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Improving Feature Tracking with Robust Statistics

AbstractThis paper addresses robust feature tracking. We extend the well-known Shi-Tomasi-Kanade tracker by introducing an automatic scheme for rejecting spurious features.We employ a simple and e�cient outlier rejection rule, called X84, and prove that itstheoretical assumptions are satis�ed in the feature tracking scenario. Experimentswith real and synthetic images con�rm that our algorithmmakes good features trackbetter; we show a quantitative example of the bene�ts introduced by the algorithmfor the case of fundamental matrix estimation. The complete code of the robusttracker is available via ftp.Key words: Motion Analysis, Feature Tracking, Robust Statistics, Optical ow,Registration, X84
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Improving Feature Tracking with Robust Statistics1 IntroductionMuch work on structure from motion [12] has assumed that correspondences througha sequence of images could be recovered. Feature tracking �nds matches by selectingimage features and tracks these as they move from frame to frame. It can be seenas an instance of the general problem of computing the optical ow, that is, thevector's �eld that describes how the image is changing with time, at relatively sparseimage positions [15, 2, 5]. The methods based on the detection of two dimensionalfeatures (such as corners) have the advantage that the full optical ow is known atevery measurement position, because they do not su�er from the aperture probleme�ect (a discussion on this subject can be found in [24]). Works on tracking of twodimensional features include [13, 1, 6, 18, 26].Robust tracking means detecting automatically unreliable matches, or outliers, overan image sequence (see [14] for a survey of robust methods in computer vision). Re-cent examples of such robust algorithms include [23], which identi�es tracking out-liers while estimating the fundamental matrix, and [22], which adopts a RANSAC [8]approach to eliminate outliers for estimating the trifocal tensor. Such approaches in-crease the computational cost of tracking signi�cantly, as they are based on iterativealgorithms.This paper concentrates on the well-known Shi-Tomasi-Kanade tracker, and pro-poses a robust version based on an e�cient outlier rejection scheme. Building onresults from [13], Tomasi and Kanade [20] introduced a feature tracker based on SSDmatching and assuming translational frame-to-frame displacements. Subsequently,Shi and Tomasi [19] proposed an a�ne model, which proved adequate for regionmatching over longer time spans. Their system classi�ed a tracked feature as good(reliable) or bad (unreliable) according to the residual of the match between theassociated image region in the �rst and current frames; if the residual exceeded auser-de�ned threshold, the feature was rejected. Visual inspection of results demon-strated good discrimination between good and bad features, but the authors did notspecify how to reject bad features automatically. 1



Improving Feature Tracking with Robust StatisticsThis is the problem that our method solves. We extend the Shi-Tomasi-Kanadetracker (Section 2) by introducing an automatic scheme for rejecting spurious fea-tures. We employ a simple, e�cient, model-free outlier rejection rule, called X84,and prove that its assumptions are satis�ed in the feature tracking scenario (Section3). Our RobustTracking algorithm is summarized in Section 4. Experimentswith real and synthetic images con�rm that our algorithm makes good features totrack better, in the sense that outliers are located reliably (Section 5). We illustratequantitatively the bene�ts introduced by the algorithm with the example of funda-mental matrix estimation. Image sequences with results and the source code of therobust tracker are available on line (http://www.dimi.uniud.it/~fusiello/demo-rtr/).2 The Shi-Tomasi-Kanade trackerIn this section the Shi-Tomasi-Kanade tracker [19, 20] will be briey described.Consider an image sequence I(x; t), where x = [u; v]> are the coordinates of animage point. If the time sampling frequency (that is, the frame rate) is su�cientlyhigh, we can assume that small image regions undergo a geometric transformation,but their intensities remain unchanged:I(x; t) = I(�(x); t+ �); (1)where �(�) is the motion �eld, specifying the warping that is applied to image points.The fast-sampling hypothesis allows us to approximate the motion with a transla-tion, that is, �(x) = x+ d; (2)where d is a displacement vector. The tracker's task is to compute d for a numberof automatically selected point features for each pair of successive frames in thesequence. As the image motion model is not perfect, and because of image noise,2



Improving Feature Tracking with Robust Statistics(1) is not satis�ed exactly. The problem is then �nding the displacement d whichminimizes the SSD residual� =XW �I(x + d; t+ �)� I(x; t)�2; (3)where W is a given feature window centered on the point x. In the following we willsolve this problem by means of a Newton-Raphson iterative search.Thanks to the fast-sampling assumption, we can approximate I(x + d; t + �) withits �rst-order Taylor expansion:I(x+d; t+�) � I(x; t) +rI(x; t)>d + It(x; t)�; (4)where rI> = [Iu; Iv] = [@I=@u; @I=@v] and It = @I=@t: We can then rewrite theresidual (3) as � �XW (rI(x; t)>d + It(x; t)�)2: (5)To minimize the residual (5), we di�erentiate it with respect to the unknown dis-placement d and set the result to zero, obtaining the linear system:Cd = g; (6)where C =XW 24 I2u IuIvIuIv I2v 35 (7)
g = ��XW It [Iu Iv]> : (8)If dk = C�1g is the displacement estimate at iteration k, and assuming a unit time3



Improving Feature Tracking with Robust Statisticsinterval between frames, the algorithm for minimizing (5) is the following:8><>: d0 = 0dk+1 = dk +C�1PW h(I(x; t)� I(x+ dk; t+ 1))rI(x; t)i :2.1 Feature extractionA feature is de�ned as a region that can be easily tracked from one frame to theother. In this framework, a feature can be tracked reliably if a numerically stablesolution to (6) can be found, which requires thatC is well-conditioned and its entriesare well above the noise level. In practice, since the larger eigenvalue is bound bythe maximum allowable pixel value, the requirement is that the smaller eigenvaluemust be su�ciently large. Calling �1 and �2 the eigenvalues of C, we accept thecorresponding feature if min(�1; �2) > �t (9)where �t is a user-de�ned threshold [19].Figure 1 near hereThis algebraic characterization of \trackable" features has an interesting interpre-tation, as they turns out to be corners, that is image features characterized by anintensity discontinuity in two directions. Since the motion of an image feature canbe measured only in its projection on the brightness gradient (aperture problem),corners are the features whose motion can be measured.Discontinuity can be detected, for instance, using normalized cross-correlation, whichmeasures how well an image patch matches other portions of the image as it isshifted from its original location. A patch which has a well-de�ned peak in itsauto-correlation function can be classi�ed as a corner. Let us compute the changein intensity, as the sum of squared di�erences, in the direction h for a patch Wcentered in x = (u; v): 4



Improving Feature Tracking with Robust Statistics
Eh(x) = Xd2W (I(x+ d)� I(x+ d + h))2 (10)Using the Taylor series expansion truncated to the linear term:Eh(x) � Xd2W �rI(x + d)>h�2= Xd2W h>(rI(x + d))(rI(x+ d))>h= Xd2W h>0@ I2u Iu IvIu Iv I2v 1Ah= h>0@Xd2W 24 I2u IuIvIuIv I2v 351Ah: (11)

The change in intensity around x is therefore given byEh(x) = h>C h (12)where C is just the matrix de�ned in (7). Elementary eigenvector theory tells usthat, since jjhjj = 1, then �1 < Eh(x) < �2; (13)where �1 and �2 are the eigenvalues of C. So, if we try every possible orientationh, the maximum change in intensity we will �nd is �2, and the minimum valueis �1. We can therefore classify the structure around each pixel by looking at theeigenvalues of C:� no structure: �1 � �2 � 0;� edge: �1 � 0, �2 � 0;� corner: �1 e �2 both large and distinct. 5



Improving Feature Tracking with Robust StatisticsHence, the features selected according to criterion criterion (9) are to be interpretedas corners. Indeed, this method is very closely related to some classical cornerdetectors, such as [16, 17, 11].Figure 1 shows the value of the minimum eigenvalue for the �rst frame of the \Ar-tichoke" sequence (see Section 5).2.2 A�ne modelThe translational model cannot account for certain transformations of the featurewindow, for instance rotation, scaling, and shear. An a�ne motion �eld is a moreaccurate model [19], that is,
�(x) =Mx + d; (14)where d is the displacement, and M is a 2� 2 matrix accounting for a�ne warping,and can be written as M = 1 + D, with D = [dij] a deformation matrix and 1the identity matrix. Similarly to the translational case, one estimates the motionparameters, D and d, by minimizing the residual

� =XW �I(Mx+ d; t+ �)� I(x; t)�2: (15)By plugging the �rst-order Taylor expansion of I(Mx + d; t + �) into (15), andimposing that the derivatives with respect to D and d are zero, we obtain the linearsystem Bz = f ; (16)in which z = [d11 d12 d21 d22 d1 d2]> contains the unknown motion parameters, and
6



Improving Feature Tracking with Robust Statistics
f = ��XW It [uIu uIv vIu vIv Iu Iv]> ;with B =XW 24 U VV> C 35 ;

U = 26666664 u2I2u u2IuIv uvI2u uvIuIvu2IuIv u2I2v uvIuIv uvI2vuvI2u uvIuIv v2I2u v2IuIvuvIuIv uvI2v v2IuIv v2I2v
37777775 ;

V> = 24 uI2u uIuIv vI2u vIuIvuIuIv uI2v vIuIv vI2v 35 :Again, (15) is solved for z using a Newton-Raphson iterative scheme.If frame-to-frame a�ne deformations are negligible, the pure translation model ispreferable (the matrix M is assumed to be the identity). The a�ne model is usedfor comparing features between frames separated by signi�cant time intervals tomonitor the quality of tracking.3 Robust monitoringIn order to monitor the quality of the features tracked, the tracker checks the resid-uals between the �rst and the current frame: high residuals indicate bad featureswhich must be rejected. Following [19], we adopt the a�ne model, as a pure trans-lational model would not work well with long sequences: too many good features7



Improving Feature Tracking with Robust Statisticsare likely to undergo signi�cant rotation, scaling or shearing, and would be incor-rectly discarded. Non-a�ne warping, which will yield high residuals, is caused byocclusions, perspective distortions and strong intensity changes (e.g. specular reec-tions). This section introduces our method for selecting a robust rejection thresholdautomatically.3.1 Distribution of the residualsWe begin by establishing which distribution is to be expected for the residuals whencomparing good features, i.e., almost identical regions. We assume that the intensityI(�(x); t) of each pixel in the current-frame region is equal to the intensity of thecorresponding pixel in the �rst frame I(x; 0) plus some Gaussian noise n � �(0; 1)y.Hence I(�(x); t)� I(x; 0) � �(0; 1):Since the square of a Gaussian random variable has a chi-square distribution, weobtain �I(�(x); t)� I(x; 0)�2 � �2(1):The sum of n chi-square random variables with one degree of freedom is distributedas a chi-square with n degrees of freedom (as it is easy to see by considering themoment-generating functions). Therefore, the residual computed according to (3)over a N�N window W is distributed as a chi-square with N2 degrees of freedom:
� =XW �I(�(x); t)� I(x; 0)�2 � �2(N2): (17)Figure 2 near herey� means that the variable to the left has the probability distribution speci�ed to the right. 8



Improving Feature Tracking with Robust StatisticsAs the number of degrees of freedom increases, the chi-square distribution ap-proaches a Gaussian, which is in fact used to approximate the chi-square with morethan 30 degrees of freedom. Therefore, since the window W associated to each fea-ture is at least 7 � 7, we can safely assume a Gaussian distribution of the residualfor the good features: � � �(N2; 2N2):3.2 The X84 rejection ruleWhen the two regions over which we compute the residual are bad features (that is,they are not warped by an a�ne transformation), the residual is not a sample fromthe Gaussian distribution of good features: it is an outlier. Hence, the detectionof bad features reduces to a problem of outlier detection. This is equivalent to theproblem of estimating the mean and variance of the underlying Gaussian distributionfrom the corrupted data �i, the residuals (given by (3)) between the i-th feature inthe last frame and the same feature in the �rst frame. To do this, we employ asimple but e�ective model-free rejection rule, X84 [10], which use robust estimatesfor location and scale to set a rejection threshold. The median is a robust locationestimator, and the Median Absolute Deviation (MAD), de�ned asMAD = medi fj�i �medj �jjg: (18)is a robust estimator of the scale (i.e., the spread of the distribution). It can beseen that, for symmetric (and moderately skewed) distributions, the MAD coincideswith the interquartile range: MAD = �3=4 � �1=42 ; (19)
9



Improving Feature Tracking with Robust Statisticswhere �q is the qth quantile of the distribution (for example, the median is �1=2).For normal distributions we infer the standard deviation fromMAD = ��1(3=4)� � 0:6745�: (20)The X84 rule prescribes to reject values that are more than k Median AbsoluteDeviations away from the median. A value of k=5:2, under the hypothesis of Gaus-sian distribution, is adequate in practice, as it corresponds to about 3.5 standarddeviations, and the range [� � 3:5�; � + 3:5�] contains more than the 99.9% of aGaussian distribution . The rejection rule X84 has a breakdown point of 50%: anymajority of the data can overrule any minority.3.3 Photometric normalizationOur robust implementation of the Shi-Tomasi-Kanade tracker incorporates also anormalized SSD matcher for residual computation. This limits the e�ects of intensitychanges between frames, by subtracting the average grey level (�J ; �I) and dividingby the standard deviation (�J ; �I) in each of the two regions considered:
� =XW "J(Mx + d)� �J�J � I(x)� �I�I #2; (21)where J(�)=I(�; t+ 1) , I(�)=I(�; t).It can be easily seen that this normalization is su�cient to compensate for intensitychanges modeled by J(Mx + d) = �I(x) + �: A more elaborate normalization isdescribed in [7], whereas [9] reports a modi�cation of the Shi-Tomasi-Kanade trackerbased on explicit photometric models.4 Summary of the RobustTracking algorithmThe RobustTracking algorithm can be summarized as follows: 10



Improving Feature Tracking with Robust Statistics1. given an image sequence;2. �lter the sequence with a Gaussian kernel in space and time (for the selectionof the scale of the kernel, see [4]);3. select features to be tracked according to (9);4. register features in each pair of consecutive frames in the sequence, usingtranslational warping (2);5. in the last frame of the sequence, compute the residuals between this and the�rst frame, for each feature, using a�ne warping (14);6. reject outlier features according to the X84 rule (9).The decision of which frame is deemed to be the last one is left open; the only,obvious, constraint is that a certain fraction of the features present in the �rstframe should be still visible in the last. On the other hand, monitoring cannot bedone at every frame, because the a�ne warping would not be appreciable.5 Experimental resultsWe evaluated our tracker in a series of experiments, of which we report the mostsigni�cant ones.\Platform" (Figure 3, 256 � 256 pixels). A 20-frame synthetic sequence, simu-lating a camera rotating in space while observing a subsea platform sitting on theseabed (real seabed acquired by a sidescan sonar, rendered as an intensity image,and texture-mapped onto a plane). This sequence is part of the SOFA syntheticsequences (http://www.cee.hw.ac.uk/ mtc/sofa).\Hotel" (Figure 4, 480� 512 pixels). A static scene observed by a moving camerarotating and translating (59 frames). This is a well-known sequence from the CMUVASC Image Database (http://www.ius.cs.cmu.edu/idb/). 11



Improving Feature Tracking with Robust Statistics\Stairs" (Figure 5, 512�768 pixels). A 60-frame sequence of a white staircase sittingon a metal base and translating in space, acquired by a static camera. The base isthe platform of a translation stage operated by a step-by-step motor under computercontrol (courtesy of F. Isgr�o, Computer Vision Group, Heriot-Watt University).\Artichoke" (Figure 6, 480�512 pixels). A 99-frame sequence taken with a cameratranslating in front of a static scene. This sequence can be found at the CMU VASCImage Database, and was used also by [21].Figure 3 near hereFigure 4 near hereFigure 5 near hereFigure 6 near here\Platform" is the only synthetic sequence shown here. No features become occluded,but notice the strong e�ects of the coarse spatial resolution on straight lines. Weplotted the residuals of all features against the frame number (Figure 7). All featuresstay under the threshold computed automatically by X84, apart from one that iscorrupted by the interference of the background. In \Stairs", some of the featurespicked up in the �rst frame are specular reections from the metal platform, theintensity of which changes constantly during motion. The residuals for such featuresbecome therefore very high (Figure 9). All these features are rejected correctly.Only one good feature is dropped erroneously (the bottom left corner of the internaltriangle), because of the strong intensity change of the inside of the block. In the\Hotel" sequence (Figure 8), all good features but one are preserved. The oneincorrect rejection (bottom center, corner of right balcony) is due to the warpingcaused by the camera motion, too large to be accommodated by the a�ne model.The only spurious feature present (on the right-hand side of the stepped-house front)is rejected correctly. All features involved in occlusions in the \Artichoke" sequence(Figure 10) are identi�ed and rejected correctly. Four good features out of 54 arealso rejected (on the signpost on the right) owing to a marked contrast change intime between the pedestrian �gure and the signpost in the background.In our tests on a SPARCServer 10 running Solaris 2.5, the initial feature extraction12



Improving Feature Tracking with Robust Statisticsphase took 38s for \Platform" and 186s for \Artichoke", with a 15�15 window. Thetracking phase took on average 1:6s per frame, independently from frame dimensions.As expected, extraction is very computationally demanding, since the eigenvaluesof the C matrix are to be computed for each pixel. However, this process canimplemented on a parallel architecture, thereby achieving real-time performances(30Hz), as reported in [3]. Figure 7 and 8 near hereFigure 9 and 10 near here5.0.1 Quantifying improvement: an exampleTo illustrate quantitatively the bene�ts of our robust tracker, we used the featuretracked by robust and non-robust versions of the tracker to compute the fundamentalmatrix between the �rst and last frame of each sequence, then computed the RMSdistance of the tracked points from the corresponding epipolar lines, using Zhang'simplementation [25] of the 8-point algorithm. If the epipolar geometry is estimatedexactly, all points should lie on epipolar lines. The results are shown in Table1. The robust tracker brings always a decrease in the RMS distance. Notice thelimited decrease and high residual for \Platform"; this is due to the signi�cantspatial quantization and smaller resolution, which worsens the accuracy of featurelocalization. Table 1 near here6 ConclusionsWe have presented a robust extension of the Shi-Tomasi-Kanade tracker, based onthe X84 outlier rejection rule. The computational cost is much less than that ofschemes based on robust regression and random sampling like RANSAC or LeastMedian of Squares [14, 22], yet experiments indicate excellent reliability in the pres-ence of non-a�ne feature warping (most right features preserved, all wrong featuresrejected). Our experiments have also pointed out the pronounced sensitivity of the13
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Figure 1: Value of min(�1; �2) for the �rst frame of `Artichoke". Window size is 15pixels. Darker points have an higher minimum eigenvalue.
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Figure 2: Chi-square density functions with 3,5,7,15 and 30 degrees of freedom (fromleft to right). 18
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Figure 3: First (left) and last frame of the \Platform" sequence. In the last frame,�lled windows indicate features rejected by the robust tracker.

Figure 4: First (left) and last frame of the \Hotel" sequence. In the last frame,�lled windows indicate features rejected by the robust tracker.
19
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Figure 5: First (left) and last frame of the \Stairs" sequence. In the last frame,�lled windows indicate features rejected by the robust tracker.

Figure 6: First (left) and last frame of the \Artichoke" sequence. In the last frame,�lled windows indicate features rejected by the robust tracker.
20
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Figure 7: Residuals magnitude againstframe number for \Platform". The arrowsindicate the threshold set automaticallyby X84 (0.397189). Figure 8: Residuals magnitude againstframe number for \Hotel". The arrows in-dicate the threshold set automatically byX84 (0.142806).
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Figure 9: Residuals magnitude againstframe number for \Stairs". The arrows in-dicate the threshold set automatically byX84 (0.081363) . Figure 10: Residuals magnitude againstframe number for \Artichoke". The ar-rows indicate the threshold set automati-cally by X84 (0.034511).
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Artichoke Hotel Stairs PlatformAll 1.40 0.59 0.66 1.49X84 0.19 0.59 0.15 1.49Table 1: RMS distance of points from epipolar lines. The �rst row gives the distanceusing all the features tracked (non-robust tracker), the second using only the featureskept by X84 (robust tracker).
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