
Oceans'98 IEEE/OES ConferenceUncalibrated Vision for3-D Underwater ApplicationsK. Plakas, E. TruccoComputer Vision Group and Ocean Systems LaboratoryDept. of Computing and Electrical EngineeringHeriot-Watt University, UKfcostas,mtcg@cee.hw.ac.ukA. FusielloDip. di Matematica e InformaticaUniversit�a di Udine, ITALYfusiello@dimi.uniud.itAbstract| This paper presents an uncalibrated visionsystem recovering 3-D reconstructions of underwaterscenes using no camera calibration at all. The only in-formation available is a set of point correspondences plussome a-priori knowledge on the scene structure. The sys-tem includes three main components: (1) a robust tracker,which targets optimal features for video tracking, and im-plements a completely automatic mechanism for rejectingunstable image features; (2) a module computing a pro-jective reconstruction of the scene from the set of featuresdeclared reliable by the tracker; (3) a module recoveringthe target Euclidean reconstruction from the projective one,employing a-priori knowledge of the distances between�ve identi�able scene points. We sketch the design ofeach component and report experiments with our work-ing implementation on real data sets, collected by camerasimmersed in our laboratory tank.I. IntroductionUncalibrated vision refers to the extraction of useful 3-D information about a scene from images acquired by anunspeci�ed moving camera, for which the intrinsic andthe extrinsic parameters are unknown. This is obviouslyan interesting issue for vision systems operating under-water, where calibration can be lost due to collisions orother unwanted events.It is well known that when the intrinsic parameters ofthe moving camera are known it is possible to recoverthe Euclidean structure of the scene up to a similaritytranformation. When dealing with uncalibrated cam-eras, reconstruction is possible up to an unknown pro-jective transformation, unless additional information onthe scene { such as the reciprocal position of at least 5points or 3 pairs of parallel lines { are known, thereby al-lowing to upgrade the reconstruction to Euclidean. Thismakes the method suitable for application with struc-tured scenes like ducts, manifolds, or benthic stations.A. Notation and Camera ModelVectors and matrices are represented in boldface ma-trices in uppercase), while geometric entities such aspoints and lines in Times Roman. For vectors u and

v, their inner product is represented as uTv.The camera model considered is the well known pin-hole model. The camera performs a perspective projec-tion of an object point M onto a pixel m in the retinalplane through the optical center C. The optical axis isde�ned as the line going through the optical center Cand perpendicular to the image plane.II. The Feature TrackerThe tracker is based upon the previous work ofTomasi-Kanade [1] and Tomasi-Shi [2]. The Shi-Tomasi-Kanade tracker uses a SSD matching approach to fea-ture tracking utilising an a�ne model for frame-to-framedependencies. This system classi�ed a tracked featureas reliable or unreliable according to the residual of thematch between the associated image region in the �rstand subsequent frames; if the residual exceeded a user-de�ned threshold, the feature was rejected.This work has been extended by introducing an auto-matic scheme for rejecting spurious features. In order todo that job, a simple, e�cient, model-free outlier rejec-tion rule, called X84, is employed [3].A. Feature detection and TrackingLet us consider an image sequence I(x; t), with x =[u; v]T , the coordinates of an image point. Provided thatthe sequence is sampled at a su�ciently high frequency,we can assume that small image regions are displacedwithout any noticeable change in their intensity:I(x; t) = I(�(x); t + �); (1)where �(_) is a translational motion �eld specifying thewarping that is applied to image points between frames.This motion �eld can be written as: �(x) = x+d, whered is a displacement vector.The motion parameter d, can now be estimated byminimizing the residual� =XW [I(x+ d; t+ �) � I(x; t)]2: (2)



Substituting the �rst-order Taylor expansion of I(x+d; t+ �) into (2), and ensuring that the derivatives withrespect to d are zero, we obtain the linear systemGd = e; (3)whereG =XW � I2u IuIvIuIv I2v � ; e = ��XW It [Iu Iv ]T ;with Iu = @I=@u, Iv = @I=@v and It = @I=@t: Equa-tion (3) is solved for d using a Newton-Raphson itera-tive scheme. In this framework, a feature can be reliablytracked if a numerically stable solution to (3) can befound, which requires that G is well conditioned and itsentries above the noise level. This poses the requirementthat the smallest eigenvalue of G is su�ciently large,since, in practice, the largest eigenvalue is bounded bythe maximum allowable pixel value. Therefore, if �1and �2 are the eigenvalues of G, a feature is acceptedif min(�1; �2) > �, where � is a user de�ned threshold.B. Robust Outlier RejectionTo monitor the quality of the features, the trackerchecks the residuals between the �rst and the currentframe: high residuals indicate bad features which mustbe rejected. Following [2], we adopt the a�ne model,as a pure translational model would not work well withlong sequences: too many good features are likely to un-dergo signi�cant rotation, scaling or shearing, and wouldbe incorrectly discarded. The a�ne motion �eld can bewritten as �(x) = Ax+ d; (4)where d is the displacement between frames, and A is a2� 2 matrix accounting for a�ne warping.The residuals (computed according to the a�ne modelover a N�N windowW ) when comparing good featurescan be seen as samples coming from a Gaussian distri-bution: � ' �(N2; 2N2):When the two regions over which the residual is com-puted are a bad match (i.e. they are not warped by ana�ne transformation), the residual is not a sample fromthe normal distribution of good features. Hence, our out-lier rejection becomes a problem of estimating the meanand variance of the corrupted Gaussian distribution.To increase robustness, X84, a simple but e�ectivemodel-free rejection rule is employed. X84 achieves ro-bustness by employing median and median deviation in-stead of the usual mean and standard deviation. Thisrule rejects features whose residuals are more than k Me-dian Absolute Deviations (MADs) away from the median:MAD = medifj�i �medj�j jgwhere � are the computed tracking residuals. A valueof k = 5:2 is always adequate in practice since it corre-sponds to about 3.5 standard deviations, a range con-taining more than 99% of a Gaussian distribution. X84

has a breakdown point of 50%, meaning that any major-ity in the data can overrule any minority.III. The Projective ReconstructionModuleThere are two steps in obtaining the projective recon-struction of the scene, from the set of point correspon-dences provided by the tracker.First the Fundamental Matrix [4] relating two viewsmust be determined. The fundamental matrix expressesthe epipolar constraint and captures all the essential in-formation about the epipolar geometry between the twoviews and allows us to proceed with the projective re-construction.There are various di�erent ways in the literature toestimate the fundamental matrix. We have chosen toimplement a simple linear estimation of the matrix [4],aided by the modi�cations proposed by Hartley [5]. Al-though this method is not as accurate as the best of itsnonlinear relations [4], it is fast and su�ciently accuratefor our purposes.The second step is to do the projective reconstructionitself, utilising the fundamental matrix that has beencalculated in the �rst step. The method chosen, followsclosely the one proposed by Faugeras [6], with minormodi�cations.A. Fundamental Matrix EstimationWe can calculate the fundamental matrix by express-ing the epipolar constraint as follows: For any givenpoint m in the �rst retina, the projective representationl0m of its epipolar line in the second retina can be writtenas: l0m = FmBut the point m0, corresponding to m, is by de�nition apoint of l0m. One can therefore see that:m0TFm = 0 (5)The 3� 3 matrix F is the fundamental matrix.Starting with (5), and writingm = (u; v; 1)T andm0 =(u0; v0; 1)T , we see that each point match gives rise to aset of linear equations in the entries of F:uu0f11 + uv0f21 + uf31 + vu0f12 + vv0f22+vf32 + u0f13 + v0f23 + f33 = 0so each row of the equation matrix can be representedby the vector (uu0; uv0; u; vu0; vv0; v; u0; v0; 1). Eight pointmatches are therefore su�cient to solve for the matrixF and the method is therefore known as the 8-pointalgorithm. If more than eight matches are available,then a linear least-squares minimisation problem mustbe solved.From all the point matches we obtain a system of linearequations Af = 0 (6)



where f = (f11; : : : ; f33) is a 9-dimensional vector con-taining the unknown entries of the fundamental matrix,andA is the equation matrix. The fact that F and hencevector f are de�ned only up to a scale factor, requires usto impose an additional constraint on the solution in or-der to avoid the trivial solution f = 0. This additionalconstraint can be, for instance, that the norm of f shouldbe one, k f k= 1.In the presence of noise, another point must be takeninto account. Ordinarily, and assuming the existence of anon-zero solution, the matrix A must be of rank 8. Butin the presence of noise, A will not be rank de�cient,it will have rank 9. In this case we will not be ableto �nd a non-trivial solution to (6), but we shall seekinstead for a least-squares solution. We shall seek thevector f that minimises k AF k, subject to the constraintk f k= fT f = 1. It is well known that this vector is theunit eigenvector of ATA corresponding to the smallesteigenvalue of A.Simply deriving the fundamental matrix in this waythough does not guarantee an important property,namely that the matrix is singular and in fact of rank2. It is therefore necessary to enforce that, and we canachieve that by correcting the matrix F found as the so-lution of (5). Matrix F will be replaced by a matrix F0that minimises the Frobenius Norm kF� F0k, subject tothe condition detF0 = 0.Still more modi�cations have to be made, as this sim-ple derivation of the fundamental matrix has been shownto be very sensitive to noise. It has been demonstratedthough [5], that by taking into account speci�c numericalconsiderations about the condition number of the linearsystem being solved, the performance of the eight-pointalgorithm can be improved considerably.A simple transformation (translation and scaling) ofthe point coordinates is enough to dramatically improvethe stability of the solution, without adding any signi�-cant complexity. This transformation involves translat-ing all the data points so that their centroid is at theorigin, and isotropically scaling the points so that theaverage distance of a point from the origin is equal top2.The translation and scaling steps can be combined intoa single transformationT, so the algorithm for determin-ing the fundamental matrix would now read:� Transform the image coordinates according to ûi =Tuiand û0i = Tu0i.� Find the fundamental matrix F̂ corresponding to thematches ûi $ û0i, and enforce the singularity constraint.� Set F = T�T F̂T.B. Projective ReconstructionThe 3D projective reconstruction of the scene containsfour steps. First the projection matrix is de�ned, thenthe location of the epipoles is determined, followed by thelocation of the optical centers, and �nally the projectivereconstruction of the points is e�ected.

B.1 Estimation of the projection matrixThe perspective projection of a four-dimensional scenepointM to a three-dimensional image pointm (all quan-tities are represented in homogenous coordinates), can berepresented by a 3� 4 matrix P, such that:m = PM (7)and accordingly: m0 = P0M (8)for the second camera.The reconstruction problem can be cast in the fol-lowing way: given the set of pixel correspondencesfmi; m0ig, �nd the camera matrices fP; P0g and thescene structure fMig such that (7) and (8) hold for eachi. Without further restrictions we will { in general { ob-tain a projective reconstruction [6], that di�ers from thetrue one by an arbitrary projective transformation. In-deed, if P and M satis�es (7), also PT and T�1M sat-is�es (7) for any 4� 4 nonsingular matrix T.Hence, one can obtain a projective reconstruction ofthe scene { thereby �xing the matrix T { by choosing aset of (any) �ve point correspondences between the twoimages, and regarding the �ve 3D points that give rise tothese correspondences as the standard projective basis inprojective space.Accordingly the �rst four points of eachset of points in each image form the standard projectivebasis for that image.With this choise of coordinate systems, the projectionmatrix can be written simply as [6]:P = 24 �x � 1 0 0 10 �x� 1 0 10 0 x� 1 1 35where [�; �; ] is the �fth of the �ve-point set in eachimage. So P is written now a function of just one pro-jective parameter x, which will be determined once theepipoles and optical centers have been de�ned.B.2 Epipole DeterminationThe left and right null-spaces of the fundamental ma-trix F are generated by the vectors representing (in ho-mogenous coordinates) the two epipoles in the two im-ages. Since the fundamental matrix F has been deter-mined, the epipoles can now be very easily determinedby solving the systems Fe = 0 and FTe0 = 0, for the leftand right epipoles respectively.B.3 Optical Center EstimationWith all the above knowledge, we can now computethe coordinates of the optical centers C and C0 and cal-culate the projective parameter x of the projection ma-trix. Observe that the projection matrix P projects allworld points onto the image, except for the optical cen-ter C and all the points belonging to the focal plane.Therefore: PC = 0 (9)



All that is left now is to determine x and x0. Since weknow the epipoles, x and x0 can be obtained from: PC0 =�e and P0C = �0e0 with � 6= 0 and �0 6= 0.B.4 Relative Reconstruction of PointsWe are now in a position, given a correspondence(m;m0) to reconstruct the three dimensional point Min the coordinate system de�ned by the �ve points. Theway to do this reconstruction is to intersect the lines thatgo throughm and C, andm0 and C0 respectively. Theselines are: �C+ � [Cxmx; Cymy; Czmz; 0]Tand �0C0 + �0 �C 0xm0x; C 0ym0y; C 0zm0z; 0�Twith �; � 2 R and not both 0, and �0; �0 2 R andnot both 0. Intersecting the lines, the three-dimensionalpoint M can be determined as:M = �C [�+ �mx; �+ �my ; �+ �mz ; �]TIV. The Euclidean ReconstructionModuleIt is relatively easy to obtain a projective reconstruc-tion. However we want to obtain an Euclidean recon-struction, a very special one that di�ers from the truereconstruction by a similarity transformation.Once the Euclidean coordinates of �ve points in 3D-space are known, it is very straightforward to upgradethe projective reconstruction to Euclidean. All that isneeded is to �nd the 4 � 4 matrix that relates the �veEuclidean points with their projective equivalents, andapply this matrix to the rest of the reconstruction.V. Experimental ResultsIn this section we report experiments with real datacollected in our laboratory tank. A video sequence ofobjects in the tank is collected without any knowledge ofthe camera characteristics and while the camera motionremains completely arbitrary and unknown. Examplesof frames from this sequence can be seen in Figure 1 (forreasons of space, only one experiment is reported).This video sequence is fed to the tracker which in turnprovides the projective reconstruction module with cor-respondences. The detected and tracked features can beseen in Figure 2. Once the projective reconstruction ise�ected, we need to supply the algorithm with the Eu-clidean 3D coordinates of �ve points, in order to be ableto move from the projective to the Euclidean reconstruc-tion.The coordinates of these �ve points do not need to beknown with any great accuracy. Indeed, in the reportedcase, they were extracted by having knowledge of thevarious objects dimensions and then trying to extractthe coordinates of the �ve points by aproximating thepositioning of one object with respect to the other, based

Fig. 1: Some frames in the image sequence.
(�) (�)Fig. 2: (�) First image in the sequence with detected fea-tures superimposed. (�) Last image in the sequencewith tracked features superimposed. Outliers in solidwhite squares.on optical observations from the video sequence only.The reconstructed features can be seen in Figure 3.As can be clearly seen from Figure 3, although thecamera caracteristics and motion were unknown and thea-priori information available at best vague, the algo-rithmmanages to reconstruct the tracked features of Fig-ure 2(�) with acceptable accuracy.VI. ConclusionsThis paper has presented a method for 3-D shapereconstruction from uncalibrated underwater video se-quences. Approximate knowledge of a few distances be-tween scene points is necessary, which makes the methodsuitable for estimating the shape of man-made objects(typically, installations). The reconstruction is e�cientand experimentation indicates that accuracies are suit-able for ROV visual servoing in typical tasks like stationkeeping. We are currently working on a dynamic exten-sion of this work suitable for integration in a completeROV visual servoing system.AcknowledgementsThis work was supported by the TMR-MAST pro-gramme of the EC, under contract MAS3-CT97-5038.References[1] C. Tomasi and T. Kanade, \Detection and tracking of pointfeatures," Technical Report CMU-CS-91-132, Carnegie MellonUniversity, Pittsburg, PA, April 1991.
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Fig. 3: 3D reconstruction of the tracked features in Fig.2(�).[2] J. Shi and C. Tomasi, \Good features to track," in Proceed-ings of the IEEE Conference on Computer Vision and PatternRecognition, June 1994, pp. 593{600.[3] T. Tommasini, A. Fusiello, V. Roberto, and E. Trucco, \Ro-bust feature tracking in underwater video sequences," in TheseProceedings, 1998.[4] Q.-T. Luong and O. D. Faugeras, \The fundamental ma-trix: Theory, algorithms, and stability analysis," InternationalJournal of Computer Vision, vol. 17, pp. 43{75, 1996.[5] R. I. Hartley, \In defence of the 8-point algorithm," in Pro-ceedings of the IEEE International Conference on ComputerVision, 1995.[6] O. Faugeras, \What can be seen in three dimensions with anuncalibrated stereo rig," in European Conference on ComputerVision, 1992, pp. 563{578.


