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Abstract

This paper examines the effects of implementing relative orientation constraints on bundle adjustment, as well as provides
a full derivation of the Jacobian matrix for such an adjustment, that can be used to facilitate other implementations
of bundle adjustment with constrained cameras. We present empirical evidence demonstrating improved accuracy and
reduced computational load when these constraints are imposed.
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1. Introduction

The use of oblique imaging technology is becoming in-
creasingly popular in the geospatial industry, opening up
a wide range of new possibilities for geospatial companies
(Remondino and Gerke, 2015; Toschi et al., 2019). The
technology provides high-resolution, three-dimensional per-
ception of buildings, roads, and other urban objects from
multiple angles. This allows for more detailed analysis
and more accurate identification of objects and structures
that are difficult to view from a straight-down perspective,
such as tall buildings, bridges, and other large structures
(Haala and Rothermel, 2015). The oblique angle ensures
more detailed views of the object, which can be used for
accurate measurements and mapping. Moreover, oblique
photogrammetry represents a key technology for 3D city
modelling, especially for roofs and facades reconstruction
and texturing (Wang et al., 2023).

However, this technology also poses significant chal-
lenges. Oblique imaging requires dealing with large varia-
tions in image scale and illumination, multiple occlusions
and a larger disparity search space. This means that the
data captured by oblique imaging must be processed and
analyzed more carefully, which can be a time-consuming
and complex process. With regard to image block orienta-
tion, the main problem is how to efficiently and rigorously
handle a larger number of unknowns while minimizing the
risk of divergence in bundle block adjustment (BBA).

One of the first approaches developed to deal with a
multi-head camera system was implemented for the post-
processing of four panchromatic images simultaneously ac-
quired by the Digital Mapping Camera (DMC) by Z/I
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Imaging Corporation (Madani et al., 2004). In that case,
the relative position of the projection centers were pre-
cisely known from a calibration process, whereas relative
orientation angles were estimated via BBA for each image
exposure, thus handling possible angular instability over
short time spans. Finally, the relative exterior orientation
parameters were applied to generate a single, virtual per-
spective image for subsequent standard photogrammetric
processes (Dörstel et al., 2002). Several works in the liter-
ature suggest considering relative orientation constraints
between cameras (Wiedemann and Moré, 2012; Rupnik
et al., 2015; Sun et al., 2016). In terms of available imple-
mentations, two main approaches have been proposed to
handle rigid orientation constraints: the first, frequently
applied in commercial surveys with ground and airborne
multi-camera systems, consists of retrieving relative ori-
entations between cameras during a calibration procedure
(Esquivel et al., 2007; Dai et al., 2009; Schneider and Förstner,
2013). After this initial phase, BBA will optimise only the
exterior orientation of a reference camera, while the others
will be rigidly bound to it.

The second possible approach is to bypass the pre-
liminary calibration and compute the relative orientations
among the cameras directly from the data. This is done,
with different nuances, in COLMAP (Schönberger and Frahm,
2016), and MicMac (Pierrot-Deseilligny et al., 2014). These
methods start from an initialisation obtained from Structure-
from-Motion (SfM) and deduce relative poses from the
data, unlike other methods that derive relative poses from
calibration. Also Pix4Dmapper (Pix4D) and Metashape
(Agisoft) support the definition of multi-camera systems,
but the available documentation does not give sufficient
details on the underlying method.

The RigBundleAdjuster of COLMAP (Schönberger
and Frahm, 2016) computes the average relative orienta-
tions between rigged cameras from the initial SfM and then
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considers them known in the final BBA, as in a calibrated
case (Heng et al., 2015). Note that they are introduced as
hard constraints forced at each iteration, so the number of
unknowns remain the same as in the unconstrained version
of BBA.

The MicMac (Pierrot-Deseilligny et al., 2014) approach
– in addition to being able to include pre-calibrated rel-
ative orientations – computes the initial relative orienta-
tions by averaging from the initial SfM. Then, it parametrises
each unit of the multi-camera system with its indepen-
dent extrinsic parameters and applies the relative orien-
tations as soft constraints, thereby relaxing the rigidity
of the rig. Similarly to (Schönberger and Frahm, 2016),
this parametrisation does not reduce the number of BBA
unknowns.

A third case, which we are not interested in, is when
the rig is not considered rigid and the variable relative
orientations are computed on-line. MicMac also enables
this possibility with a weighting scheme that allows the
relative orientation to remain constant or to evolve over
time. In (Seok and Lim, 2019) the relative orientations
can vary with the constraint that the distance between
the cameras is constant.

This paper proposes a principled approach that intro-
duces fixed relative orientations between rigged cameras
as unknowns. We express the exterior orientation of the
underlying cameras as a function of the reference camera
parameters and the fixed, unknown relative orientations.
In this way, the rigidity of the multi-camera system is re-
spected while reducing the number of unknowns. In ad-
dition, this BBA with constrained relative orientation can
replace the BBA which is routinely performed as the last
stage of the SfM pipeline, whereas other approaches are
implemented as an additional step after the unconstrained
BBA.

A similar approach has been proposed by (Sun et al.,
2016), but neither the implementation nor the details of
the derivative calculation are available.

Our method, henceforth dubbed “Constrained Relative
Orientations BBA” or CRO-BBA for short, implements
the exact formulation of the Jacobian matrix, that collects
the partial derivatives of the collinearity equations rewrit-
ten to account for relative constraints. The formulae for
the Jacobian matrix of the BBA with constrained cameras
have been explicitly derived using the “matrix differential
calculus” formalism (Magnus and Neudecker, 1999), which
leads to a compact and modular derivation.

We will provide evidence that exploiting the rigidity
of the system actually has two advantages: it reduces the
number of unknowns and it improves accuracy. In fact, ne-
glecting the relative orientation constraint artificially in-
creases the degrees of freedom of the system, leading to
over-fitting (i.e. noise-fitting).

2. Notation and background

The central projection operated by a pinhole camera is
represented mathematically by the collinearity equations:

x = f(X,g) (1)

where X are the coordinates of an object point, x are the
two coordinates of the corresponding image point (in pix-
els) and g is the vector of extrinsic parameters that repre-
sents the exterior orientation of the image. The intrinsic
parameters are assumed to be known and fixed, so they
are subsumed in f . Their estimation, possibly including
distortion parameters, can easily be added to the process.

The exterior orientation is a direct isometry (or rigid
transform) that has a matrix representation (in homoge-
neous coordinates) as

G =

[
R t
0 1

]
(2)

where R is a 3× 3 rotation matrix and t is a 3× 1 vector
representing a translation. The rotation matrix, in turn,
can be parameterized by three numbers, e.g, the Euler an-
gles ω, φ, κ (see Appendix B), so we write R = R(ω, φ, κ)
and the vector of extrinsic parameters is: g = [ω;φ;κ; t].

If the central projection is accomplished by:

fP ([x, y, z]
⊤) =

[x
z
,
y

z

]⊤
(3)

then we can write the collinearity equations as:

x = f(X,g) = fP (R(ω, φ, κ)X+ t). (4)

The center of projection (COP) is the single point in
space where all the projection rays sampled by the pinhole
camera intersect, and is given by −R⊤t.

3. Problem statement

Let us consider a multi-camera system (a.k.a. multi-
head camera) composed by k cameras, where one is taken
as the reference and the remaining k − 1 have a fixed but
unknown relative orientation with respect to the first one.
For the sake of concreteness, one can think of the custom-
ary “Maltese cross” arrangement (Fig. 1), that comprises
a single nadir-pointing camera and four oblique-pointing
cameras (k = 5). Two of the oblique cameras point in
opposite directions cross–track (left, right), while the re-
maining two oblique cameras point in opposite directions
along-track (forward, backward). The five cameras are
housed in a suitable frame that ensures rigidity and their
shutters are synchronized to operate simultaneously1.

1Small lags can be approximately absorbed into the relative ori-
entation as translations along the direction of motion.
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• Let Iν be one nadir image, whose exterior orientation
is

Gν =

[
Rν tν
0 1

]
. (5)

Gν transforms 3D point coordinates from an exter-
nal (object) reference frame to the standard camera
reference frame, whose origin is at the COP and the
Z axis is orthogonal to the image plane;

• let

Gτ =

[
Rτ tτ
0 1

]
(6)

be the orientation of the oblique image relative to
the nadir image, which are fixed but unknown. Gτ

transform points from the nadir camera coordinate
system to the oblique one; in the case of the “Maltese
cross”, there are four of such relative orientations:
forward, backward, left, right, i.e., τ = {F,B,L,R}
(see Fig. 1);

• let Iµ be one of the (four) oblique images relative to
Iν , whose exterior orientation is

Gµ =

[
Rµ tµ
0 1

]
µ = (ν, τ); (7)

then Gµ can be written as a function of the exte-
rior orientation of the nadir image and the relative
orientation:

Gµ = Gτ ·Gν =

[
Rτ ·Rν Rτ · tν + tτ

0 1

]
; (8)

• let us parametrize the nadir orientation Gν with the
6 parameters g⊤

ν = [ω, φ, κ, tν ], where the first three
are the Euler angles;

• let us parametrize the relative orientation Gτ with
the 6 parameters g⊤

τ = [θ, ψ, ϱ, tτ ] where the first
three are the Euler angles.

Although we focused on a multi-camera system with
oblique cameras, such as the “Maltese cross”, CRO-BBA
can be applied to any multi-camera system, such as, e.g.,
multi-spectral cameras that are composed by separate nadir-
looking cameras that record specific light-wave bands.

4. Jacobian matrix

Performing BBA using any variant of the Gauss-Newton
method (such as Levenberg-Marquardt or Gauss-Markov)
entails computing the Jacobian matrix that collects the
partial derivatives of f .

The primary structure of the Jacobian of the classical
BBA is composed of blocks of two types, which we will call
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0 1
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Figure 1: Left: illustration of the “Maltese cross” footprint. Right:
an example of cameras arrangement in Leica CityMapper

JA and JB , that contain respectively the derivatives of the
collinearity equations with respect to (wrt) image orienta-
tion and wrt 3D point. In the case of CRO-BBA, only
the nadir images give rise to this type of blocks, whereas
oblique images (whose orientation is linked to the nadir
image) lead to three new blocks (Fig. 2):

• JC collects the derivative of the residual in the oblique
images wrt the nadir orientation;

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation;

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates.

The blocks JA, JC and JD have dimension 2× 6, whereas
JB and JE have dimension 2 × 3. We assume that the
oblique images relative to the same nadir image are con-
secutive and ordered consistently.

Before working out the derivative of the function f de-
fined in (4), let us establish the Jacobian of the projection
function fp by differentiating it element-by-element:

Dfp(W) =

[
1
z 0 − x

z2

0 1
z − y

z2

]
, W⊤ = [x, y, z]. (9)

We now proceed to derive the expression for the non-
zero blocks of the BBA Jacobian.
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Blocks JA and JB correspond to nadiral images, and they are
easily derived:

JA=
@f(X,g⌫)

@g>
⌫

=
@fp(W)

@W>

����
W=R⌫X+t⌫

@(R⌫X + t⌫)

@g>
⌫

=Dfp(R⌫X+t⌫)
⇥
(X>⌦ I3)DR⌫ |I3

⇤
(23)

JB=
@f(X,g⌫)

@X> =
@fp(W)

@W>

����
W=R⌫X+t⌫

@(R⌫X+t⌫)

@X>

=Dfp(R⌫X+t⌫)R⌫

(24)

As for the blocks related to oblique images:

JD =
@f(X,gµ)

@g>
⌧

=


@f(X,gµ)

@[↵,�, �]

@f(X,gµ)

@t>
⌧

�
(25)

Let X0 = R⌧R⌫X + R⌧t⌫ + t⌧ , then

@f(X,gµ)

@[↵,�, �]
= Dfp(X0)

@(R⌧R⌫X+R⌧t⌫+t⌧ )

@[↵,�, �]

= Dfp(X0)
@(R⌧ (R⌫X+t⌫))

@[↵,�, �]

= Dfp(X0)
�
(R⌫X+t⌫)>⌦ I3

�
DR⌧

(26)

and also

@f(X,gµ)

@t>
⌧

= Dfp(X0)
@(R⌧R⌫X+R⌧t⌫+t⌧ )

@t>
⌧

= Dfp(X0)
@t⌧
@t>

⌧

= Dfp(X0)I3

(27)

Now:

JC =
@f(X,gµ)

@g>
⌫

=


@f(X,gµ)

@[!,',]

@f(X,gµ)

@t>
⌫

�
(28)

where

@f(X,gµ)

@[!,',]
= Dfp(X0)

@(R⌧R⌫X+R⌧t⌫+t⌧ )

@[!,',]

= Dfp(X0)
@R⌧R⌫X

@[!,',]

= Dfp(X0)(X> ⌦ I3)(I3 ⌦ R⌧ )DR⌫

= Dfp(X0)(X> ⌦ R⌧ )DR⌫

(29)

and

@f(X,gµ)

@t>
⌫

= Dfp(X0)
@(R⌧R⌫X+R⌧t⌫+t⌧ )

@t>
⌫

= Dfp(X0)
@R⌧t⌫
@t>

⌫

= Dfp(X0)R⌧

(30)

Finally

JE =
@f(X,gµ)

@X> = Dfp(X0)
@(R⌧R⌫X+R⌧t⌫+t⌧ )

@X>

= Dfp(X0)R⌧R⌫

(31)

It is worth noting that these formulae are modular with respect
to the parametrization chosen for R: changing it will cause only
DR to change. Interior orientation can be easily catered for as
well.

X1 X2 X3

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

@g1 @g1 @gN @gS @gE @gW
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It is worth noting that these formulae are modular with respect
to the parametrization chosen for R: changing it will cause only
DR to change. Interior orientation can be easily catered for as
well.
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It is worth noting that these formulae are modular with respect
to the parametrization chosen for R: changing it will cause only
DR to change. Interior orientation can be easily catered for as
well.
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Figure 2. Primary structure of the BBA Jacobian for a block of 2
nadiral cameras, 8 oblique and 3 points

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates

We assume that the oblique images relative to the same nadiral
image are consecutive and ordered consistently.

Let us write the collinearity equations in compact form as

x = f(X, g) = fP (R(!,',)X + t) (2)

where X are the coordinates of an object point, x are the two
coordinates of the corresponding image point, g = [!,',, t]>

represent the exterior orientation of the image, and the central
projection is accomplished by

fP ([x, y, z]>) =
hx

z
,
x

z

i>
. (3)

Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f (henceforth referred to as the BBA Jacobian).
Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (?), which we will briefly
review in Appendix A. After some rewriting (reported in App.
C) one ends up with the following formulae for the non-zero

blocks of the BBA Jacobian:
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where X0 = R⌧R⌫X+R⌧t⌫+t⌧ . The blocks JA JC and JD

have dimension 2⇥6, whereas JB and JE has dimension 2⇥3.

4. EXPERIMENTS

Let m be the number of nadiral images (the total number of
images is 5m), and n be the number of points. The BBA re-
sidual is the 10mn ⇥ 1 vector v whose entries are given by
xij � f(Xi, gj) for i = 1 . . . n, j = 1 . . . m. While the
RMS error is appropriate when comparing fitted models with
the same degrees of freedom, in our case one should instead
look at the root of the reference variance (?) computed as

RRV =

r
v>v

10nm � k

where k is the number of unknowns. If the oblique images are
adjusted as if their orientations were independent the system
has 30m + 3n unknowns, whereas, by enforcing the rigidity,
the unknowns reduces to 6(m + 4) + 3n (4 comes the number
of relative orientations).

We performed some tests on simulated and real data. Simula-
tion used 3D points and trajectory from a real Lidar survey of
XXX (courtesy of XXX), while camera interior and relative ori-
entations are copied from a XX multicamera system. Altitude
and shooting frequency have been adapted so as to obtain a lat-
eral overlap (cross-track btw nadiral cameras) of 30% while the
forward overlap (along track btw nadiral cameras) have been set
to 60%. Real data comes from [ISA pls complete]. The evalu-
ation considered the RRV in both cases, and in the synthetic one
we also computed the RMS of the residual of the Procrustean
alignment of the tie-points produced by BBA with the ground-
truth ones (only available in the simulation). Since the BBA
is a free-network one and the model for alignment is a similit-
ude (isometry + scale), any non-rigid deformation of the model
produced by BBA is revealed by the alignment residuals.

5. CONCLUSIONS

In short, we argue that relative orientation constraints must al-
ways be used in multicamera systems.

A. MATRIX DIFFERENTIAL CALCULUS

While for a differentiable function Rn ! Rm the partial de-
rivative are customary packed into a matrix called Jacobian, for

ext. orientation  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Figure 2. Primary structure of the BBA Jacobian for a block of 2
nadiral cameras, 8 oblique and 3 points

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates

We assume that the oblique images relative to the same nadiral
image are consecutive and ordered consistently.

Let us write the collinearity equations in compact form as

x = f(X, g) = fP (R(!,',)X + t) (2)

where X are the coordinates of an object point, x are the two
coordinates of the corresponding image point, g = [!,',, t]>

represent the exterior orientation of the image, and the central
projection is accomplished by

fP ([x, y, z]>) =
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Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f (henceforth referred to as the BBA Jacobian).
Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (?), which we will briefly
review in Appendix A. After some rewriting (reported in App.
C) one ends up with the following formulae for the non-zero

blocks of the BBA Jacobian:
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where k is the number of unknowns. If the oblique images are
adjusted as if their orientations were independent the system
has 30m + 3n unknowns, whereas, by enforcing the rigidity,
the unknowns reduces to 6(m + 4) + 3n (4 comes the number
of relative orientations).

We performed some tests on simulated and real data. Simula-
tion used 3D points and trajectory from a real Lidar survey of
XXX (courtesy of XXX), while camera interior and relative ori-
entations are copied from a XX multicamera system. Altitude
and shooting frequency have been adapted so as to obtain a lat-
eral overlap (cross-track btw nadiral cameras) of 30% while the
forward overlap (along track btw nadiral cameras) have been set
to 60%. Real data comes from [ISA pls complete]. The evalu-
ation considered the RRV in both cases, and in the synthetic one
we also computed the RMS of the residual of the Procrustean
alignment of the tie-points produced by BBA with the ground-
truth ones (only available in the simulation). Since the BBA
is a free-network one and the model for alignment is a similit-
ude (isometry + scale), any non-rigid deformation of the model
produced by BBA is revealed by the alignment residuals.
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Figure 2. Primary structure of the BBA Jacobian for a block of 2
nadiral cameras, 8 oblique and 3 points

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates

We assume that the oblique images relative to the same nadiral
image are consecutive and ordered consistently.

Let us write the collinearity equations in compact form as

x = f(X, g) = fP (R(!,',)X + t) (2)

where X are the coordinates of an object point, x are the two
coordinates of the corresponding image point, g = [!,',, t]>

represent the exterior orientation of the image, and the central
projection is accomplished by

fP ([x, y, z]>) =
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. (3)

Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f (henceforth referred to as the BBA Jacobian).
Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (?), which we will briefly
review in Appendix A. After some rewriting (reported in App.
C) one ends up with the following formulae for the non-zero

blocks of the BBA Jacobian:
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where k is the number of unknowns. If the oblique images are
adjusted as if their orientations were independent the system
has 30m + 3n unknowns, whereas, by enforcing the rigidity,
the unknowns reduces to 6(m + 4) + 3n (4 comes the number
of relative orientations).

We performed some tests on simulated and real data. Simula-
tion used 3D points and trajectory from a real Lidar survey of
XXX (courtesy of XXX), while camera interior and relative ori-
entations are copied from a XX multicamera system. Altitude
and shooting frequency have been adapted so as to obtain a lat-
eral overlap (cross-track btw nadiral cameras) of 30% while the
forward overlap (along track btw nadiral cameras) have been set
to 60%. Real data comes from [ISA pls complete]. The evalu-
ation considered the RRV in both cases, and in the synthetic one
we also computed the RMS of the residual of the Procrustean
alignment of the tie-points produced by BBA with the ground-
truth ones (only available in the simulation). Since the BBA
is a free-network one and the model for alignment is a similit-
ude (isometry + scale), any non-rigid deformation of the model
produced by BBA is revealed by the alignment residuals.
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Figure 2. Primary structure of the BBA Jacobian for a block of 2
nadiral cameras, 8 oblique and 3 points

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates

We assume that the oblique images relative to the same nadiral
image are consecutive and ordered consistently.

Let us write the collinearity equations in compact form as

x = f(X, g) = fP (R(!,',)X + t) (2)

where X are the coordinates of an object point, x are the two
coordinates of the corresponding image point, g = [!,',, t]>

represent the exterior orientation of the image, and the central
projection is accomplished by

fP ([x, y, z]>) =
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z
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z
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. (3)

Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f (henceforth referred to as the BBA Jacobian).
Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (?), which we will briefly
review in Appendix A. After some rewriting (reported in App.
C) one ends up with the following formulae for the non-zero

blocks of the BBA Jacobian:
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where k is the number of unknowns. If the oblique images are
adjusted as if their orientations were independent the system
has 30m + 3n unknowns, whereas, by enforcing the rigidity,
the unknowns reduces to 6(m + 4) + 3n (4 comes the number
of relative orientations).

We performed some tests on simulated and real data. Simula-
tion used 3D points and trajectory from a real Lidar survey of
XXX (courtesy of XXX), while camera interior and relative ori-
entations are copied from a XX multicamera system. Altitude
and shooting frequency have been adapted so as to obtain a lat-
eral overlap (cross-track btw nadiral cameras) of 30% while the
forward overlap (along track btw nadiral cameras) have been set
to 60%. Real data comes from [ISA pls complete]. The evalu-
ation considered the RRV in both cases, and in the synthetic one
we also computed the RMS of the residual of the Procrustean
alignment of the tie-points produced by BBA with the ground-
truth ones (only available in the simulation). Since the BBA
is a free-network one and the model for alignment is a similit-
ude (isometry + scale), any non-rigid deformation of the model
produced by BBA is revealed by the alignment residuals.
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Figure 2. Primary structure of the BBA Jacobian for a block of 2
nadiral cameras, 8 oblique and 3 points

• JD collects the derivative of the residual in the oblique
images wrt the relative orientation

• JE collects the derivative of the residual in the oblique
images wrt 3D point coordinates

We assume that the oblique images relative to the same nadiral
image are consecutive and ordered consistently.

Let us write the collinearity equations in compact form as

x = f(X, g) = fP (R(!,',)X + t) (2)

where X are the coordinates of an object point, x are the two
coordinates of the corresponding image point, g = [!,',, t]>

represent the exterior orientation of the image, and the central
projection is accomplished by

fP ([x, y, z]>) =
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. (3)

Performing BBA using any variant of the Gauss-Newton method
entails computing the Jacobian matrix that collects the partial
derivatives of f (henceforth referred to as the BBA Jacobian).
Instead of reverting to subscript notation for computing such
derivatives, we perform the entire operation using the matrix
differential calculus introduced by (?), which we will briefly
review in Appendix A. After some rewriting (reported in App.
C) one ends up with the following formulae for the non-zero

blocks of the BBA Jacobian:
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Let m be the number of nadiral images (the total number of
images is 5m), and n be the number of points. The BBA re-
sidual is the 10mn ⇥ 1 vector v whose entries are given by
xij � f(Xi, gj) for i = 1 . . . n, j = 1 . . . m. While the
RMS error is appropriate when comparing fitted models with
the same degrees of freedom, in our case one should instead
look at the root of the reference variance (?) computed as

RRV =

r
v>v

10nm � k

where k is the number of unknowns. If the oblique images are
adjusted as if their orientations were independent the system
has 30m + 3n unknowns, whereas, by enforcing the rigidity,
the unknowns reduces to 6(m + 4) + 3n (4 comes the number
of relative orientations).

We performed some tests on simulated and real data. Simula-
tion used 3D points and trajectory from a real Lidar survey of
XXX (courtesy of XXX), while camera interior and relative ori-
entations are copied from a XX multicamera system. Altitude
and shooting frequency have been adapted so as to obtain a lat-
eral overlap (cross-track btw nadiral cameras) of 30% while the
forward overlap (along track btw nadiral cameras) have been set
to 60%. Real data comes from [ISA pls complete]. The evalu-
ation considered the RRV in both cases, and in the synthetic one
we also computed the RMS of the residual of the Procrustean
alignment of the tie-points produced by BBA with the ground-
truth ones (only available in the simulation). Since the BBA
is a free-network one and the model for alignment is a similit-
ude (isometry + scale), any non-rigid deformation of the model
produced by BBA is revealed by the alignment residuals.

5. CONCLUSIONS

In short, we argue that relative orientation constraints must al-
ways be used in multicamera systems.

A. MATRIX DIFFERENTIAL CALCULUS

While for a differentiable function Rn ! Rm the partial de-
rivative are customary packed into a matrix called Jacobian, for

Figure 2: Primary structure of the CRO-BBA Jacobian for a block
of 2 nadir cameras, 8 oblique and 3 tie-points

Instead of reverting to subscript notation for comput-
ing such derivatives, we perform the entire operation using
thematrix differential calculus introduced by (Magnus and
Neudecker, 1999), which we will briefly review in Appendix
A.

Blocks JA and JB correspond to nadir images, and they
are easily derived:

JA=
∂f(X,gν)

∂g⊤
ν

=
∂fp(W)

∂W⊤

∣∣∣∣
W=RνX+tν

∂(RνX+ tν)

∂g⊤
ν

=Dfp(RνX+tν)
[
(X⊤⊗ I3)DRν |I3

]
(10)

JB=
∂f(X,gν)

∂X⊤
=
∂fp(W)

∂W⊤

∣∣∣∣
W=RνX+tν

∂(RνX+tν)

∂X⊤

=Dfp(RνX+tν)Rν

(11)

As for the blocks related to oblique images, let us derive
first with respect to the relative orientation

JD =
∂f(X,gµ)

∂g⊤
τ

=

[
∂f(X,gµ)

∂[θ, ψ, ϱ]

∂f(X,gµ)

∂t⊤
τ

]
(12)

Let X′ = RτRνX+Rτtν + tτ , then

∂f(X,gµ)

∂[θ, ψ, ϱ]
= Dfp(X′)

∂(RτRνX+Rτtν+tτ )

∂[θ, ψ, ϱ]

= Dfp(X′)
∂(Rτ (RνX+tν))

∂[θ, ψ, ϱ]

= Dfp(X′) ((RνX+tν)
⊤⊗ I3)DRτ

(13)

and also

∂f(X,gµ)

∂t⊤
τ

= Dfp(X′)
∂(RτRνX+Rτtν+tτ )

∂t⊤
τ

= Dfp(X′)
∂tτ
∂t⊤

τ

= Dfp(X′)I3

(14)

Now we derive with respect to the nadir orientation:

JC =
∂f(X,gµ)

∂g⊤
ν

=

[
∂f(X,gµ)

∂[ω, φ, κ]

∂f(X,gµ)

∂t⊤
ν

]
(15)

where

∂f(X,gµ)

∂[ω, φ, κ]
= Dfp(X′)

∂(RτRνX+Rτtν+tτ )

∂[ω, φ, κ]

= Dfp(X′)
∂RτRνX

∂[ω, φ, κ]

= Dfp(X′)(X⊤ ⊗Rτ )DRν

(16)

and

∂f(X,gµ)

∂t⊤
ν

= Dfp(X′)
∂(RτRνX+Rτtν+tτ )

∂t⊤
ν

= Dfp(X′)
∂Rτtν
∂t⊤

ν

= Dfp(X′)Rτ

(17)

Finally, for the 3D point:

JE =
∂f(X,gµ)

∂X⊤
= Dfp(X′)

∂(RτRνX+Rτtν+tτ )

∂X⊤

= Dfp(X′)RτRν

(18)

It is worth noting that these formulae are modular with
respect to the parametrization chosen for R: changing it
will cause only DR to change. Intrinsic parameters may
possibly be added to the unknowns.

Using these formulae, we implemented CRO-BBA in
MATLAB adopting camera reduction (Brown, 1958) and
the Levenberg-Marquardt optimization strategy. Leven-
berg-Marquardt is a variation of Gauss-Newton, where a
diagonal term is added to the Hessian matrix. By chang-
ing the weight of this term the algorithm can dynami-
cally move between pure Gauss-Newton and gradient de-
scent, improving convergence basin and speed (Börlin and
Grussenmeyer, 2013). Moreover, this diagonal matrix (a.k.a.
damping term) has a regularization effect that restores
the full rank of the Jacobian matrix, thereby implicitly
removing the datum defect (Triggs et al., 2000) of the
free-network adjustment. Classical BBA is obtained by
switching off relative orientation constraints in our MAT-
LAB implementation.
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5. Experiments

We performed tests on simulated data and one real
data set.

Let m be the number of nadir images and let k be
the number of sensors that compose the multi-camera sys-
tem (the total number of images is mk), n be the num-
ber of tie-points, ℓ be the number of equations and p be
the number of unknowns. If all tie-points were seen in
all images ℓ = 2mkn, but in practice it is much smaller
than that, for it depends on the visibility. As for p, if the
oblique images are adjusted as if their orientations were
independent, the system has p = 6mk + 3n unknowns,
whereas by enforcing the rigidity, the unknowns reduce to
p = 6(m+ k− 1)+ 3n. This means that CRO-BBA solves
a significantly smaller system of equations, with benefits
in computing time, memory footprint and stronger block
stability.

As image-space errors we considered the RMS (Root
Mean Square) reprojection error and the root of the refer-
ence variance (RRV) defined as follows.

The reprojection error is the ℓ×1 vector v whose entries
are given by xij − f(Xi, gj) for i = 1 . . . n, j = 1 . . .mk.
The RMS reprojection error - RMSRE is given by:

RMSRE =

√
v⊤v

ℓ
, (19)

while the reference variance - RRV (Kraus, 2007) is com-
puted as:

RRV =

√
v⊤v

ℓ− p
. (20)

Our BBA/CRO-BBA do not use control points, pro-
ducing a free-network solutions. Then we align this re-
sult to the datum by computing the similarity (a.k.a. S-
transform, or Helmert transform) that minimizes the least-
squares distances between corresponding object points and
control points. Thus, in object-space, the evaluation con-
sidered the RMS of the residual distances of this align-
ment. Any non-Euclidean deformation of the model gen-
erated by BBA/CRO-BBA is revealed (in object-space) by
the alignment residuals.

In the simulated experiments the COPs are known
as well, so we also (separately) aligned the reconstructed
COPs to their known positions and measured the RMS of
the residual distances2.

5.1. Simulated data

Simulation used randomly subsampled 3D points and
trajectory from a real LiDAR (Light Detection And Rang-
ing) survey of the city of Udine, Italy (data courtesy by

2Actually they are known also in the real experiment from the
onboard GNSS/INS, but their accuracy is not sufficient to qualify
them as reference values, for the purposes of this study.

Helica s.r.l.). We assumed a multi-camera system com-
posed of five Phase One iXA 180 (10,328 × 7,760 pixels,
50 mm focal length) in a “Maltese cross” arrangement.
Angles between the principal axis of the nadir camera and
those of the oblique images were set to 30◦, whereas the
distances between the center of the nadir and the oblique
cameras were 0.20 m. Altitude and shooting frequency
were adapted so as to obtain a lateral overlap (cross-track
between nadir images) of 30%, while the forward overlap
(along-track between nadir images) was set to 60%. As a
result, this block consists of 400 images (80 nadir and 320
oblique) and 700 tie-points (Fig. 3), with an average of
30 points visible in each image and a mean GSD (Ground
Sampling Distance) of 6 cm/pixel in the nadir images.

Figure 3: Simulated data. Cameras are represented by coloured pyra-
mids, control/tie-points points are displayed as gray crosses (best
viewed in color)
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Figure 4: Simulated data. Matches distribution between the images.
Images are sorted according to the ordering “Nadir”, “Forward”,
“Right”, “Backward” and “Left” cameras.

Figure 4 shows the distribution of matches, which con-
figures a tightly bound block, more than what found in a
real scenario (like in Fig. 11).

To carry out the simulation, we defined the ground
truth exterior orientations on the basis of the flight plan
described above. Then we projected the object points on
the image planes adding different values of random Gaus-
sian noise to the image coordinates, choosing as standard
deviations 10 logarithmically spaced values from 0.5 to 5.0
pixels.

The initial values of the exterior orientation of nadir
images were obtained by perturbing the ground truth with
random Gaussian noise with σ = 0.20 m for the position
and σ = 0.2◦ for the Euler angles. Moreover, we added a
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Figure 5: Image-space errors: RMS of the residuals (RMSRE) and
Root of Reference Variance (RRV) for BBA and CRO-BBA vs image
noise. RRV is equal to the standard deviation of the image noise

random noise with σ = 0.05 m and σ = 0.05◦ to the relative
positions and angles of the oblique cameras, respectively.
For each setting the trial was run 100 times.

Figure 5(a) shows that the RMSRE (averaged over 100
trials) is slightly larger for CRO-BBA than BBA. This is in
line with the results shown in (Sun et al., 2016), on the ba-
sis of which the authors conclude that adding constraints
worsen the accuracy of BBA.

However, looking at the reprojection error without con-
sidering the degrees of freedom of the model to be fitted
leads to biased conclusions. In fact, unconstrained BBA
has more degrees of freedom (d.o.f.) than CRO-BBA, be-
ing thus more capable of reducing the residuals by fitting
the noise. Indeed, when the d.o.f. of the model are taken
into account by computing the RRV (Fig. 5(b)), this is
practically the same and it is also equal to the standard
deviation of the noise added to the image points, as one
should expect.
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Figure 6: Object-space errors: RMS of the alignment residuals com-
puted on control points (a) and COPs (b) vs image noise

The advantages of CRO-BBA can be appreciated in
object-space (Fig.s 6(a) and 7), by computing the align-
ment residuals wrt the control points (all tie-points are also
control points in this simulation). These plots clearly show
(with a confidence close to 100% according with the t-test)
that the unconstrained BBA produces a less accurate esti-

mate of object points and COPs. The specific distribution
of these errors depends on the arbitrary choice of the da-
tum, but the qualitative observation that unconstrained
BBA is less accurate is independent.

In a practical scenario, these residuary non-Euclidean
deformations would have been compensated for by ground
control points, which is why this effect is rarely detected:
the use of a model with an excess number of d.o.f. is
balanced by additional constraints in the form of ground
control points.
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Figure 7: Object-space errors for control points: norm of the error
and ENU components. Added noise has 0.5 pixels standard devia-
tion. Points are sorted by decreasing ray-multiplicity. This figure is
best viewed in colour
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Figure 8: Object-space errors for COPs: norm of the error and ENU
components. Added noise has 0.5 pixels standard deviation. This
figure is best viewed in colour

It is worth noting also that while for CRO-BBA the
errors affecting control points and COPs are comparable
(please note the different scales of y-axes for Fig. 6(a) and
Fig. 6(b)), BBA produces a worst localization of the COPs.

This is again dependent of the datum, but since we set
it implicitly on control points when evaluating the error on
control points and on COPs when evaluating the error on
COPs, we conclude that it reflects an intrinsically worst
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Figure 9: Top: correlation among the parameters (6 for each camera)
of the first 4 nadir cameras (a) and the 4 oblique cameras (b) in un-
constrained BBA. Bottom: correlation among the parameters of the
first 4 nadir cameras (c) and the 24 relative orientation parameters
for CRO-BBA (d)

localization of COPs in BBA. This can be explained in
terms of the degrees of freedom of the system: in BBA the
COPs of the oblique cameras are independent variables,
while the imposition of relative constraint in CRO-BBA
reduces the degrees of freedom and the error.

In particular, the nadir images (they correspond to the
first 80 COPs in Fig. 8) in BBA have an average error
(0.123 m) which is significantly higher (with nearly 100%
confidence according to the t-test) than the oblique ones
(0.085 m). So, ignoring relative orientation constraints
affects the localization of the nadir images more than the
oblique images.

Fig. 9 reports the correlation among the unknown pa-
rameters in the classical BBA and CRO-BBA scenario,
for a subset of cameras. It can be noticed that in classi-
cal BBA the correlation for nadir and oblique cameras is
fairly similar and has a diagonal block structure, evidence
of a weaker block geometry. In the case of CRO-BBA, the
nadir cameras are much more correlated, as expected, and
so are the 24 relative orientation parameters that link the
oblique cameras to the nadir ones (Fig. 9(d)).

5.2. Real data from Leica CityMapper

Real data were collected by the Leica CityMapper (1st
generation) hybrid sensor over the city of Heilbronn, Ger-
many (data courtesy by Leica Geosystems). Leica CityMap-
per (Fig. 1) combines a Hyperion LiDAR unit (1064 nm
wavelength, theoretical ranging accuracy <2 cm) and a
multi-camera system, featuring one nadir-looking camera

head (RGB CCD size 10,320 x 7,752 pixels, NIR CCD size
3,336 x 4,500 pixels, 83 mm focal length) and four 45◦-
tilted camera heads (RGB CCD size 10,320 x 7,752 pixels,
156 mm focal length).

Figure 10: Real data used for the experiment. Cameras are rep-
resented by blue pyramids, tie-points has their own natural color,
control points are displayed as red dots (best viewed in color)
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Figure 11: Matches distribution between the images. Images are
sorted according to the ordering “Nadir”, “Forward”, “Right”,
“Backward” and “Left” cameras.

The flight plan was designed using an average nadir
GSD of 12 cm, and along-across overlaps of 80% and 60%,
respectively. The selected subset includes 460 images (92
nadir images and 368 oblique images) and covers an area
of ca. 3.5 km x 3.5 km over the city centre (Fig. 10). As
ground truth data we employed 49 control points, surveyed
with RTK GNSS with a mean 3D accuracy of 5 cm.

In the experiments with real data we used 3DF Zephyr
to extract and match SIFT-like features and fed these im-
age correspondences to our BBA/CRO-BBA. From the
matches distribution shown in Fig. 11, it can be noticed
that correspondences mainly exist between cameras point-
ing in the same absolute direction, corresponding to the
diagonal blocks (along and cross-track) plus the forward-
backward and right-left ones (only cross-track). While the
nadir camera has some matches with the others, the other
blocks are mostly empty.

For the intrinsic parameters, we adopted the values re-
ported in the calibration certificate of the system. Then
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we computed the errors as in the previous cases, with the
difference that the COPs are unknown and that the (49)
control points are only a subset of the (8049) tie-points.
The RRV is 1.021 pixel for BBA and 1.043 pixel CRO-
BBA, while the object-space errors wrt control points are
shown in Fig. 12, where it can be appreciated that the
CRO-BBA produces more accurate results than BBA. The
RMS of the object-space errors is 0.209 m for BBA and
0.153 m for CRO-BBA, and the t-test confirms that the
two distributions are indeed different with 99.47% con-
fidence. This experiment is in agreement with previous
simulations: the enforcement of relative constraints is ad-
vantageous in terms of error in object-space, although the
error in image-space (RRV) is approximately the same.

Figure 13 is a box-plot of the statistics of the offsets
from the COP of one oblique image to the COP of the cor-
responding nadir image, after BBA and after CRO-BBA
(in the latter case the values are constant). As we do not
know the calibrated reference values, this can be taken
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Figure 12: Results of the experiment with real data. Object-space
errors for control points: norm of the error and ENU components.
This figure is best viewed in colour
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Figure 13: Results of the experiment with real data. Box plots of the
oblique COP offsets: norm of the error ad components. This figure
is best viewed in colour

Figure 14: When intrinsic parameters are left free, the nadir images
are localized with a large altitude error in unconstrained BBA

as an indicator of the precision of the COP localization
achieved by BBA. Please note that the scale of y-axis is in
meters.

Although all these experiments have been done with
fixed interior orientation (our MATLAB implementation
only works with fixed intrinsic parameters), it is instruc-
tive to see what would happen leaving them free in an un-
constrained BBA (with 3DF Zephyr). The result is shown
in Fig. 14, where it is noticeable that the nadir cameras
had been offset from the corresponding oblique ones. This
is due to the correlation between height of the COP and
focal length, which gets stronger as the perspective effect
is weaker, as in the nadir views, and so these views are
more affected (see, e.g., (Luhmann et al., 2016)). The ef-
fect disappears if interior orientation is fixed, although, as
we showed, the COPs of nadir images still suffer from a
larger error than the oblique ones if relative orientation
constraints are dropped.

6. Conclusions

In this paper we studied bundle adjustment with con-
strained cameras. This means that the orientation of cer-
tain cameras is expressed in relation to others, and these
relative orientations become part of the unknowns. Though
some have argued that this imposition of constraints de-
creases the accuracy of the results, we have found the op-
posite to be true. By capitalizing on the system’s rigidity,
the number of unknowns decreases and accuracy improves.
Our experiments with simulated and real data have shown
that there is no significant difference in errors in image
space between solutions with and without relative orienta-
tion constraints, while errors in object space demonstrate

8



that the unconstrained solution is severely deformed, re-
ducing the accuracy of the result. All in all, there is no
reason to avoid using relative orientation constraints in
the bundle adjustment of image blocks in multi-camera
systems.
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Appendix A. Matrix differential calculus

While for a differentiable function Rn → Rm the partial
derivatives are customary arranged into a matrix called
the Jacobian, for matrix functions Rn×q → Rm×p natu-
rally raises the question of how to pack the mnpq par-
tial derivatives, because this can be done in many ways.
The following notation was introduced by (Magnus and
Neudecker, 1999), who argue that it should be adopted for
a number of good reasons, the most important of which is
that it allows the use of the chain rule.

Definition 1. Let F be a differentiable m × p real ma-
trix function of a n × q matrix of real variables X. The
Jacobian matrix of F at X is the mp× nq matrix

DF (X) =
∂ vecF (X)

∂(vecX)⊤
. (A.1)

where vec(A) is the column vector obtained by stacking the
columns of A. Note that (A.1) also defines the Jacobian
matrix for vector functions of vector variables.

Definition 1 reduces the study of matrix functions of
matrices to the study of vector functions of vectors, since it
allows F (X) and X only in their vectorized forms. How-
ever, the idea of arranging the partial derivatives into a
matrix (rather than a vector) is sometimes useful, so we

will retain the expression ∂F (x)
∂x for a function F : R →

Rm×p. It is worthwhile noticing that DF (x) and ∂F (x)
∂x
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contain the same partial derivatives, but in ∂F (x)
∂x they are

arranged in a m× p matrix, whereas DF (x) = vec ∂F (x)
∂x .

The following theorem transforms the problem of find-
ing the Jacobian matrix of a matrix function into the prob-
lem of finding its differential (denoted by d), which is gen-
erally easier.

Theorem 1 (Identification theorem). The following two
equations are equivalent:

d vecF (X) = A(X) d vecX (A.2)

DF (X) = A(X). (A.3)

The vec operator has some interesting properties in
connection with the Kronecker product ⊗, in particular:

vecAXB = (B⊤ ⊗A) vecX. (A.4)

This formula and the identification theorem imply that:

D(AXB) = (B⊤ ⊗A) (A.5)

Theorem 2 (Chain rule). Let F : Rn×q → Rm×p and
G : Rm×p → Rr×s be differentiable functions. If the com-
posite function H(X) = G(F (X)) is differentiable at X0,
its Jacobian matrix is

DH(X0) = (DG(Y0))(DF (X0)) (A.6)

where Y0 = F (X0).

Appendix B. Derivatives of rotation matrices

Let u = [u1, u2, u3]
⊤ be a unit vector, and ϑ be an

angle. The matrix representing the rotation by ϑ around
the axis u is given by the Rodriguez formula:

R(ϑ,u) = (I + sinϑ[u]× + (1− cosϑ)[u]2×) (B.1)

where

[u]× =




0 −u3 u2
u3 0 −u1
−u2 u1 0


 . (B.2)

Let us now consider the customary representation of
rotations with the three Euler angles ω, φ, κ:

R(ω, φ, κ) = R(κ, e3)R(φ, e2)R(ω, e1) (B.3)

where ei is the i-th element of the canonical base.
We will now determine the derivative of a rotation ma-

trix wrt the Euler angles:

DR = DR(ω, φ, κ) =
[
vec

∂R

∂ω
, vec

∂R

∂φ
, vec

∂R

∂κ

]
. (B.4)

Let us first establish the derivative of a rotation around
a given axis. From the Rodriguez formula one gets:

∂R(ϑ, û)

∂ϑ
=

d sinϑ

dϑ
[u]× − d cosϑ

dϑ
[u]2×

= cosϑ[u]× + sinϑ[u]2×

(B.5)

Let us focus, e.g., on the first the angle ω that repre-
sents a rotation around e1 = [1, 0, 0]⊤:

∂R(ω, φ, κ)

∂ω
= R(κ, e3)R(φ, e2)

∂R(ω, e1)

∂ω

= R(κ, e3)R(φ, e2)(cosω[e1]× + sinω[e1]
2
×)

(B.6)

The derivation for
∂R(ω, φ, κ)

∂φ
and

∂R(ω, φ, κ)

∂κ
is simi-

lar. The reader might want to compare these derivative to
those reported by (Lucas, 1963), which were based on the

observation that (e.g.) ∂R(ω,e1)
∂ω = R(ω, e1)[e1]×.
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