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Abstract—In the structure from motion, the viewing graph is a graph where the vertices correspond to cameras (or images) and the
edges represent the fundamental matrices. We provide a new formulation and an algorithm for determining whether a viewing graph is
solvable, i.e., uniquely determines a set of projective cameras. The known theoretical conditions either do not fully characterize the
solvability of all viewing graphs, or are extremely difficult to compute because they involve solving a system of polynomial equations
with a large number of unknowns. The main result of this paper is a method to reduce the number of unknowns by exploiting cycle
consistency. We advance the understanding of solvability by (i) finishing the classification of all minimal graphs up to 9 nodes, (ii)
extending the practical verification of solvability to minimal graphs with up to 90 nodes, (iii) finally answering an open research question
by showing that finite solvability is not equivalent to solvability, and (iv) formally drawing the connection with the calibrated case (i.e.,
parallel rigidity). Finally, we present an experiment on real data that shows that unsolvable graphs may appear in practice.

Index Terms—Solvability, viewing graph, structure from motion, fundamental matrix, uncalibrated camera.

1 INTRODUCTION

TRUCTURE-FROM-MOTION (SfM) is a fundamental task in
S computer vision, due to its relevance in many important
problems such as 3D reconstruction from image sets [!], [2], [3],
image matching [4] and visual odometry [5], [6], [7], [8]. As a
consequence, SfM algorithms are key enabling technologies in a
wide range of application domains, such as autonomous driving,
robotics and Augmented/Virtual Reality.

The fundamental problem in SfM, i.e., to determine which
image sets can be reconstructed, can be addressed by analyzing
the viewing graph [9]. The viewing graph of a set of images,
also referred to as the epipolar graph, is a graph where vertices
are images (or cameras) and edges correspond to fundamental
matrices. With this formalism, an edge is present if and only if
the fundamental matrix between the two images associated to the
connecting vertices exists (i.e., if enough corresponding points
between the two images can be found). As a consequence, in many
real world applications, the viewing graph is not complete, as
different images may depict different parts of a scene.

While several research efforts on SfM have focused on devis-
ing more accurate and efficient algorithms for 3D scene recon-
struction and visual localization [10], much less attention have
been devoted to investigate theoretical aspects. In this context, a
relevant question is whether a viewing graph is solvable, i.e., if it
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uniquely determines a projective configuration of cameras, up to
a single projective transformation. In other words, an unsolvable
viewing graph is graph for which multiple transformations exist
that can be applied to the cameras without affecting the funda-
mental matrices. In the literature, the problem of viewing graph
solvability has been previously studied by Levi and Werman [9].
In [9] a definition of solvability is provided which states that a
graph is solvable if and only if the available fundamental matrices
uniquely determine the remaining ones, i.e., the input graph can
be transformed into the complete graph.

Studying graph solvability is of utmost importance for 3D
reconstruction. Indeed, viewing graphs are used in several pro-
jective SfM methods [11], [12], which operate by recovering the
projective cameras starting from multiple fundamental matrices.
Assessing the solvability of a viewing graph is a necessary,
preliminary step for reconstruction. In fact, no existing SfM
method operating on fundamental matrices will be able to provide
a reasonable solution if the reconstruction problem is unsolvable.

Previous studies [13], [14] demonstrated that, in the calibrated
case, i.e. when essential matrices are considered rather than the
fundamental ones, the solvable graphs are exactly those that are
parallel rigid. The topic of parallel rigidity, also referred as
bearing rigidity, has been extensively studied in the literature [15].
However, in this paper, we focus on the more challenging situation
of uncalibrated cameras, which has received little attention so far.
For the sake of completeness, in Table 1 we provide an illustration
of the relevant literature on graph solvability and reconstruction,
considering both the calibrated and the uncalibrated case.

1.1 Related Work

Due to its relevance in several applications, Structure-from-Motion
has been deeply studied in computer vision. However, over the
years, most research efforts on SfM have focused on devising
algorithmic solutions for accurate and efficient 3D scene recon-
struction and visual localization. On the contrary, the underlying
theoretical problems have been much less studied.
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Fig. 1: Viewing graphs with eight vertices that were left undecided in [

Focusing on graph solvability, Levi and Werman [9] were the
first to characterize the solvability of graphs with at most six
vertices and further provided some insights about how to analyze
larger graphs. Nardi et al. [17] described a constructive method to
complete such view graphs. Rudi et al. [18] analyzed the condi-
tions under which a linear method can solve a viewing graph. This
analysis was later extended in [19], where it was shown that some
solvable graphs can be constructed starting from a triangle and
adding vertices of degree two one at a time. More recently, Trager
et al. [16] provided some necessary conditions and a new sufficient
condition for graph solvability. Their results permit to completely
characterize graphs with at most seven vertices. However, with
the results of [19], graphs with eight or nine vertices such as those
in Figure 1 cannot be classified into solvable or non solvable.
Additionally, larger graphs were not studied. Trager er al. [16]
also showed that any viewing graph can be classified via a system
of polynomial equations. However, while theoretically important,
this study does not provide an effective test for solvability. Indeed,
solving a system of polynomial equations is computationally
expensive due to nonlinearity and to a large number of unknowns.

Another open issue in this research area is related to the con-
cept of finite solvability. A viewing graph is called finite solvable if
it determines at most a finite number of projective configurations
of cameras. Obviously, if a graph is not finite solvable (i.e., it
determines an infinite number of camera configurations) then it
is not solvable. In a nutshell, solvability implies finite solvability.
Trager et al. [16] did not consider the reverse implication, namely:
Does finite solvability imply solvability? Our work advances the
state of the art in SfM by addressing those research questions
about viewing graph solvability that were left open in [16].

calibrated uncalibrated
solvability [15] [9], [16], [18]+ours
reconstruction  [10] [11],[12]

TABLE 1: Problems taxonomy. We address the uncalibrated case.
Surveys [10], [15] address the calibrated situation.

1.2 Contribution

We derive a new formulation of viewing graph solvability that is
much simpler than [16] thanks to a substantial reduction in the
number of unknowns involved. Our formulation is based on the
cycle consistency property, namely the fact that the composition
of (invertible) transformations along any cycle in the graph should
be the identity.

This leads to a new algorithm, based on computational al-
gebraic geometry, which implements a characterization of solv-
ability. Previous techniques could only verify certain sufficient or

| and that we determined to be solvable.

necessary conditions. Using this algorithm, we provide a complete
characterization of all the minimal graphs up to nine nodes,
including those that were left undecided by [16].

In fact, we are able to decide the solvability of minimal graphs
with up to 90 nodes. In practice, our approach can be used
to detect interesting solvable sub-graphs of dense/large viewing
graphs coming from real data sets.

Furthermore, thanks to our algorithm, it is possible to exhibit
concrete examples of graphs that are finite solvable but not
solvable, thus answering the research question opened by [16].

Finally, we derive a new necessary condition for solvability,
namely parallel rigidity. This results in a practical tool to detect
non-solvable graphs, as parallel rigidity can be reduced to check
the rank of a linear system [20]. Since essential matrices subsume
fundamental ones, it seems reasonable that a graph that admits a
unique solution when the edges are associated with fundamental
matrices also does when the edges are associated with essential
ones. Hence this result is largely expected, but it has never been
proved before. In summary, we:

e propose a new simpler formulation of the solvability;

o build an effective algorithm for testing it;

o classify previously undecided viewing graphs;

« extend solvability testing up to graphs with 90 nodes;

« prove that finite solvability does not imply solvability;
o prove that solvability implies parallel rigidity.

The paper is organized as follows. We define the viewing
graph solvability in Section 2, derive a new necessary condition
in Section 3, present our main theoretical results in Section 4,
and describe our algorithm in Section 5. Section 6 presents some
experiments on synthetic and real data. Further examples are
analyzed in Section 7. This paper is an extended version of [21].

2 BACKGROUND

Let us consider n projection matrices of uncalibrated cameras
Py, ... P,, which are matrices in R3*% of rank 3. The center
of a camera has homogeneous coordinates in vector c; € R*, a
non-null element of the kernel of P;. Let G = (V,€) be an
undirected graph with vertex set V = {1,...,n} and edge set
E c{l,...,n} x{1,...,n}. Let m = |&| be the number of
edges. Recall that for each edge (4,j) € £ we can compute the
fundamental matrix [;; relating cameras ¢ and j in a closed-
form [22]. Conversely, the fundamental matrix of edge (4, 7)
uniquely determines the cameras of vertices ¢ and j, up to a
projective transformation [22].

In the following, we shall use uppercase letters to denote
matrices, lowercase bold letters to denote vectors and lowercase
letters to denote scalars'. Projective quantities are represented as

1. Observe that this notation is different from the one used in [16].



non-homogeneous variables and suitable scales are introduced to
handle the scale ambiguity.

Definition 1. Let G be a viewing graph and P = {P,..., P,}
be a set of cameras. The pair (G, P) is called solvable if all the
camera configurations yielding the same fundamental matrices as
‘P are projectively equivalent, i.e. they are related by the same
projective transformation.

Proposition 1 ( [16]). Let G be a viewing graph and P =
{Py,..., Py} be a set of cameras with centres c1,...,c, € R%.
The solvability of the pair (G, P) only depends on the graph G
and on the camera centres C1, . . ., Cp.

According to the above result, if a problem is non-solvable,
then the cause can be either the topology of the graph or the
actual coordinates of the centres. For instance, if the centres are
all aligned, then the problem is not solvable (see [9] for more
examples). The following concept — which is the main focus of
this paper — permits to predicate the solvability of a problem based
on the graph topology only.

Definition 2. A graph G is called solvable if it is solvable for a
generic configuration of cameras.

Different notions of solvability have been set forth in the liter-
ature. According to [9] a graph is solvable if and only if the given
fundamental matrices uniquely determine the remaining ones that
complete the graph. This definition is specific, but the results
are given for generic configurations. Rudi et al. [18] define the
notion of “solution set”, that is the set of camera matrices (modulo
projective transformations and scalar multiplication) which yield
the given fundamental matrices. Also this definition refers to a
specific set of fundamental matrices. Clearly, if a graph is solvable
with a specific set of fundamental matrices, it is also solvable in
the sense of Definition 2, but the reverse is not true in general.
Lemma 2 of [16] clarifies the link with the definition by [9].

Remark 1. Hereafter we will consider Definition 2 as our defini-
tion of solvability, as done in [16]. Observe that such a concept
is based on the topology of the graph only. In fact, fundamental
matrices are ignored altogether: generic cameras are assigned to
the vertices in order to check solvability for a particular example,
so one can ideally attach to the edges of the graph a set of noiseless
fundamental matrices which can be derived straightforwardly from
the cameras. Noisy fundamental matrices come into play when
addressing the reconstruction, which takes place affer checking
solvability (see Table 1).

Solvability has only recently been characterised by [16] (see
Section 4.1): previously only necessary or sufficient conditions
were known. For example, any chordal (or triangulated) graph
is solvable [19]. Other sufficient conditions are proposed in [16],
[18], [19], where the idea is to check if the input graph can be
transformed into a solvable one via suitable operations. Necessary
conditions [9], [16] have a practical use, for they allow to quickly
prune the candidates. For instance, a solvable graph:

o hasatleast (11n — 15)/7 edges [16];

o is biconnected [16], i.e., the removal of any single node
leaves the graph connected;

o has the property that all the vertices have degree at least
two and there are not two adjacent vertices with degree
two (if n > 3) [9].
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In addition, a solvable graph must satisfy the following condition,
which will be exploited in Section 3.

Proposition 2 ( [16]). Let G = (V, &) be a solvable graph with
= V| and m = |E|. If G1,..., Gy are sub-graphs of G with
Gi = (&, Vi) and &; are pairwise disjoint, then it holds:

k
DALV = 7] - 15) =

i=1

11n — 7m — 15. (1)

3 CONNECTION TO PARALLEL RIGIDITY

In this section we formally draw the connection to the calibrated
case (i.e., parallel rigidity [13]). In particular, we prove that if
a viewing graph is solvable, then it is also parallel rigid®> in 3D
space. Recall that solvability is equivalent to the well-posedeness
of an uncalibrated 3D reconstruction problem, represented as a
graph with fundamental matrices on the edges. Parallel rigidity in
3D space, instead, is tantamount to solvability when cameras are
calibrated and edges are associated with essential matrices (see
Table 1). Hence, this result is largely expected. Nevertheless this
is the first proof, to the best of our knowledge.

Among the available characterizations of parallel rigidity
(see [15] for a comprehensive list), the following one best fits
our goal:

Proposition 3 ( [23] ). A graph G = (V,&) with n = |V
is parallel rigid in 3D space if and only if, for any collection
Gi,...,Gi of sub-graphs of G with G; = (&;,V;) such that
E1,y..., & forma partition of &, it holds:

Z 3|V —4) >

3n — 4. 2)

Theorem 1. If a graph G is solvable then it is parallel rigid.

Proof. Our proof builds on the characterization of parallel rigid
graphs given in Proposition 3. As such, we are only due to show
that the inequality

k

2 (3|Vi| —4) =

3n—4 3)
holds true for any partition {&1, ... &} of €. In order to conve-
niently plug in the similar inequality which is known to hold for
solvable graphs (i.e., Proposition 2), it is only convenient to verify
the above inequality as multiplied by 11/3. Before we start, let us
note that if the &; form a partition of £ then Proposition 2 writes:

Z 11V — 15) =

11n —15 4)

because Z’f_l |81| = m. By computation we get:

44
<11 Vi — ) -
1
44

+ (11n —15) = 11n — 3
&)

2. Parallel rigidity can be defined in any dimension. We are interested here
in the 3D case.
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k
Z (11|Vi| — 15) >
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where the above inequality comes from (4) together with the
assumption that the graph is solvable, and because k > 1. O

Observe that the converse of the above result is not true.
For example, a cycle of length four (namely a “square”) is rigid
(see [14], [15]) but not solvable (see [9], [16]). In other terms, the
set of solvable graphs is strictly contained in the set of parallel
rigid graphs (see Figure 2). Note also that the property of being
biconnected is a necessary condition for both (it was proved in [24]
for rigid graphs and in [16] for solvable graphs). In this context,
Theorem 1 has practical relevance as it provides a new necessary
condition for solvability, namely testing parallel rigidity. Such a
test is simple as it can be reduced to checking the rank of a
properly constructed linear system (see [20], [25]).

Biconnected

Parallel rigid

Solvable

Fig. 2: Connection between solvability, parallel rigidity and biconnec-
tivity. All the inclusions are strict.

4 CHARACTERIZATION OF SOLVABILITY

Given a graph G = (V,€) with n vertices and m edges, our
task is to establish whether such a graph is solvable according
to Definition 2. Throughout our discussion we assume that G is
connected and n > 3. The starting point of our derivations is
the algebraic formulation by Trager et al. [16], which is the only
available characterization of solvability and will be reviewed next.

4.1 Algebraic Formulation

Trager et al. [16] linked viewing graph solvability to the character-
ization of the set of projective transformations that can be applied
to all cameras without affecting the fundamental matrices. First of
all, they identify the family of transformations that leave a camera
matrix fixed.

Proposition 4 ( [16]). Ler P € R3** be a camera with centre
c € R% All the solutions to PG = aP for G € GL(4,R) and
a € R are described by

G = aly+cv' VYaeRyg,veR? (6)

where I denotes the 4 x 4 identity matrix and GL(4,R) denotes
the group of real 4 x 4 invertible matrices.

Proof. Observe that PG=aP <= P(G—aly)=0 <
PB=0 with B=(G—aly) <= im(B) is a subspace of
ker(P). Since dim(ker(P))=1 also dim(im(B))=1, hence
rank(B)=1. So B must be the outer product of two vectors, and
the left one must belong to ker(P), therefore B = cv'. O

Please note that the condition a+c'v # 0 is necessary and
sufficient for G to be invertible. This derives from the fact that the
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inverse of a matrix of the form Iy + cv' is given by I + cw '
where w = fﬁv.

Let us consider a viewing graph G = (V, £) and let us assign
a projective transformation G;; € GL(4,R) to every edge (i,7) €
E. It is understood that this transformation is to be applied to the
two adjacent cameras P; and P;. Clearly this does not change
the fundamental matrix F;;, for it is invariant under projective

transformations.

j’

Fig. 3: Two adjacent edges in the viewing graph.

If we were dealing with a single edge (i.e., a pair of cameras),
we would be free to choose any G;;. However, when dealing
with multiple edges (i.e., when considering the whole viewing
graph), these matrices must satisfy global compatibility con-
straints. Specifically, let us consider two adjacent edges (h,7) € £
and (¢, 7) € & that are both incident to vertex ¢ € V and to which
the two transformations G'; and G';; are assigned (see Figure 3).
Such transformations must leave the camera at the common vertex
fixed, resulting in the following compatibility constraint:

—1 T
GhiGij = ahijL; + CiViij 7
where api; € R and vp;; € R* are unknown.

Definition 3. Let G be a graph and let c1,...,c, € R* be n
generic camera centres Any assignment of transformations G;; €
GL(4,R) to the edges of the graph, such that Equation (7) holds
true for all adjacent edges, is called compatible.

Proposition 5 ( [16]). Let G be a graph and let c1,. .., c, € R*
be n generic camera centres. G is solvable if and only if any
compatible assignment is of the form

Gij = Sin V(l,]) e& 8)
where H € GL(4,R) and s;; € R.

The condition in Proposition 5 means that, for a solvable
graph, the only way to act on all the cameras (without affecting
the fixed fundamental matrices) is to apply a single projective
transformation.

Remark 2. Note that the centres can be sampled at random’®,
in order to satisfy the assumption of generic cameras. This is a
standard procedure in solvability theory [16] (which is also used in
the calibrated case [15]): it permits to check solvability in a generic
sense, namely with cameras in a generic position, hence relying on
the graph structure only (see Definition 2). In this respect, camera
centres are treated as known variables hereafter.

Finding a compatible assignment of matrices, i.e., solving
Equation (7) for all adjacent edges simultaneously, is very chal-
lenging since it defines a non-linear algebraic system with a large
number of unknowns. For this reason, Proposition 5 is given as a
theoretical result in [16], without leading to a practical algorithm

3. Of course, there is a very small chance (with probability 0) to sample a
degenerate configuration.



for checking viewing-graph solvability. We will explain how to
alleviate this drawback later on.

4.2 Solvability on the Line Graph

Our formulation is inspired by the algebraic characterization
detailed in Section 4.1. Specifically, we show how to reduce
the number of unknowns in Equation (7), thus providing a more
practical way for checking viewing graph solvability. To this end,
we exploit the line graph associated with G, which has been used
also in [26] to handle multi-view geometry.

Definition 4. Given an undirected graph G, its line graph (also
called edge-to-vertex dual graph) is denoted by L(G) = (V,E)
and it is another undirected graph such that:

« each vertex of £(G) represents an edge of G;

« two vertices of £(G) are adjacent if and only if their cor-
responding edges are adjacent in G, i.e, they are incident
to the same vertex.

Figure 4 shows an example. The number of vertices in the line
graph coincides with the number of edges in the original graph,
i.e., n = m, whereas the number of edges in the line graph is
given by the following formula [27]:

1S,
= Y= m ©
i=1
where d; denotes the degree of vertex ¢ € V.

23

12 034

* ° 42 A 41

Fig. 4: Viewing graph with 4 vertices (left) and corresponding line
graph (right). Please note that a vertex of the original graph (e.g.,
vertex 2) can appear multiple times as an edge of the line graph, as
clarified by colors.

Let us rewrite Equation (7) in terms of the line graph
L(G) = (V,&). Note that the edge (h,i) € & is a vertex 7 € V
and similarly (i, ) € & represents a vertex v € V. Such vertices
are connected by an edge (7, v) € £ by construction (as they share
vertex ¢ € V in the input graph). Hereafter we use Greek letters
to denote vertices/edges in the line graph. Using this notation
Equation (7) becomes:

G,.G' =7,

%

10)

where:
T
ZT’U = a‘rUI4 + CiVry

Y
and the index 7 of the camera is defined as {i}=7Nwv.

Definition 5. Let G be a graph and let cq,...,c, € R* be n
generic camera centres. Any assignment of transformations G, €
GL(4,R) to the vertices of the line graph £(G) such that Equation
(10) holds for all the edges is called a consistent labelling.

Remark 3. A consistent labelling of the line graph corresponds to
a compatible assignment on the original graph (see Definition 3).
We give this equivalent definition here to outline the link with
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the problem of synchronization [28], [29], [30] (see [31] for a
recent survey), where the task is finding a consistent labelling (of
vertices) starting from measured ratios on the edges. Specifically,
with reference to Equation (10), the task would be to compute
G,,G,, ... starting from known Z.,. In our case, however,
the variables Z,, € GL(4,R) are unknown for all (1,v) € £.
Nevertheless, the framework of synchronization is useful to derive
a new formulation of solvability, as it will be clarified in the next
subsection (see the proof of Theorem 2).

Remark 4. The problem of finding a consistent labelling involves
an equation of the form (10) for each edge in the line graph,
which in turn spawns 16 equations when considered entry-wise.
Thus, using (9), the total number of equations is given by:
1 n
16m = 16(5 Z d? —m). (12)
i=1
Observe that there are 16 unknowns for each node in the line
graph, representing a matrix G, € GL(4,R). In addition, there
are five unknowns for each edge in the line graph, representing a
vector v,,, € R* and a scale a,,, € R.0. Thus, the total number
of unknowns is given by:
5 n
167 + 5m = 5Zd?ﬂlm (13)
i=1
where n = m by construction and m is given by Equation (9).

Recall that the camera centres are considered known as they are
sampled at random in practice (see Remark 2).

Reasoning on the line graph, we are able to prove the following
result, which gives a characterization of solvability in terms of the
variables v, € R* only.

Proposition 6. Let G be a graph and let c1,...,c, € R* be n
generic camera centres. The graph G is solvable if and only if any
consistent labelling yields:

v, =0 Y(r,v)eé&. (14)

Proof. If G is solvable, then, due to Proposition 5, all the matrices
G, represent the same projective transformation, or equivalently,
they are all multiples of each other. Hence, the product GG, Lis
a multiple of the identity (which is denoted by b, 14 with b,,, €
R.0). Hence Equation (11) becomes:

15)

T T
broly = arply+c;vy, < (bry—ary) 1y = €V .

Since the right term in the above equation is a rank-1 matrix,
whereas I is full rank, the only way to let the equation true is
to set by, — sy = 0 and v, = 0, hence we get the result. In
the opposite direction, if v, = 0 then Equation (10) rewrites
GTG;1 = Q,y14 or, in other terms, G, = a,,G,. Such an
equation can be propagated through all vertices 7 € V as soon as
the line graph is connected (which is true if the original graph is
connected [32]). This means that all matrices GG, are multiples of
each other, hence the graph is solvable, due to Proposition 5. [

Remark 5. Observe that one implication of the above proposition
could be proved without the line graph, using Equation (7)-(8),
whereas the reverse implication exploits the fact that connectivity
on the original graph implies connectivity on the line graph. We
will see later (see Theorem 2) that the synchronization formalism
(which is at the basis of our development) requires an equation of
the form (10), making the line graph indeed essential. Observe



also that the second part of the proof of Proposition 6 has
actually found a consistent labelling for L(g ), or, in other terms,
it has solved synchronization [31]. Solving such a problem is
straightforward in the absence of noise — as it is the case here: it is
enough to arbitrarily fix one transformation (e.g., to the identity)
and compute the others by propagating the relation G, = Z,,G,,
along a spanning tree, assuming a connected graph. Note that
fixing one transformation to the identity corresponds to fixing the
global projective ambiguity.

Remark 6. Observe that Proposition 5 gives a formulation of
solvability in terms of the matrices GG, whereas Proposition 6
considers the variables v,, only. We will show in the next
subsection that the problem of finding a consistent labelling can
be expressed via a system of equations not involving the matrices
G (but involving the variables v., and ar, only). In this
respect, a formulation of solvability in terms of v,, (as given
by Proposition 6) is indeed essential.

4.3 Cycle Consistency

To derive the main result of our paper, we introduce the notion of
“consistent cycle”. A cycle is a non-empty path in which the only
repeated vertices are the first and last ones. A consistent cycle is a
cycle satisfying an algebraic constraint, as given in the following
definition.

Definition 6. Let G be a graph and let c1,...,c, € R* be n
generic camera centres. Let C = {71, 72,73, ..., 7¢, T1} be acycle
in the line graph £(G). We say that C is a consistent cycle (or a
null cycle) if and only if the composition of the edge labels along
the cycle returns the identity, namely

ZT17'2ZT2T3 """ ZTeT1 = Iy. (16)

A cycle basis is a minimal set of cycles such that every cycle
can be written as a sum of the cycles in the basis, where the sum
of two cycles is a cycle where the common edges vanish. There
exist several types of cycle bases (see [33] for a survey). We are
interested here in a cycle consistency basis for the line graph, that
is a cycle basis such that: if the cycles in the basis are consistent,
then consistency also holds on all the other cycles (see [34] for
details). An example is reported in Figure 5.

23 23
1o 12
" o3
034
42 42
420

41 o
41

Fig. 5: Example of a cycle consistency basis (comprising four cycles)
associated with the line graph in Figure 4. Observe that, given a graph,
a cycle consistency basis may not be unique.

Theorem 2. Let G be a graph and let cq,...,c, € R* be n
generic camera centres. Let {C1,Ca,...,Cy¢} be a cycle consis-
tency basis for the line graph L£(G). Let us collect in a unique
system the equations of the form (16) for all the cycles in the
basis. G is solvable if and only if the solution to such system
yields v, = 0 for all (1,v) € &.
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Proof. 1t is known that there exists a consistent labelling if and
only if all the cycles are null/consistent (see Lemma 8 in [35]
and Corollary 1 in [31]). Clearly, if all cycles are consistent,
then — in particular — the cycles in a basis are also consistent.
The opposite does not hold in general [34]. However, if we
consider a cycle consistency basis, then consistency on the basis
implies consistency on all cycles by definition. Thus, there exists a
consistent labelling if and only if all cycles in a cycle consistency
basis are consistent. We now apply this general result to our
problem: finding a consistent labelling, i.e., an assignment of
transformations satisfying Equation (10), is equivalent to imposing
that all cycles in a cycle consistency basis of the line graph
are consistent. In other terms, the system obtained by stacking
equations of the form (10) for all the edges in £(G), is equivalent
to the system obtained by stacking equations of the form (16) for
all the cycles in a cycle consistency basis of £(G). According to
Proposition 6, a graph is solvable if and only if the solution to the
former yields v,, = O for all (7,v) € &, hence we prove the
thesis. O

Remark 7. The formulation of Theorem 2 comprises five un-
knowns for each edge (7,v) € £ in the line graph, representing a
vector v, € R* and a scale a, € R_o. Thus, using Equation (9),
the total number of unknowns is given by

1 n
5m = 5(§Zd§—m).
i=1

Observe also that each cycle originates an equation of the form
(16), which in turn spawns 16 equations when considered entry-
wise. Considering the fact that the cardinality of a cycle consis-
tency basis is the number of edges minus the number of vertices
plus one (see [34]), we get the total number of equations as

a7

n
16(ﬁ1—ﬁ+1)zl6(%2d?—2m+1). (18)
i=1
Recall that the number of vertices in the line graph satisfies
n = m by construction, and the number of edges m is given
by Equation (9). Note that Equation (16) is still nonlinear, but it
has the advantage of not involving the unknowns G, for 7 € V,
thus reducing the difficulty of the problem compared to Equation
(10), where the amount of unknowns is given in Equation (13).
Observe also that Proposition 6 and the cycle space trick jointly
contribute to reduce the number of variables: the former states
that only the “v” variables matter, whereas the latter provides an

equation involving only the “v”.

Remark 8. Observe that the input graph G is an undirected
graph. Indeed, given a pair of cameras, or, equivalently, an edge
(i,4) € &, the projective transformation that fixes the fundamental
matrix of that camera pair is independent of the order of the
cameras. In other words, G;; = G ;. When considering the line
graph, instead, we are concerned with directed edges®. Indeed,
Zry = G,GJ1 = GhiG;jl and Z,, = G,G;! = GijG,:il
are different transformations (we are considering here 7 = (h, 1)
and v = (i,7)). However, from the practical point of view, it is
convenient to reduce the number of unknowns. More precisely,
for a given oriented edge (T,v) € £ we consider a,,, € R.p and
vV, € R* as unknowns, and we use the relation Z,, = Z;Ul to

4. The line graph of an undirected graph is undirected by construction.
However, it can be easily transformed into a directed graph by orienting the
edges arbitrarily.



Z/R NGRS R < A

#Eq.  #Var. #Eq.  #Var. #Eq. #Var. #Eq. #Var. #Eq. #Var. #Eq. #Var.
Our formulation 64 36 64 40 112 63 112 67 192 100 208 109
Trager et al. [16] 128 120 144 141 224 198 240 219 352 286 384 312

TABLE 2: The number of equations and variables are reported on some minimal examples for our formulation (see Equation (18), (22)) and the

one proposed in [

] (see Equation (12), (13)). Recall that the latter (described in Equation (7), (10)) is given as a theoretical result in [

] due

to its computational complexity, without giving rise to an effective algorithm. Our formulation is more practical as it involves fewer unknowns.

handle the opposite edge (v,7) € &, where the inverse can be
easily computed.

4.4 A Simplified Formulation

We now derive a simpler equivalent formulation by exploiting the
change of variables.

Proposition 7. Let G be a graph and let ci,...,c, € R*
be n generic camera centres. Let {C1,Ca,...,Cs} be a cy-
cle consistency basis for the line graph L(G). For each cycle
Cy = (11,72,...,70,T1) in the basis, let us form the following

equation:
WT1T2W7'27'3 Tt WT(ZTI = bk]4 (19)
where by, € R..o is an unknown scale and
Wro = Iy 4+ coul, (20)

where U, € R* is unknown and {i} = 7 N v.
G is solvable if and only if the solution to the above system yields
v = 0 forall (1,v) € €.

Proof. The thesis derives from the following change of variables
for each edge in the line graph:

Ury = V'rv/a'rv 2D

which is well defined since a,,, # 0. O

Remark 9. Thanks to Proposition 7, we have four unknowns for
each edge (7,v) € £ in the line graph, representing a vector
U,y € R4, plus one unknown scale for each cycle. Thus, the total
number of unknowns becomes

dm+1(m—-n+1)=5m—-m+1 (22)

which is lower than the formulation related to Theorem 2 where
the number of unknowns is 5m (see Equation (17)). The number
of equations remains unchanged and it is given by Equation (18).
Table 2 reports a comparison between our simplified formulation
and the one in Equation (10) for some examples.

Corollary 1. Let G be a graph and let cq,...,c, € R* be n
generic camera centres. Let {C1,Ca,...,Cy¢} be a cycle consis-
tency basis for the line graph L(G). Let us collect in a unique
system the equations of the form (19) for all the cycles in the
basis. G is solvable if and only if such a system admits exactly one
solution.

Proof. In one direction. If G is solvable then u,, = O (thanks to
Proposition 7), hence Equation (19) gives b, = 1 for each cycle
Ck. in the basis, i.e., there is exactly one solution. In the opposite

direction. It is easy to see that if we set all the scales by, = 1 and
all the vectors u,,, = 0, then we always get a solution to Equation
(19). If we assume that there is a unique solution, then it must be
equal to by, = 1 and u,,, = 0, i.e., the graph is solvable thanks to
Proposition 7. If the graph is non-solvable, there will be also other
solutions. O

Remark 10. Corollary 1 means that the formulation given in
Equation (19) permits to fix all ambiguities, so that the solution
is exactly one (for a solvable graph). It also implies that one
does not need to explicitly compute the solution(s) in practice,
but it is enough to recover the number of solutions. Note that the
formulation in Equation (16), instead, is subject to scale ambiguity,
for it involves an unknown scale a,,, for each edge in £(G): when
considering a single cycle, for instance, the product of such scales
is fixed but all of them are free. Concerning the global projective
ambiguity (which is inherent to the problem), observe that a global
change in the coordinate system affects the matrices G only, but it
does not affect the product G, G, = Z,,,. Therefore, projective
ambiguity is not present in the formulations given in Equation (16)
and (19) (that do not involve the matrices G, ).

5 PROPOSED ALGORITHM

Our algorithm (summarized in Algorithm 1) is a direct conse-
quence of the theoretical results from Section 4; in particular,
we follow the simplified formulation derived in Section 4.4,
which is based on Equation (19). Some steps require additional
explanations, which are given in the following remarks.

Algorithm 1 Viewing Graph Solvability

Input: undirected graph G = (V, )
Output: solvable or not solvable
1) randomly sample the camera centres

2) compute the line graph £(G)

3) compute a cycle consistency basis for £(G)
4) set up equations of the form (19) and (25)
5) compute the number s of real solutions

6) if s = 1 then solvable; else not solvable

Remark 11. Concerning Step 3, we focus on a particular type of
cycle consistency basis [34], namely, we consider a fundamental
cycle basis, due to its simplicity. In fact, this basis can be
constructed starting from a spanning tree, which can be found
in linear time by either depth-first search or breadth-first search.
Let 7 be a spanning tree of £(G) = (V, ), then adding any edge



Nodes 3 4 5 6 7 8 9
Graphs 1 1 1 4 3 36 27
Method Alg. 1 [16] Alg. 1 [16] Alg. 1 [16] Alg. 1 [16] Alg. 1 [16] Alg. 1 [16] Alg. 1 [16]
Solvable 1 1 1 1 1 1 4 4 3 3 36 31 17 5
Not solvable 0 0 0 0 0 0 0 0 0 0 0 0 10 0
Unknown 0 0 0 0 0 0 0 0 0 0 0 5 0 22

TABLE 3: Solvability of minimal viewing graphs. Candidates are connected graphs which are finite solvable and satisfy necessary conditions.

Some cases were left undecided by [

s e

1, while our approach provides a complete characterization of all the minimal graphs up to 9 nodes.

Fig. 6: Some solvable minimal viewing graphs with 9 nodes.

G AR

Fig. 7: Some unsolvable minimal viewing graphs with 9 nodes.

from &£ \T to T generates a cycle; the set of such cycles constitutes
the fundamental cycle basis [33].

Remark 12. As for Step 4, recall that our unknowns comprise one
scale by, € R for each cycle and one vector u,, € R* for each
edge in the line graph. Such variables must satisfy the following
constraints:

b, #0
Wy = Iy + coul, € GL(4,R).

(23)
(24)

Instead of explicitly enforcing them, we add the following equa-
tion

Zrpdet(Iy +cul,) +1=0 (25)

for each edge in the line graph, where z,,, € R is an auxiliary
variable. Clearly, if det(I4 + c;u,) = 0 then the above equation
can not be satisfied over real numbers. In other words, this
additional equation has the effect of automatically discarding non-
invertible matrices. Observe also that if all matrices W, are
invertible, then the product of a subset of them is also invertible.
In other terms, the left term in Equation (19) is invertible for each
cycle and hence by, # 0. Thus (25) implies both (24) and (23).

Remark 13. Step 5 is based on computational algebraic geometry.
In particular, we employ Grobner basis computation [36], that is
one of the main practical tools for solving systems of polynomial
equations with coefficients in a field. A Grobner basis can be
viewed as a nonlinear generalization of the Gaussian elimination
for linear systems [37].

Remark 14. Although our problem is stated over R, for the sake of
efficiency [38] we perform computations over Z,, (i.e., the integers
modulo a large prime number p), as customary in applied algebraic
geometry. This yields the same number c of solutions as in C [39],

which is greater or equal to the sought number s of solutions in
R. Recall that s > 1, since there always exists at least one trivial
real solution (given by u,, = 0, by = 1 and z,,, = —1). Several
cases are given: i) if ¢ = o0 then s = oo [10]; ii) if ¢ = 1 then
s = 1;1iii) if ¢ > 1 then s > 1. Note that if c is even then s > 2
since the solutions must come in conjugated pairs.

6 EXPERIMENTS

In this section, we show that our method can be profitably used
to check the viewing graph solvability on several examples. Our
algorithm is implemented in Macaulay2 [40] and the code is
publicly available’.

6.1

We follow the protocol used in [16] where graphs with minimal
number of edges (i.e., m = [(11n — 15)/7]) are analyzed. As
already pointed out, there exist cases with eight and nine nodes
that are left undecided in [16] (see Table 2 in [16]), as they satisfy
the necessary but not sufficient conditions®. Our approach, instead,
is an effective test for solvability, being based on a characterization
of the problem (i.e., a condition, that is both necessary and
sufficient); as such, it is able to classify all those undecided cases,
as summarized in Table 3. In particular, the five cases with eight
nodes (shown in Figure 1) were found to be all solvable.

As for the minimal graphs with nine nodes, there are 22
undecided graphs in [16], which, in particular, are finite solvable
(i.e., they identify a finite number of camera configurations).

Synthetic Data

5. https://github.com/federica-arrigoni/solvability
6. Actually, Trager et. al [16] manually worked out that one of those graphs
is solvable.


https://github.com/federica-arrigoni/solvability

Finite Infinite
# Solutions 1 =2 0
Is solvable? yes no no
Is finite solvable? yes  yes no

TABLE 4: Connection between solvability and finite solvability. By
definition, a graph is finite solvable if it entails a finite number of
solutions: in the case of exactly one solution, it is also solvable; in the
case of at least 2 solutions, it is non solvable. A graph with an infinite
number of solutions is clearly neither solvable nor finite solvable.

Fig. 8: Examples of solvable minimal viewing graphs with 20 nodes
(left) and 90 nodes (right).

Nodes 10 20 30 40 50 60 70 80 90
Time 1.6s 9s 93s 3min 15min 35min 1h ~2h >4h

TABLE 5: Execution times of Algorithm 1 on some minimal graphs.

Finite solvability is a necessary condition for solvability, but it
was unknown whether it is also sufficient, as all non-solvable
graphs — studied so far — define an infinite number of solutions.
Our algorithm is able to prove that a subset of those undecided
cases are solvable graphs (see Figure 6 for some examples).
Surprisingly, there exist also some non-solvable graphs among
those candidates (see Figure 7 for some examples), where our
algorithm finds two real solutions. Thus, it is possible for a graph
to be finite solvable without being solvable (i.e., to have a finite
number of real solutions strictly greater than one). This answers
an open research question pointed out by Trager et al. [16].

Remark 15. Proving that finite solvability is not equivalent to
solvability is of great relevance: it implies that we can not use
the finite solvability tools for checking solvability. As explained
in [16], finite solvability can be established by simply looking at
the rank of a properly constructed linear system. In other terms,
finite solvability is much simpler than solvability as it involves
a system of linear equations instead of polynomial equations.
Table 4 summarizes the connection between these concepts.

Viewing graphs with more than nine nodes are not studied
in [16]. Our approach, instead, is able to handle minimal graphs
with up to 90 nodes. For instance, we can prove that the graphs
reported in Figure 8 are solvable.

Table 5 reports the execution times of Algorithm 1 on some
minimal graphs with increasing number of nodes. The compu-
tational complexity is dominated by Grobner basis computation,
whose worst-case complexity is doubly exponential in the number
of variables [36]. Larger/denser graphs would require too much
computational effort to be characterized with the computer used
in our experiments (2020 MacBook Pro with 1.4 GHz processor,
8 GB RAM). Nevertheless, we can use our approach as a probe to
study their local structure, as shown in the next paragraph.

Solvable Unsolvable

Data set by suff. by Alg.1 Tot. bymnec. byAlg.1 Tot.
Alcatraz Courtyard 200 0 200 0 0 0
Buddah Tooth 182 15 197 3 0 3
Pumpkin 172 17 189 11 0 11
Skansen Kronan 179 11 190 10 0 10
Tsar Nikolai T 181 0 181 19 0 19
Alamo 125 18 143 57 0 57
Ellis Island 139 23 162 38 0 38
Gendarmenmarkt 124 12 136 64 0 64
Madrid Metropolis 100 20 120 80 0 80
Montreal Notre Dame 125 9 134 66 0 66
Notre Dame 158 13 171 29 0 29
NYC Library 93 33 126 74 0 74
Piazza del Popolo 117 15 132 68 0 68
Piccadilly 112 15 127 73 0 73
Roman Forum 110 13 123 76 1 77
Tower of London 108 11 119 81 0 81
Trafalgar 87 9 96 104 0 104
Union Square 73 21 94 106 0 106
Vienna Cathedral 107 6 113 87 0 87
Yorkminster 127 6 133 67 0 67
Cornell Arts Quad 80 28 108 91 1 92

TABLE 6: Characterization of sub-graphs with eight nodes sampled
from some real viewing graphs [41], [42], [43]. Solvable by suffi-
ciency means that the graph satisfies a sufficient condition, namely
being chordal [19]. Unsolvable by necessity means that the graph fails
to satisfy some necessary conditions (namely counting the number of
edges [16] or parallel rigidity). All the other cases are resolved by our
approach (Algorithm 1).

6.2 Real Data

In our experiment, we randomly sample small sub-graphs of
large viewing graphs coming from real data sets. In particular,
we consider the following datasets comprising either structured
or unordered image collections typically used for structure from
motion: the Cornell Arts Quad dataset [42]; 13 sequences from
the 1DSfM benchmark [43]; 5 sequences taken from [41]. In all
the cases, the viewing graph is made available by the authors of
the datasets. In particular, for each image sequence, we use only
the associated graph and we discard other information (e.g., point
correspondences and fundamental matrices), as we only need the
graph structure to check solvability.

More precisely, we proceed as follows: i) we select at random
one node of the graph; ii) we identify the first neighborhood
of the sampled node (if the first neighbors are not enough, we
also consider the neighbors of neighbors and so on); iii) we
randomly select 7 nodes within the neighborhood. This, in addition
to the original node, yields an eight-node subgraph. Following
this procedure, we sample 200 subgraphs from each real graph,
without replacement. Observe that these examples are not minimal
graphs, in contrast to experiments in Section 6.1. The results,
reported in Table 6, tell us that most local sub-graphs are solvable.
This gives an indication about which sub-graphs could be used in
practice as a starting point for an incremental pipeline for image-
based 3D reconstruction.

We repeat the same experiment by sampling sub-graphs with
nine nodes from real datasets. Results are reported in Table 7,
which confirms the outcome of our previous experiment. It is
worth observing that the cases of unsolvable graphs detected
by our approach are really rare (only one case in Table 7 and
two cases in Table 6). This means that the necessary condition
derived in [16] (namely counting the number of edges and bi-
connectivity) together with our new necessary condition (namely
parallel rigidity) are indeed strong and can be used in practice to



Solvable Unsolvable
Data set by suff. by Alg.1 Tot. bynec. byAlg.1 Tot.
Alcatraz Courtyard 200 0 200 0 0 0
Buddah Tooth 178 20 198 2 0 2
Pumpkin 169 22 191 8 1 9
Skansen Kronan 179 8 187 13 0 13
Tsar Nikolai T 196 0 196 4 0 4
Alamo 136 16 152 48 0 48
Ellis Island 136 30 166 34 0 34
Gendarmenmarkt 128 11 139 61 0 61
Madrid Metropolis 88 28 116 84 0 84
Montreal Notre Dame 140 12 152 48 0 48
Notre Dame 165 18 183 17 0 17
NYC Library 110 19 129 71 0 71
Piazza del Popolo 105 22 127 73 0 73
Piccadilly 109 23 132 68 0 68
Roman Forum 114 28 142 58 0 58
Tower of London 123 18 141 59 0 59
Trafalgar 86 16 102 98 0 98
Union Square 74 19 93 107 0 107
Vienna Cathedral 122 8 130 70 0 70
Yorkminster 116 14 130 70 0 70
Cornell Arts Quad 76 23 99 101 0 101

TABLE 7: Characterization of sub-graphs with nine nodes sampled
from some real viewing graphs [41], [42], [43]. Solvable by suffi-
ciency means that the graph satisfies a sufficient condition, namely
being chordal [19]. Unsolvable by necessity means that the graph fails
to satisfy some necessary conditions (namely counting the number of
edges [16] or parallel rigidity). All the other cases are resolved by our
approach (Algorithm 1).

Fig. 9: Examples of unsolvable sub-graphs with nine nodes sampled
from the viewing graph of the Pumpkin data set [41]. The left one
has been detected with Algorithm 1, whereas the others are not
biconnected (hence they do not satisfy a necessary condition for
solvability [16]).

Fig. 10: Examples of solvable sub-graphs with nine nodes sampled
from the viewing graph of the Pumpkin data set [41].

successfully detect many unsolvable graphs. The same conclusion,
however, does not hold for the solvable examples: previous results
are indeed unable to prove that many real graphs are solvable,
as already observed in Table 3, thus motivating the need of
Algorithm 1. Some examples of unsolvable cases are given in
Figure 9 whereas Figure 10 reports some solvable examples.

7 EXAMPLES

This section is not essential for understanding the method and can
be skipped at first reading. We focus here on the most relevant
equations related to our formulation, and we show how they look
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like on some examples, where we also analyze the output of our
algorithm.

7.1 Non-solvable graph (infinite number of solutions).

Suppose that G is a cycle of length 4, represented in Figure 11.
Let ¢, o, C3, ¢4 € R represent known (generic) camera centres.
Hereafter, for a given edge (7,v) € & in the line graph —
which corresponds to two adjacent edges in the original graph
(e, 7 = (h,i) € Eand v = (i,4) € &) — we will use
the triplet (h, 4, j) instead of (7,v) for simplicity of exposition.
Equation (10) rewrites

—1 T
G12G23 = a3y + CoVio3

-1
Ga3Gyy

—1
G34G41

—1 T
G41G12 = agq12l4 + C1Vy419

T
= a234I4 + C3V234 (26)
T

= asq1 Ly + C4V3yq

where the following variables are unknown

G12,G23,G34,G41 € GL(4,R)
a123, A234, 4341, @412 € Rg 27

4

V123, V234, V341, V412 € R™.

The line graph consists of a single cycle (of length 4), which is
also a fundamental cycle basis (associated, e.g., with the spanning
tree T = {(12,23),(23,34), (34,41)}), as shown in Figure 11.
Equation (16) rewrites

I4 = ((l123]4 + CQVI23)(CL234I4 + CgV;—34)

: Pe
(a3a11s + €avigy)(aar2ls + €1vyi0)
where the following variables are unknown
123, 4234, G341, @412 € R
9 ) ) 7'& (29)

V123, Vo34, Va1, Vi € RL
Equation (19) rewrites
by = (In 4 couqss) (I + c3udsy) (Is + caugyy ) (I + cruyss) (30)

where the following variables are unknown

bGR;gO

4
U123, U234, U341, Ug12 € R™.

€1V

Observe that Equation (30) involves less unknowns than (28),
which in turn involves less unknowns than (26), as already

1 > 12, 023 12E o3
4 3 410<+—034 410€«—034

Fig. 11: Non-solvable viewing graph with 4 vertices (left) and cor-
responding line graph (middle), where edges are oriented arbitrarily.
Colors clarify correspondences between edges in the line graph and
vertices in the original graph. On the right a spanning tree is reported,
where the root is coloured in black and the only non-tree edge is
drawn with a dashed arrow.



z_1-2_3, z_@8-z2_2,

u_9-12548z_2-12548, u_8-7348z_3-7348, u_7-14623z_2-14623, u_6-6734z_3-6734,

u_15-550z_2-559, u_l4-10838z_ 3-10838, u_13+72B7z_2+72B7, u_12-7283z_3-7283, u_11+7782z_2+7762,
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u_le-122e7z_3-122@7,

u_5+11215z_2+11215, u_4-2201z_3-2201, u_3-4301z_2-4301,

u_2+144B4z_3+14484, u_1+117572_2+11757, u_@-11483z_3-11403, b_@+z_3, z_2z_3-1

Fig. 12: Grobner basis associated with the polynomial system in Equation (30) and (32), for a specific set of camera centres. For coherence
with our Macaulay2 implementation, here variables are linearly (0-based) indexed. Each term represents a polynomial which should be equal

to zero for the sought solution(s).

observed in Section 4. Finally, the auxiliary equations given in
(25) become

2193 det(I4 + couifys) +1 =0
zg34 det(Iy + caulg,) +1 =0 32)
z3q1 det(Iy + cquly;) +1 =0
zg12 det(Iy + ciuly) +1 =0

where 21923, 2234, 2341, 2412 € R are unknown.

The fact that the graph in Figure 11 is not solvable can be
easily deduced by counting the number of edges: the necessary
condition m > (11ln — 15)/7 is not satisfied here (see [16]).
However, it is useful to analyze the output of our algorithm on this
simple example. Specifically, Figure 12 shows the generators of
the Grobner basis [36] associated with the polynomial system in
Equation (30) and (32), for a specific configuration of camera
centers (sampled at random). Such generators encode a set of
equations which is equivalent to the original system but at the same
time it is much simpler. Let us consider the last generator (i.e.
z_2z_3 — 1 = 0): note that the product of z_2 and z_3 is fixed
(it is equal to 1), but there is an infinite number of solutions that
satisfy such equation. Observe also that the remaining variables
are uniquely determined — given z_2 and z_3 — as all other
equations are linear and they involve one unknown at a time (in
addition to z_2 or z_3).

7.2 Non-solvable graph (finite number of solutions).

The previous example refers to a non-solvable graph with an infi-
nite number of solutions. We now consider an example of a non-
solvable graph where the number of solutions is finite but strictly
greater than one. Specifically, let us consider the graph with 9
nodes reported in Figure 7 (left). Our algorithm computed two
solutions on this example, meaning that the graph is not solvable.
Since a lot of variables are involved here, we do not explicitly
write all the equations for this example, but we only analyze the
associated Grobner basis obtained for a specific configuration of
random cameras (see Figure 13). Let us consider the last generator
(i.e., z_20"2 — 4598z_20 — 4599 = 0): observe that it defines
an equation of degree two in one unknown. Observe also that all
other equations are linear and they involve one unknown at a time
(in addition to z_20). Since we know that one of the solutions is
z_20 = —1, we see that the other solution for z_20 has to be real
as well (namely z_20 = 4599). Thus, all other variables have to
be real too, since they are linear functions of z_20. Hence, the
whole polynomial system admits two distinct real solutions.

7.3 Solvable graph.

Suppose that G is the graph reported in Figure 15. Let
C1,C2,C3,C4 € R* represent known (generic) camera centres.

Equation (10) rewrites
G41GI21 = aq12l4 + cleQ
G12G2_31 = ay193ls4 + CQV—1|—23
G23G3_41 = a234I4 + C3V;—34

—1 T
G34G41 = asq1 s + C4V3yq

G12G s = a124ly + CoVigy .
G42G2_31 = ago3l4 + CQV123
G41GZ21 = ayaols + c4v1T42
G42G§41 = aou3ly + C4v;43
where the following variables are unknown
G12,G23,G34,Ga1, Gy € GL(4,R)
412, 123, 4234, 4341, U124, @423, G142, G243 € Rzo  (34)
V412, V123, V234, V341, V124, V423, V142, V243 € R*.
If we consider  the spanning  tree T =
{(12,42), (42,23), (42,34), (42,41)}, then the line graph

admits a fundamental cycle basis composed of four cycles
(see Figure 15): C; = (12,23,42), Co = (42,23,34),
Cs = (42,34,41) and C4 = (41,12,42). Observe that each
cycle consists of a sequence of vertices that is traversed in a
cyclic order (clockwise or anticlockwise): for each edge in the
cycle, we consider the associated matrix or its inverse if the edge
is traversed in forward or backward direction, respectively. Thus
Equation (16) becomes
Iy = (a1231s + CaVias)(aasly + C2V4TQJ) (a12414 + cov 24)
934)(a243 14 + caviyg) "
)
)

T

aga1ls + cavizyr)(ara2ls + C4V142)

1

(35)

)

14 = (a423ls + C2V423)(a23414 +c3v
= (02434 + C4V243)(
( )

I4 = (aa1214 + €1Vi12)(a1241s + covisg)(araals + cavig)™

where the following variables are unknown

(412, 0123, G234, 0341, 0124, 0423, A142, G243 € R (36)
4
V412, V123, V234, V341, V124, V423, V142, V243 € R™.

Equation (19) rewrites
T
123)"
234)
)

b1y = (I4 + c2u123)(I4 + cou
boly = (I + C2U423)([4 + C3u234
)

"Iy + cougyy) !
(I + cqugys)

( 37
bsly = (Iy + C4u243 Iy + C4u341 (I + caufyy)
(

baly = 1

where the following variables are unknown

b1,b2,b3,bs € Ryg

Iy + ciugyo)(Is + caugyy) (Is + caufyy) ™

s (38)
U412, U123, U234, U341, U124, U423, U142, U243 € R,

Observe that the formulation implemented by our method (given
in Equation (37)) involves less unknowns than the one proposed
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z_19+126@4z_208+126@85, z_18-11727z_20-11726, z_17+894z_20+895, z_16-z_2@, z_15-3343z_20-3342, z_14+B94z_2@+B95, z_13+11565z_20+11566,
z_12-13791z_20-13798, z_11+B203z_20+8204, z_10-8522z_20-8521, z_9+7215z_20+7216, z_8-1877z_20-1876, z_7-11118z_20-11117, z_6-7@63z_20-7062,
z_5-7412z_20-7411, z_4+B437z_20+8438, z_3+1796z_20+1797, z_2+5@30z_20+5031, z_1-2848z_20-2B47, z_0-9253z_20-9252, u_B3-B414z_20-8414,
u_B2+109B7z_20+18987, u_81-3919z_20-3919, u_80+073z_20+073, u_70-18847z_20-10847, u_78-5398z_208-5300, u_77+431z_20+431, u_76-13455z_20-13455,
u_75-3615z_20-3615, u_74+3180z_20+3100, u_73-0428z_20-9420, u_72-18243z_20-10243, u_T71+4517z_20+4517, u_70+1766z_20+1766, u_63+619Bz_20+5198,
u_BB+681z_20+681, u_67-7140z_28-7149, u_66-20977z_20-2977, u_65+114B5z_20+11405, u_64-3437z_20-3437, u_63-7836z_20-7836, u_62+13583z_20+13583,
u_61+1798z_20+1799, u_6@-8356z_20-B356, u_50-1@405z_20-10405, u_58-99B9z_20-9089, u_57+0771z_20+0771, u_S56+12B65z_20+12B65, u_55+18476z_20+10476,
u_54-136B4z_20-13684, u_53-144309z_20-14439, u_52-6145z_20-6145, u_51-111B9z_20-111B89, u_50-3733z_20-3733, u_40+18275z_20+18275, u_48-4355z_20-4355,
u_47+145@4z_20+14504, u_46+135062_20+13506, u_45+10191z_20+10191, u_44-1472z_20-1472, u_43+6220z_20+6220, u_42+9716z_20+3716, u_41-662_20-66,
U_48+20772z_20+2077, u_39+90870z_20+0070, u_3B+6@3z_28+6@3, u_37-7500z_20-7509, u_36-1273Bz_208-12738, u_35-1063Bz_20-1B638, u_34+1764z_20+1764,
u_33-9809z_20-9009, u_32-8517z_20-B517, u_31+B333z_20+8333, u_30+1020z_28+1028, u_29-18090z_20-10098, u_28-14978z_20-14078, u_27-13238z_20-13238,
u_26-841z_2@-041, u_25-13998z_20-13998, u_24-11470z_20-1147@, u_23-14844z_20-14044, u_22-1292z_20-1292, u_21+1034z_20+1034, u_20-4116z_20-4116,
u_19-1995z_20-1995, u_18-149308z_20-14830, u_17+3697z_28+3637, u_16-10633z_20-18633, u_15-080z_20-900, u_l14+458z_20+458, u_13+5448z_20+5440,
u_12-11618z_20-11618, u_11-2465z_20-2465, u_10-247z_20-247, u_9-10781z_28-10781, u_8-6754z_20-6754, u_7-4883z_20-4883, u_6-6092z_28-6092,
U_5+5548z_20+5548, u_4-2390z_28-2309, u_3-4745z_20-4745, u_2-3226z_20-3226, u_1-5879z_20-5879, u_0-1620z_20-1628, b_0-1, b_8+6278z_20+6277, b_7-1,

b_6+1111Bz_20+11117, b_5+70863z_20+7@62, b_4+7167z_28+7166, b_3-1, b_2+8904z_20+B093, b_1-1, b_8-1, z_20~2-4538z_20-4599

Fig. 13: Grobner basis for checking solvability for the graph in Figure 7 (left). For coherence with our Macaulay2 implementation, here
variables are linearly (0-based) indexed. Each term represents a polynomial which should be equal to zero for the sought solution(s).

z_7+1, z_6+1, z_5+1, z_4+1, z_3+1, z_2+1, z_1+1, z_@+1, u_31, u_30, u_29, u_28, u_27, u_26, u_25, u_24, u_23, u_22, u_21, u_28, u_19, u_18, u_17,

u_le, w_15, u_14, u_ 13, wu_12, o 11, uw_1®, v 9, u_ B, u_7, u_6, ub, u_4, u_3, v 2, ul, uw @, b_3-1, b_2-1, b_1-1, b_0-1

Fig. 14: Grobner basis associated with the polynomial system in Equation (39) and (40), for a specific set of camera centres. For coherence
with our Macaulay2 implementation, here variables are linearly (0-based) indexed. Each term represents a polynomial which should be equal

to zero for the sought solution.

in [16] (given in Equation (33)). By computing inverses explicitly,
Equation (37) rewrites:
(1 + cyuazs)(1 + chuioa)bi Iy =
= (I1 + cauay) ((1 + couazs) Ly — c2ulyy) (1 + cyuiza)ls — caulyy)
1+ c1u243)b214 =
= (I + 02“123)(14 + CB“;34)((1 + CIU243)I4 - ‘34“;43)
bsly = (Ia + caul,s)(Ia + cauly; ) (Is + caug,y)

1+ c1u142)b4l4 =

= (Is + crug, ) (Js + caujy, ) (1 + cfuise) s — cauyy,)

(39
Finally, the auxiliary equations given in (25) become
2412 det(I4 + cluLQ) +1=0
Z123 det I4 + c2u123 +1=0
2934 det(Iy + 03u234 +1=0
(40)

+1=0
2423 det I + 02u423 +1=0

( ) +
( )
zag1 det(Iy + cquly) +1 =0
2124 det(Iy + czu124)
( )
( )

z1ao det (I + C4u142 +1=0
+1=0

where 2412, 2123, 2234, 2341, 2124, 2423, 2142, 2243 € R are un-
known.

The graph in Figure 15 is solvable according to [9] and our
algorithm returns exactly one solution. Such conclusion can also
be easily deduced from Figure 14, which reports the generators
of the Grobner basis associated with the polynomial system in
Equation (39) and (40). Note that each generator has exactly one
solution, being a linear equation in one variable. In particular, we
getz 0=z1=.---=27T=—-1,b 0= =Db 2 =

zoag det(Iy + caudys) +

b3=1landu 0=u_l
solvable case.
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Fig. 15: Solvable viewing graph with 4 vertices (left) and correspond-
ing line graph (middle), where edges are oriented arbitrarily. Please
note that a vertex of the original graph (e.g., vertex 2) can appear
multiple times as an edge of the line graph, as clarified by colors. On
the right a spanning tree is reported, where the root is coloured in
black and non-tree edges are drawn with dashed arrows.

8 CONCLUSIONS AND FUTURE WORK

We have studied the solvability of viewing graphs, i.e. whether
they uniquely determine projective cameras, and have made sev-
eral important advances in the theory and practical use of viewing
graphs. Based on [16], we proposed a new characterization in-
volving fewer unknowns by exploiting the cycle consistency. The
resulting algorithm is an effective test (necessary and sufficient
conditions) for solvability, thanks to which we classified all the
cases left undecided by [16], and proved that finite solvability does
not imply solvability, thus answering an open question. Moreover,
we formally derived a connection with the calibrated case (parallel
rigidity), which gives a new necessary condition for solvability.
We were able to process minimal graphs with up to 90 vertices,
which establishes the state of the art in the uncalibrated case.
Although this is still far from the level of maturity of the calibrated



case, a careful analysis of small graphs is important as they are the
building blocks of larger graphs. The maximum size we can handle
is a matter of designing clever solvers and exploiting computing
power: we are working to push this limit forward. For example,
we plan to investigate numerical algebraic geometry (e.g., [44]),
which gives good grounds to expect to make the computation
tractable for large-scale scenarios.

In this paper, we have considered the concept of solvability
given in Definition 2, which is based solely on the topology of
the viewing graph. The use of additional information (e.g., points)
would give rise to a different notion of solvability [45], which
would be interesting to explore in the future. Besides being of
theoretical interest, the solvability problem has a practical impact
since reconstruction methods such as [11], [12] will benefit from
knowing in advance whether the graph at hand is solvable or not:
if the problem is ill-posed, then any method will fail to return a
useful solution. In this case, finding a maximal subgraph that is
solvable would be of great interest.
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