware
like a GPS receiver, which is economically expensive
and energy-consuming. All the other nodes must deter-
mine their position by measuring range or bearing with
respect to other nodes. This work focuses on the case
of range measurements.

Distances between pairs of nodes can be measured
using the Received Signal Strength Indicator (RSSI)
of radio signals sent by neighbor sensors. Indeed, the

energy of a radio signal diminishes with the distance
from the signal’s source. As a result, a node listening to
a radio transmission should be able to use the strength
of the received signal to estimate its distance from the
transmitter. Likewise, sensors nodes can asses the Time
of Arrival (TOA) or the Time Difference of Arrival
(TDOA) of radio or acoustic signals emitted by neighbor
sensors, which in turn can be converted into pairwise
distance estimates.

Measuring distances using RSSI or ToA is subject to
noise, rogue measures (or outliers), and missing data.
Noise depends on radio propagation which tends to be
highly non-uniform, outliers are due to environmen-
tal factors (reflections and interferences) or hardware
malfunctioning (suffering from transmitter, receiver, and
antenna variability), and missing data depend on limita-
tions in the radio range or shields.

From the theoretical point of view, determining the
positions of nodes from their distances is formalized
as a Multidimensional Scaling (MDS) problem, which
can be solved easily when all the distances have been
measured and there are no outliers. Missing data have
been overcame by the SMACOF (Scaling by MAjorizing
a COmplicated Function) formulation [1], [2], while out-
liers have been addressed by several robust techniques,
including replacing the `2 norm with `1, (Semidefi-
nite Programming (SDP) [3], Robust MDS (RMDS)
[4]) and low-rank and sparse matrix factorization (ER-
GODEC [5]).

SDP [3] is a robust technique that copes with unspeci-
fied measurements. The idea consists in casting the SNL
problem to a standard SDP, which is accurate but has a
high computational complexity.

The ER-GODEC solution leverages on recent ad-
vances in the field of Low-Rank and Sparse matrix de-
compositions to complete the range information between
pairs of sensors in the presence of rogue measures. In
particular, the authors designed a cost function that not
only includes unspecified measurements and outliers in
its definition, but also constrains the solution to stay
close to an Euclidean Distance Matrix (EDM), i.e., a
matrix containing squared distances between nodes.978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



RMDS [4] is a SMACOF-like algorithm that in-
troduces a `1-based regularization term into the cost
function in order to manage outliers. More details on
the most relevant methods to this work will be given in
Sec. II

In this paper we propose to use Iteratively Reweighted
Least Squares (IRLS) [6] coupled with SMACOF to
obtain a localization which is resilient to outliers and
handles incomplete measures; the method will be de-
tailed in Sec. III. Experiments, reported in Sec. IV, con-
centrate on our closest competitor [4] and report better
performances in accuracy with comparable computation
time.

In addition, we provide a new insight on the initial-
ization required for different pattern of missing data,
which is crucial in making a methods to succeed. For
example, RMDS [4] was able to produce good results
only with random missing measures because of the
specific initialization.

II. THEORETICAL BACKGROUND

A sensor network in a m-dimensional space (in our
case m = 2) consists of n nodes, and a set of e Euclidean
distances between pairs of nodes. The network can be
described by an undirected graph G = (V, E) where the
vertex set V = {1, 2, . . . , n} represents sensors and the
edge set E of cardinality e is defined by pairs (i, j) of
sensors for which a distance measurement is available.
G is called distance graph.

The coordinates of the nodes are described by n points
in Rm which can be ascribed to the rows of a matrix
X = [x1, . . . ,xn]

T ∈ Rn×m. X is usually referred to
as a configuration or embedding. We denote as D(X)
the matrix of distances between pairs of nodes, i.e.

Dij = dij = ‖xi − xj‖ if (i, j) ∈ E
dij = 0 if (i, j) /∈ E

(1)

where ‖·‖ is the Euclidean norm in Rm.
In real applications measured distances could be af-

fected by noise and outlier measurements. Given the
Euclidean distance function d : Rm × Rm → R defined
over pairs of nodes, we model the measures as

d̂ij = dij + oij + εij ∀(i, j) ∈ E (2)

where oij represents an outlier component and εij an ad-
ditive noise (we assume i.i.d. εij ∼ N (0, σ2) ∀(i, j) ∈
E). We denote as D̂ the matrix of measured distances,
henceforth called data matrix.

The SNL problem consists in recovering a configu-
ration X given D̂. Equivalently, SNL can be seen as a
graph realization problem, where the goal is to assign
coordinates xi ∈ Rm to each node so that the Euclidean
distances between pairs of nodes match (or realize) the
distances of the corresponding edges.

A sensor network is uniquely localizable if exists a
unique X that realizes the distances in D̂ (up to a

rigid transformation). It is know that if the distance
graph G is generically globally rigid (GGR for short)
then the network is uniquely localizable [7]. In two
dimensions the distance graph is GGR if and only if it
is 3-connected and redundantly rigid [8]. In particular,
these two properties can be verified in polynomial time
[9], [10].

One of the most famous class of methods which solves
the SNL is MDS [11]. MDS, originally proposed as a
visualization tool in data analysis [12], recovers an em-
bedding in Rm such that pairwise distances approximate
the given data matrix.

Two simple methods of this class are classical MDS
[12] and SMACOF [1]. Classical MDS is effective only
when all pairwise distance measurements are available
(i.e. D̂ is complete), instead SMACOF can manage
unspecified distances. Despite they perform well with
exact distances, both classical MDS and SMACOF are
sensitive to outliers and yield roughly incorrect embed-
dings even if few outliers corrupt the data matrix.

In order to handle both unspecified data and outliers,
a robust MDS formulation (called RMDS) has been
proposed in [4] which is based on a distance model that
explicitly accounts for outliers. We now review these
MDS based localization techniques more in detail.

A. Classical MDS
Classical MDS minimizes the following cost function

min
X

www− 1
2JD̂

2J −XXT
www2

F
(3)

where J = I− 1
n11

T is the centering operator, I is the
identity matrix, 1 is the column vector of all ones, and
‖·‖F denotes the Frobenius norm. The method (sum-
marized in Algorithm 1) computes the embedding as
the m-first principal components of − 1

2JD̂
2J . Classical

MDS does not cope with unspecified measurements and
outliers, thus its workability is limited in practice.

Algorithm 1: Classical MDS

Input : D̂, m
Output: X

1 J = I − 11T /n;
2 G = − 1

2JD̂
2J ;

3 [Q,Λ] = eig(G);
4 X = QTΛ

1/2
m ;

B. SMACOF
The SMACOF approach [1], [2], solves the SNL

problem through a majorization technique also in the
event that D̂ is not complete. SMACOF minimizes the
following stress function

σ(X)
.
=

n∑
i,j=1

ωij(d̂ij − dij)2 (4)



where W = [ωij ]
n
i,j=1 ∈ Sh is a matrix of weights

which equals the adjacency matrix of the distance graph
(namely its entries are equal to 1 if d̂ij is specified,
and 0 otherwise). Observe that missing measurements
are accounted in the SMACOF framework thanks to
the introduction of the matrix W . SMACOF finds a
majorizing function of σ(X) (i.e. a function τ(X,Y )
such that σ(X) ≤ τ(X,Y ) for all Y ∈ Rn×m and
σ(X) = τ(X,X)) and attempts to minimize it.

To this aim the stress function is decomposed in the
following way

σ(X) = ‖D̂‖F +

n∑
i,j=1

d2ij − 2

n∑
i,j=1

ωij d̂ijdij . (5)

Denoted by L the Laplacian of the distance graph (in
this case L = diag(W1) − W ), the second term
of the right member of Eq. (5) can be rewritten as∑n
i,j=1 d

2
ij = tr(XTLX) where tr(·) is the trace

operator. Consider now the following matrix

B(X)
.
= diag(A(X)1)−A(X) (6)

where

[A(X)]ij
.
=

{
ωij

d̂ij
dij

if d̂ij > 0

0 otherwise.
(7)

Observe that A(X) is the adjacency matrix of a weighted
graph G1 = {V, E1}, where edge weights are defined by
the entries of A(X), and that B(X) is the corresponding
Laplacian matrix (or weighted Laplacian). Then the third
term of the right member of Eq. (5) can be expressed
as −2

∑n
i,j=1 ωij d̂ijdij = −2 tr(XTB(X)X). Conse-

quently, the stress decomposition becomes

σ(X) = ‖D̂‖F + tr(XTLX)− 2 tr(XTB(X)X). (8)

Let now Y ∈ Rn×m be another configuration. By an
application of the Cauchy-Schwartz inequality, it follows
that for all pairs of configuration X,Y ∈ Rn×m holds

σ(X) ≤ ‖D̂‖F + tr(XTLX)− 2 tr(XTB(Y )Y )
.
= τ(X,Y ).

(9)

In particular, τ is a (simple) quadratic function in X and
Y which majorizes the stress σ. A closed-form solution
for the minimum is

X = L+B(Y )Y (10)

where L+ is the Moore-Penrose inverse of L

L+ .
= (L+ n−111T )−1 − n−111T . (11)

The SMACOF method, summarized in Algorithm 2, is
efficient, but not robust to outliers. Moreover, it needs to
be properly initialized. Especially when the pattern of D̂
has some structure, SMACOF tends to find local minima
because of the foldover phenomena, thus the challenge
is to generate an initial solution which is fold-free. The
issue of initialization will be discussed in Sec. III-B

Algorithm 2: SMACOF

Input : X0, D̂, tol
Output: X

1 t = 0;
2 compute L+;
3 while σ(Xt) > tol do
4 compute B(Xt);
5 Xt+1 = L+B(Xt)Xt;
6 t = t+ 1;
7 end

C. Robust MDS

Forero et al. [4] introduced a cost function which
takes outliers into account. Then, in a similar way of
SMACOF, they derive a majorizing of the cost function
and find out closed-form updates for solving the mini-
mization. The cost function is defined as follows

σ(O,X)
.
=

n∑
i,j=1

ωij(d̂ij − dij − oij)2 + λ

n∑
i,j=1

ωij |oij |

(12)
where O = [oij ]

n
i,j=1 ∈ Sh is an unknown outlier matrix.

Observe that the second `1-norm term is a regularization
term that controls the sparsity of the matrix O.

With a reasoning that mimics that of SMACOF, it is
possible to derive a majorizer τ(O,X, Y ) for σ(O,X)
(i.e. such that τ(O,X, Y ) ≥ σ(O,X) for all O ∈ Rn×n
and X,Y ∈ Rn×m, and τ(O,X,X) = σ(O,X)).
Variables (O,X) are then updated through the following
alternate minimization

Ot+1 =argmin
O

τ(O,Xt, Xt) = argmin
O

σ(O,Xt)

(13)

Xt+1 =argmin
X

τ(Ot+1, X,Xt). (14)

The solution of (13) can be expressed in terms
of the soft-thresholding operator Θλ(x) = sign(x) ◦
max {0, |x| − λ} as

Ot+1 = Θλ(D̂ −D(Xt)) (15)

where scalar operations are applied element-wise. While
the solution of (14) is

Xt+1 = L+B1(O
t+1, Xt)Xt (16)

where

B1(O,X)
.
= diag(A1(O,X)1)−A1(O,X) (17)

and

[A1(O,X)]ij
.
=

{
ωij

(d̂ij−oij)
dij

if d̂ij > oij , dij > 0

0 otherwise.
(18)



Observe that A1(X) is the adjacency matrix of a
weighted graph G2(V, E2), where edge weights are de-
fined by the non-zero entries of A1(X) and B1(X) is the
corresponding Laplacian. On the whole, Eq. (14) is the
same of Eq. (10) excepts for B1(O

t+1, Xt) instead of
B(Xt). A more detailed discussion about RMDS can be
found in [4]. The method is summarized in Algorithm 3.

The main drawback of RMDS is that in general the
soft-thresholding parameter λ needs to be estimated. In
particular, the optimal value can be found a posteriori
through the true localization knowledge or having some
more information about outliers sparsity. Usually a suit-
able value of λ is chosen via experimental analysis.

Algorithm 3: RMDS

Input : X0, D̂, tol
Output: X

1 t = 0;
2 W = logical(D̂);
3 compute L+;
4 O0 = zeros(n);
5 while σ(Ot, Xt) > tol do
6 Ot+1 = Θλ(W ◦ (D̂ −D(Xt)));
7 compute B1(O

t+1, Xt);
8 Xt+1 = L+B1(O

t+1, Xt)Xt;
9 t = t+ 1;

10 end

III. PROPOSED METHOD

Our solution to the SNL problem combines the SMA-
COF approach with the Iteratively Reweighted Least-
Squares (IRLS) algorithm [6]. We start from the least-
squares minimization (4) and we embed it into an IRLS
framework in order to handle rogue measurements. This
technique iteratively solves weighted least squares prob-
lems where the weights are estimated at each iteration
by analyzing the residuals of the current solution. The
weights are assigned by a specific weight function in
such a way to penalize outliers and promote inliers. We
dubbed this novel approach SMACOF-IRLS.

A. SMACOF-IRLS

We propose to embed the SMACOF method into an
IRLS scheme in the following way. We first obtain an
estimate of X solving (4) using Algorithm 2. In this first
step weights are defined by the adjacency matrix of the
distance graph (i.e. they are all 1 or 0 depending if pair-
wise distance measurements are available or not). Then
we update the weights ωij using the current estimate of
the embedding and the Cauchy weight function:

ωij =
1

1 +
( rij
c

)2 (19)

with rij = d̂ij − dij(X) if d̂ij is defined, 0 otherwise.
The scaling factor c is computed as customary with

c = 2.385σ (20)

where σ = med(r − med(r))/0.6745, med(·) is the
median of a vector, and r is the vectorization of the
residuals rij .

In matrix form, at each step W is updated using
the residual matrix R = D̂ − D(X) through Eq. (19).
Observe that updating W results in a updated adjacency
matrix A(X) in Eq. (7), and consequently in an updated
weighted Laplacian B(X). Then a new step of SMA-
COF is applied with the updated variables. These steps
are iterated until convergence or a maximum number
of iterations is reached. The SMACOF-IRLS method is
summarized in Algorithm 4.

We verified that convergence is improved by starting
with few iterations and progressively increasing them
after each weight update. The rationale is that it does not
make sense to refine too much the SMACOF solution
at the beginning, when outliers identification is still
unsure. In this way, at the beginning weights are updated
frequently so that the IRLS contribute prevails and
outliers starts to emerge. Then, as IRLS stabilizes, the
number of iterations of SMACOF (denoted as maxIterIn
in the pseudocode) are increased, in order to improve the
final accuracy. In particular, at the k-th step of IRLS we
fix maxIterIn = dαk−1e with α > 1.

Algorithm 4: SMACOF-IRLS

Input : X0, D̂, maxIterOut, α. tol
Output: X

1 W 0 = logical(D̂);
2 for k = 1 : maxIterOut + 1 do
3 t = 0;
4 compute L+;
5 maxIterIn = dαk−1e;
6 while σ(Xt) > tol ∨ t < maxIterIn do
7 compute B(Xt);
8 Xt+1 = L+B(Xt)Xt;
9 t = t+ 1;

10 end
11 Rk =W 0 ◦ (D̂ −D(Xt));
12 compute c;
13 W k =W 0 ◦ (1 + (Rk/c)2)−1;
14 end

B. Initialization

SMACOF, RMDS, and IRLS-SMACOF share the
same iterative scheme, which requires a proper initial-
ization X0 in order to converge to the global minimum.

One possibility is to use classical MDS to derive X0,
as suggested in [4]. Indeed, even if classical MDS does
not provide a good solution for SNL in the event that



D̂ is not complete, it can be a suitable starting point for
RMDS (and SMACOF as well), under certain hypothesis
to be further specified.

Another possible initialization is the so-called Lapla-
cian Eigenmap proposed in [2]. The following energy
function is considered

E(X) =

∑
i,j ωijd

2
ij∑

i,j d
2
ij

=
‖W ◦D(X)‖2F
‖D(X)‖2F

(21)

where ◦ is the Hadamard product. Examples of possible
weights are ωij = 1/(d̂ij + β) or ωij = exp(−d̂ij/β)
with (β ≥ 0) if dij is available, and 0 otherwise. The
global minimum of E(X) is given by the eigenvectors
of the related weighted Laplacian diag(W1) − W . In
practice, as explained in [13], it is better to work
with the closely related eigenvectors of the transition
matrix diag(W1)W . Note that the top eigenvalue of
the transition matrix is λ1 = 1, which is associated with
the constant eigenvector v1 = 1, so the embedding is
actually given by the eigenvectors from the second to
the m+ 1-th.

Our experiments have shown that the initialization
methods has to be chosen according to the pattern of
unspecified entries. In particular, MDS is a good choice
if the pattern of unspecified entries is random, whereas
Laplacian Eigenmap do not work effectively in this case.
On the other hand, when unspecified data follow a more
realistic pattern that depends on the distance (namely,
where all measures greater than a fixed distance are
missing), the situation switches: initialization with MDS
fails, whereas Laplacian Eigenmap is effective.

An explanation of these facts follows from the mini-
mization of (21) solved by Laplacian Eigenmap. Indeed
minimizing E(X) leads to locate adjacent sensors close
one to each other while separating nonadjacent sensors.
More precisely, since the unspecified entries appear in
the denominator of E(X) only, then during the mini-
mization they tend to become greater than the specified
ones. Thus Laplacian Eigenmap respects range-based
patterns since the unspecified entries are actually greater
than the specified ones, while it is ineffectual for random
patterns since the relationship between unspecified and
specified entries is no longer valid. On the other side,
classical MDS cannot manage range-based patterns since
it equally weights each measurement without taking into
account the structure given by the range. For the same
reason, it is a good choice for random patterns, instead.

IV. EXPERIMENTAL RESULTS

We provide several synthetic experiments in MAT-
LAB R© in order to validate our solution. We compared
SMACOF-IRLS against three robust approaches, namely
ER-GODEC, RMDS, and SDP, the latter being consid-
ered the state-of-the-art.

The implementations of SDP (based on the SDPT3
solver [14]) and of RMDS [4] are available online,

while for ER-GODEC and SMACOF-IRLS we use our
implementations. From preliminary analysis we fixed
α = 1.3 and maxIterOut = 21 in Algorithm 4 and
λ = 1.25 in Algorithm 3. The same initialization is
provided to all algorithms.

We compare the performances of the methods in
terms of i) noise resilience and robustness to outliers, ii)
sensitivity to missing data (both random and structured),
and iii) efficiency.

In each experiment, we randomly generate n points in
a square of side l centered in the origin, representing the
ground truth node positions. We perturb the true pairwise
distances with Gaussian noise ε ∼ N (0, σ2). We discard
a portion (H%) of distances or all the measure greater
than a fixed range (R) to simulate unspecified data.
We set a portion (O%) of the specified distances to
random values in the interval [0, l] to simulate outliers.
The localizability of the distance graph is checked using
our implementations of redundant rigidity [9] and 3-
connectivity [10]. Results are averaged over 100 trials,
discarding the simulations in which the localizability
check fails. As figure of merit we used the Root Mean
Square Error (RMSE)

RMSE =

√
1
n

∥∥∥X − X̃∥∥∥2
F

(22)

where X̃ is the estimated configuration and X the true
one. The RMSE is computed after having aligned X̃
onto X̃ using Orthogonal Procrustes Analysis [15].

A. Noise Resilience and Robustness to Outliers

In this experiment we first evaluate the noise resilience
of our method SMACOF-IRLS without considering
missing and outliers data. We set n = 100, l = 100,
H = 0% (no undefined entries), and O = 0% (no
outliers). In this case the localizability test is trivial.
Results are reported in Fig. 1.

0 0.2 0.4 0.6 0.8 1

noise ( )

0

0.1

0.2

0.3

R
M

S
E

H = O = 0%

SMACOF-IRLS

RMDS

SDP

ER-GoDec

Figure 1. Noise Resilience. On the x-axis the noise std deviation
σ, on the y-axis the corresponding (average) RMSE obtained with
our method SMACOF-IRLS and competitors. The number of nodes
is n = 100 and the side of the square is l = 100. Nor missing nor
outlier data are present (H = O = 0%).

Observe that MDS based localization techniques
(SMACOF-IRLS and RMDS) achieve the most accurate
results, followed by ER-GODEC and SDP. This depends
on the fact that the SMACOF maximizes a likelihood



function[16], hence it is statistically optimal in presence
of i.i.d. Gaussian noise.

Since all errors grow linearly with respect to σ, we
decided to fix a reasonable level of noise, namely σ =
0.6, for the following experiments. This level of noise
provides an RMSE approximately lower than 0.2 for all
the methods.

We then evaluate the robustness to outliers of
SMACOF-IRLS without considering missing data. The
parameter setup is n = 100, l = 100, σ = 0.6, and
H = 0%. Results are shown in Fig. 2.

0 10 20 30 40 50

outliers (%)

0

2

4

6

R
M

S
E

H = 0%

SMACOF-IRLS

RMDS

SDP

ER-GoDec

Figure 2. Robustness to Outliers. On the x-axis the portion of outliers,
on the y-axis the corresponding (average) RMSE obtained with our
method SMACOF-IRLS and competitors. The number of nodes is n =
100, the side of the square is l = 100, the noise std deviation is
σ = 0.6. No missing data are present (H = 0%).

SMACOF-IRLS is robust to rogue measurements
since it produces good results up to a fraction of 40%
outliers. RMDS and ER-GODEC show a behavior sim-
ilar to SMACOF-IRLS with slightly worse results for
portions of outliers greater than the 40%. SDP has the
worst breaking point at 30%. On the whole, all methods
can be considered robust to outliers when the data matrix
is complete.

B. Sensitivity to Unspecified Data

In the following two experiments we study the sensi-
tivity of SMACOF-IRLS to unspecified data. We analyze
two different patterns of unspecified entries, namely
random and range-based (i.e. where all measures greater
than a fixed distance R are missing). MDS based local-
ization techniques have been initialized according the
criteria explained in Section III-B.

1) Random: We consider random patterns in presence
of outliers. We set n = 100, l = 100, σ = 0.6, and we
analyze the behaviors of the methods respectively with
respect to unspecified entries (fixing O = 30%) and
to the outliers (fixing H = 30%). Results are summa-
rized in Fig. 3. The upper plot shows that up to 60%
of unspecified entries all methods achieve comparable
results proving their non-sensitivity to random missing
data. When H is greater than 70% all the methods
worsen. The lower plot shows that ER-GODEC and
SMACOF-IRLS achieve the most accurate results when
both missing data and outliers are present. RMDS and
SDP obtain slightly worse results. As for localizability,

40 50 60 70 80 90

missing entries (%)

0

10

20

30

40

R
M

S
E

O = 30%

SMACOF-IRLS
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SDP

ER-GoDec
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SMACOF-IRLS

RMDS

SDP

ER-GoDec

Figure 3. Sensitivity to Random Unspecified Data. On the x-axis
the portion of random unspecified data (upper plot) and the portion
of outliers (lower plot), on the y-axis the corresponding (average)
RMSE obtained with our method SMACOF-IRLS and competitors.
The number of nodes is n = 100, the side of the square is l = 100,
the noise std deviation is σ = 0.6. In the upper plot O = 30%, while
in the lower plot H = 60%.

the check failed 17 times over 100 simulations when the
portion of unspecified entries was 90% (rightmost point
in the upper plot), while for lower portions the check
never failed.

2) Range-Based: This situation is more realistic,
since in a real WSN each node can communicate only
with its closest neighbors. We set n = 100, l = 100,
σ = 0.6, and we analyze the behaviors of the methods
respectively with respect to the range (fixing O = 30%)
and to the outliers (fixing R = 50, which corresponds
to about 52% of unspecified entries). Results are sum-
marized in Fig. 4.

The upper plot shows that SMACOF-IRLS, RMDS
and SDP are not sensitive to range-based unspecified en-
tries for ranges greater than 40 (i.e. with approximatively
65% of unspecified entries), where all three methods
have the breaking point. ER-GODEC has the worst
breaking point at R = 80 (i.e. with approximatively 15%
of unspecified entries). The lower plot confirms the bad
performance of ER-GODEC for all portions of outliers.
SMACOF-IRLS obtains the best accuracy followed by
RMDS up to a portion of outliers of 45%, where it has
its breaking point. SDP has its breaking point at about
30% of outliers.

The localizability check failed 82 times over 100
simulations when the range was 20 (leftmost point in
the upper figure), which corresponds to approximatively
90% of unspecified entries, while for ranges greater
than 20 the check never failed. Observe that graphs
obtained by removing edges according to a range R are
more likely non-localizable compared to graphs obtained
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Figure 4. Sensitivity to Range-based Unspecified Data. On the x-axis
the range (upper plot) and the portion of outliers (lower plot), on the
y-axis the corresponding (average) RMSE obtained with our method
SMACOF-IRLS and competitors. The number of nodes is n = 100,
the side of the square is l = 100, the noise std deviation is σ = 0.6.
In the upper plot O = 30%, while in the lower plot the R = 50.

by removing random edges (considering commensurate
values of R and H).

C. Efficiency

In this experiment we analyze the efficiency of our
solution. We set n = 100, l = 100, σ = 0.6, O =
10%, H = 30%, and we evaluate the execution time
as a function of the number of nodes. In this case the
localizability never fails. Results are reported in Fig. 5.
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Figure 5. Efficiency. On the x-axis the number of nodes, on the y-axis
the corresponding (average) execution time obtained with our method
SMACOF-IRLS and competitors. The number of nodes is n = 100,
the side of the square is l = 100, the noise std deviation is σ = 0.6,
the portion of outliers is O = 10%, and the portion of unspecified
entries is H = 30%.

The upper plot of Fig. 5 shows that up to 80 nodes
SMACOF-IRLS, RMDS and ER-GODEC obtain com-
parable results, while SDP is definitively slow. Exclud-
ing SDP from the comparison, we increased the number
of nodes up to 1000 as shown by the lower plot of Fig. 5.
Among the remaining ER-GODEC is the slowest, while
SMACOF-IRLS shows a behavior similar to RMDS
which turns to be the most efficient.

V. CONCLUSIONS

We proposed a new method for WSN localization that
couples IRLS and SMACOF to obtain resiliency to out-
liers and handling of incomplete measures. In addition,
we found empirically that different patterns of missing
data requires different initialization. In particular, when
the pattern is not random but depends on the range,
the Laplacian Eigenmap is the best choice. Experiments
report better performances in accuracy with comparable
computation time with respect to the closest competitors.
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