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Improving Feature Tracking with Robust Statistics

Abstract

This paper addresses robust feature tracking. We extend the well-known Shi-Tomasi-
Kanade tracker by introducing an automatic scheme for rejecting spurious features.
We employ a simple and efficient outlier rejection rule, called X84, and prove that its
theoretical assumptions are satisfied in the feature tracking scenario. Experiments
with real and synthetic images confirm that our algorithm makes good features track
better; we show a quantitative example of the benefits introduced by the algorithm
for the case of fundamental matrix estimation. The complete code of the robust

tracker is available via ftp.

Key words: Motion Analysis, Feature Tracking, Robust Statistics, Optical flow,
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1 Introduction

Much work on structure from motion [12] has assumed that correspondences through
a sequence of images could be recovered. Feature tracking finds matches by selecting
image features and tracks these as they move from frame to frame. It can be seen
as an instance of the general problem of computing the optical flow, that is, the
vector’s field that describes how the image is changing with time, at relatively sparse
image positions [15, 2, 5]. The methods based on the detection of two dimensional
features (such as corners) have the advantage that the full optical flow is known at
every measurement position, because they do not suffer from the aperture problem
effect (a discussion on this subject can be found in [24]). Works on tracking of two
dimensional features include [13, 1, 6, 18, 26].

Robust tracking means detecting automatically unreliable matches, or outliers, over
an image sequence (see [14] for a survey of robust methods in computer vision). Re-
cent examples of such robust algorithms include [23], which identifies tracking out-
liers while estimating the fundamental matrix, and [22], which adopts a RANSAC [§]
approach to eliminate outliers for estimating the trifocal tensor. Such approaches in-
crease the computational cost of tracking significantly, as they are based on iterative
algorithms.

This paper concentrates on the well-known Shi-Tomasi-Kanade tracker, and pro-
poses a robust version based on an efficient outlier rejection scheme. Building on
results from [13], Tomasi and Kanade [20] introduced a feature tracker based on SSD
matching and assuming translational frame-to-frame displacements. Subsequently,
Shi and Tomasi [19] proposed an affine model, which proved adequate for region
matching over longer time spans. Their system classified a tracked feature as good
(reliable) or bad (unreliable) according to the residual of the match between the
associated image region in the first and current frames; if the residual exceeded a
user-defined threshold, the feature was rejected. Visual inspection of results demon-
strated good discrimination between good and bad features, but the authors did not

specify how to reject bad features automatically.
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This is the problem that our method solves. We extend the Shi-Tomasi-Kanade
tracker (Section 2) by introducing an automatic scheme for rejecting spurious fea-
tures. We employ a simple, efficient, model-free outlier rejection rule, called X84,
and prove that its assumptions are satisfied in the feature tracking scenario (Section
3). Our ROBUSTTRACKING algorithm is summarized in Section 4. Experiments
with real and synthetic images confirm that our algorithm makes good features to
track better, in the sense that outliers are located reliably (Section 5). We illustrate
quantitatively the benefits introduced by the algorithm with the example of funda-
mental matrix estimation. Image sequences with results and the source code of the

robust tracker are available on line (http://www.dimi.uniud.it/ fusiello/demo-rtr/).

2 The Shi-Tomasi-Kanade tracker

In this section the Shi-Tomasi-Kanade tracker [19, 20] will be briefly described.
Consider an image sequence I(x,t), where x = [u,v]  are the coordinates of an
image point. If the time sampling frequency (that is, the frame rate) is sufficiently
high, we can assume that small image regions undergo a geometric transformation,

but their intensities remain unchanged:
I(x,t) = I(0(x),t + 1), (1)

where §(-) is the motion field, specifying the warping that is applied to image points.
The fast-sampling hypothesis allows us to approximate the motion with a transla-

tion, that is,
§(x) =x+d, (2)

where d is a displacement vector. The tracker’s task is to compute d for a number
of automatically selected point features for each pair of successive frames in the

sequence. As the image motion model is not perfect, and because of image noise,
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(1) is not satisfied exactly. The problem is then finding the displacement d which

minimizes the SSD residual
e=Y [I(x+dt+7)—I(x,1)", (3)
w

where W is a given feature window centered on the point x. In the following we will
solve this problem by means of a Newton-Raphson iterative search.
Thanks to the fast-sampling assumption, we can approximate I(x + d,t + 7) with

its first-order Taylor expansion:
I(x+d, t47) ~ I(x,1) + VI(x,8) d + L(x, )7, (4)

where VI = [I,,I,] = [0I/0u,dI/dv] and I, = OI/dt. We can then rewrite the

residual (3) as
€~ Z(VI(X, t)'d + I(x, t)7)> (5)

To minimize the residual (5), we differentiate it with respect to the unknown dis-

placement d and set the result to zero, obtaining the linear system:
Cd =g, (6)

where

I,1,
I2

v

IZ
C = “
; I,I

g = _TZIt [Iu Iv]T- (8)

If d;, = C g is the displacement estimate at iteration k&, and assuming a unit time
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interval between frames, the algorithm for minimizing (5) is the following:

do =0
diy1 =dp + C D0 |(I(x,t) — I(x +dy, t + 1)) VI(x,t)
W

2.1 Feature extraction

A feature is defined as a region that can be easily tracked from one frame to the
other. In this framework, a feature can be tracked reliably if a numerically stable
solution to (6) can be found, which requires that C is well-conditioned and its entries
are well above the noise level. In practice, since the larger eigenvalue is bound by
the maximum allowable pixel value, the requirement is that the smaller eigenvalue
must be sufficiently large. Calling A; and As the eigenvalues of C, we accept the

corresponding feature if
min()\l, )\2) > )\t (9)

where )\; is a user-defined threshold [19].
Figure 1 near here

This algebraic characterization of “trackable” features has an interesting interpre-
tation, as they turns out to be corners, that is image features characterized by an
intensity discontinuity in two directions. Since the motion of an image feature can
be measured only in its projection on the brightness gradient (aperture problem),
corners are the features whose motion can be measured.

Discontinuity can be detected, for instance, using normalized cross-correlation, which
measures how well an image patch matches other portions of the image as it is
shifted from its original location. A patch which has a well-defined peak in its
auto-correlation function can be classified as a corner. Let us compute the change
in intensity, as the sum of squared differences, in the direction h for a patch W

centered in x = (u,v):
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En(x) =Y _ (I(x+d)-I(x+d+h))’

dew

Using the Taylor series expansion truncated to the linear term:

Ew(x)~ Y (VI(x+d)"h)’

dew
=Y h'(VI(x+4d))(VI(x+d))h
dew
I 1,1,
=y | h
dew Iu Iv Ig
2 1,1,

—h' u

The change in intensity around x is therefore given by

Eyw(x)=h'Ch

(10)

(11)

(12)

where C is just the matrix defined in (7). Elementary eigenvector theory tells us

that, since ||h|| = 1, then

/\1 < Eh(X) < /\2,

(13)

where A\; and A, are the eigenvalues of C. So, if we try every possible orientation

h, the maximum change in intensity we will find is A5, and the minimum value

is A;. We can therefore classify the structure around each pixel by looking at the

eigenvalues of C:
e no structure: A\; & Ay =~ 0;
e edge: A\ =0, Ay > 0;

e corner: A\; e Ay both large and distinct.
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Hence, the features selected according to criterion criterion (9) are to be interpreted
as corners. Indeed, this method is very closely related to some classical corner
detectors, such as [16, 17, 11].

Figure 1 shows the value of the minimum eigenvalue for the first frame of the “Ar-

tichoke” sequence (see Section 5).

2.2 Affine model

The translational model cannot account for certain transformations of the feature
window, for instance rotation, scaling, and shear. An affine motion field is a more

accurate model [19], that is,

5(x) = Mx + d, (14)

where d is the displacement, and M is a 2 X 2 matrix accounting for affine warping,
and can be written as M = 1 4+ D, with D = [d;;] a deformation matrix and 1
the identity matrix. Similarly to the translational case, one estimates the motion

parameters, D and d, by minimizing the residual

e=Y [IMx+d,t+7)—I(x,1)]". (15)

By plugging the first-order Taylor expansion of I(Mx + d,¢ + 7) into (15), and
imposing that the derivatives with respect to D and d are zero, we obtain the linear

system
Bz =f, (16)

in which z = [dy; di2 d2; dao dy dz]T contains the unknown motion parameters, and
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f=—7 Z I [ul, ul, vl vl, I, 1],
W

with
U Vv
B:ZW {VT C}’

w’I? LI, wiI? wvl,lI,

Wl I, u?I? wol, I, wvl?

U = ,
wol?  wvl, I, I} %L1,
wvl,I, uvfg V21,1, vzfg
VT uIi ul,I, in vl I,

wl, I, uIZ vl I, vfg

Again, (15) is solved for z using a Newton-Raphson iterative scheme.

If frame-to-frame affine deformations are negligible, the pure translation model is
preferable (the matrix M is assumed to be the identity). The affine model is used
for comparing features between frames separated by significant time intervals to

monitor the quality of tracking.

3 Robust monitoring

In order to monitor the quality of the features tracked, the tracker checks the resid-
uals between the first and the current frame: high residuals indicate bad features
which must be rejected. Following [19], we adopt the affine model, as a pure trans-

lational model would not work well with long sequences: too many good features
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are likely to undergo significant rotation, scaling or shearing, and would be incor-
rectly discarded. Non-affine warping, which will yield high residuals, is caused by
occlusions, perspective distortions and strong intensity changes (e.g. specular reflec-
tions). This section introduces our method for selecting a robust rejection threshold

automatically.

3.1 Distribution of the residuals

We begin by establishing which distribution is to be expected for the residuals when
comparing good features, i.e., almost identical regions. We assume that the intensity
I(6(x),t) of each pixel in the current-frame region is equal to the intensity of the
corresponding pixel in the first frame I(x,0) plus some Gaussian noise n = n(0, l)f.

Hence
I(6(x),t) — I(x,0) =n(0,1).

Since the square of a Gaussian random variable has a chi-square distribution, we

obtain
[1(5(x),t) — I(x,0)]” = x2(1).

The sum of n chi-square random variables with one degree of freedom is distributed
as a chi-square with n degrees of freedom (as it is easy to see by considering the
moment-generating functions). Therefore, the residual computed according to (3)

over a Nx N window W is distributed as a chi-square with N? degrees of freedom:

e=Y [1(6(x),t) — I(x,0)]" = x*(N?). (17)

Figure 2 near here

"= means that the variable to the left has the probability distribution specified to the right.
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As the number of degrees of freedom increases, the chi-square distribution ap-
proaches a Gaussian, which is in fact used to approximate the chi-square with more
than 30 degrees of freedom. Therefore, since the window W associated to each fea-
ture is at least 7 x 7, we can safely assume a Gaussian distribution of the residual

for the good features:

e = n(N? 2N?).

3.2 The X84 rejection rule

When the two regions over which we compute the residual are bad features (that is,
they are not warped by an affine transformation), the residual is not a sample from
the Gaussian distribution of good features: it is an outlier. Hence, the detection
of bad features reduces to a problem of outlier detection. This is equivalent to the
problem of estimating the mean and variance of the underlying Gaussian distribution
from the corrupted data ¢;, the residuals (given by (3)) between the i-th feature in
the last frame and the same feature in the first frame. To do this, we employ a
simple but effective model-free rejection rule, X84 [10], which use robust estimates
for location and scale to set a rejection threshold. The median is a robust location

estimator, and the Median Absolute Deviation (MAD), defined as
MAD = med{|e; — med ¢;|}. (18)
i j

is a robust estimator of the scale (i.e., the spread of the distribution). It can be
seen that, for symmetric (and moderately skewed) distributions, the MAD coincides

with the interquartile range:

MAD — 53/42& (19)
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where &, is the gth quantile of the distribution (for example, the median is & /2).

For normal distributions we infer the standard deviation from
MAD = & !(3/4)0 ~ 0.67450. (20)

The X84 rule prescribes to reject values that are more than k& Median Absolute
Deviations away from the median. A value of £=5.2, under the hypothesis of Gaus-
sian distribution, is adequate in practice, as it corresponds to about 3.5 standard
deviations, and the range [ — 3.50, u + 3.50] contains more than the 99.9% of a
Gaussian distribution . The rejection rule X84 has a breakdown point of 50%: any

majority of the data can overrule any minority.

3.3 Photometric normalization

Our robust implementation of the Shi-Tomasi-Kanade tracker incorporates also a
normalized SSD matcher for residual computation. This limits the effects of intensity
changes between frames, by subtracting the average grey level (s, 17) and dividing

by the standard deviation (o, 07) in each of the two regions considered:

2

GZXW: JMx +d)—p;  I(x)—pr

%9 o1

where J()=I(-,t+ 1), I(-)=I(-,1).

It can be easily seen that this normalization is sufficient to compensate for intensity
changes modeled by J(Mx + d) = al(x) + 5. A more elaborate normalization is
described in [7], whereas [9] reports a modification of the Shi-Tomasi-Kanade tracker

based on explicit photometric models.

4 Summary of the ROBUSTTRACKING algorithm
The ROBUSTTRACKING algorithm can be summarized as follows:

10
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1. given an image sequence;

2. filter the sequence with a Gaussian kernel in space and time (for the selection

of the scale of the kernel, see [4]);
3. select features to be tracked according to (9);

4. register features in each pair of consecutive frames in the sequence, using

translational warping (2);

5. in the last frame of the sequence, compute the residuals between this and the

first frame, for each feature, using affine warping (14);

6. reject outlier features according to the X84 rule (9).

The decision of which frame is deemed to be the last one is left open; the only,
obvious, constraint is that a certain fraction of the features present in the first
frame should be still visible in the last. On the other hand, monitoring cannot be

done at every frame, because the affine warping would not be appreciable.

5 Experimental results

We evaluated our tracker in a series of experiments, of which we report the most
significant ones.

“Platform” (Figure 3, 256 x 256 pixels). A 20-frame synthetic sequence, simu-
lating a camera rotating in space while observing a subsea platform sitting on the
seabed (real seabed acquired by a sidescan sonar, rendered as an intensity image,
and texture-mapped onto a plane). This sequence is part of the SOFA synthetic
sequences (http://www.cee.hw.ac.uk/ mtc/sofa).

“Hotel” (Figure 4, 480 x 512 pixels). A static scene observed by a moving camera
rotating and translating (59 frames). This is a well-known sequence from the CMU

VASC Image Database (http://www.ius.cs.cmu.edu/idb/).

11
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“Stairs” (Figure 5, 512X 768 pixels). A 60-frame sequence of a white staircase sitting
on a metal base and translating in space, acquired by a static camera. The base is
the platform of a translation stage operated by a step-by-step motor under computer
control (courtesy of F. Isgro, Computer Vision Group, Heriot-Watt University).
“Artichoke” (Figure 6, 480 x 512 pixels). A 99-frame sequence taken with a camera
translating in front of a static scene. This sequence can be found at the CMU VASC
Image Database, and was used also by [21].

Figure 3 near here

Figure 4 near here

Figure 5 near here

Figure 6 near here
“Platform” is the only synthetic sequence shown here. No features become occluded,
but notice the strong effects of the coarse spatial resolution on straight lines. We
plotted the residuals of all features against the frame number (Figure 7). All features
stay under the threshold computed automatically by X84, apart from one that is
corrupted by the interference of the background. In “Stairs”, some of the features
picked up in the first frame are specular reflections from the metal platform, the
intensity of which changes constantly during motion. The residuals for such features
become therefore very high (Figure 9). All these features are rejected correctly.
Only one good feature is dropped erroneously (the bottom left corner of the internal
triangle), because of the strong intensity change of the inside of the block. In the
“Hotel” sequence (Figure 8), all good features but one are preserved. The one
incorrect rejection (bottom center, corner of right balcony) is due to the warping
caused by the camera motion, too large to be accommodated by the affine model.
The only spurious feature present (on the right-hand side of the stepped-house front)
is rejected correctly. All features involved in occlusions in the “Artichoke” sequence
(Figure 10) are identified and rejected correctly. Four good features out of 54 are
also rejected (on the signpost on the right) owing to a marked contrast change in
time between the pedestrian figure and the signpost in the background.

In our tests on a SPARCServer 10 running Solaris 2.5, the initial feature extraction

12
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phase took 38s for “Platform” and 186s for “Artichoke”, with a 15 x 15 window. The
tracking phase took on average 1.6s per frame, independently from frame dimensions.
As expected, extraction is very computationally demanding, since the eigenvalues
of the C matrix are to be computed for each pixel. However, this process can
implemented on a parallel architecture, thereby achieving real-time performances
(30Hz), as reported in [3].

Figure 7 and 8 near here

Figure 9 and 10 near here

5.0.1 Quantifying improvement: an example

To illustrate quantitatively the benefits of our robust tracker, we used the feature
tracked by robust and non-robust versions of the tracker to compute the fundamental
matrix between the first and last frame of each sequence, then computed the RMS
distance of the tracked points from the corresponding epipolar lines, using Zhang’s
implementation [25] of the 8-point algorithm. If the epipolar geometry is estimated
exactly, all points should lie on epipolar lines. The results are shown in Table
1. The robust tracker brings always a decrease in the RMS distance. Notice the
limited decrease and high residual for “Platform”; this is due to the significant
spatial quantization and smaller resolution, which worsens the accuracy of feature
localization.

Table 1 near here

6 Conclusions

We have presented a robust extension of the Shi-Tomasi-Kanade tracker, based on
the X84 outlier rejection rule. The computational cost is much less than that of
schemes based on robust regression and random sampling like RANSAC or Least
Median of Squares [14, 22], yet experiments indicate excellent reliability in the pres-
ence of non-affine feature warping (most right features preserved, all wrong features

rejected). Our experiments have also pointed out the pronounced sensitivity of the

13
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Shi-Tomasi-Kanade tracker to illumination changes. We believe that our robust
tracker can be useful to the large community of researchers needing efficient and
reliable trackers. To facilitate dissemination and enable direct comparisons and

experimentation, we have made the code available on the Internet.
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Figure 1: Value of min(\y, A) for the first frame of ‘Artichoke”. Window size is 15
pixels. Darker points have an higher minimum eigenvalue.

0.25

0.2 7

0.15 7

f(x)

0.1 4

Figure 2: Chi-square density functions with 3,5,7,15 and 30 degrees of freedom (from
left to right).
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Figure 3: First (left) and last frame of the “Platform” sequence. In the last frame,
filled windows indicate features rejected by the robust tracker.

Figure 4: First (left) and last frame of the “Hotel” sequence. In the last frame,
filled windows indicate features rejected by the robust tracker.

19
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Figure 5: First (left) and last frame of the “Stairs” sequence. In the last frame,
filled windows indicate features rejected by the robust tracker.

Figure 6: First (left) and last frame of the “Artichoke” sequence. In the last frame,
filled windows indicate features rejected by the robust tracker.
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Figure 7: Residuals magnitude against Figure 8: Residuals magnitude against
frame number for “Platform”. The arrows frame number for “Hotel”. The arrows in-
indicate the threshold set automatically dicate the threshold set automatically by
by X84 (0.397189). X84 (0.142806).
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Figure 9: Residuals magnitude against Figure 10: Residuals magnitude against
frame number for “Stairs”. The arrows in- frame number for “Artichoke”. The ar-
dicate the threshold set automatically by rows indicate the threshold set automati-
X84 (0.081363) . cally by X84 (0.034511).
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Artichoke | Hotel | Stairs | Platform
All 1.40 0.59 0.66 1.49
X84 0.19 0.59 0.15 1.49

Table 1: RMS distance of points from epipolar lines. The first row gives the distance
using all the features tracked (non-robust tracker), the second using only the features
kept by X84 (robust tracker).
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