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Abstract— This paper presents an uncalibrated vision
system recovering 3-D reconstructions of underwater
scenes using no camera calibration at all. The only in-
formation available is a set of point correspondences plus
some a-priori knowledge on the scene structure. The sys-
tem includes three main components: (1) a robust tracker,
which targets optimal features for video tracking, and im-
plements a completely automatic mechanism for rejecting
unstable image features; (2) a module computing a pro-
jective reconstruction of the scene from the set of features
declared reliable by the tracker; (3) a module recovering
the target Euclidean reconstruction from the projective one,
employing a-priori knowledge of the distances between
five identifiable scene points. We sketch the design of
each component and report experiments with our work-
ing implementation on real data sets, collected by cameras
immersed in our laboratory tank.

I. Introduction

Uncalibrated vision refers to the extraction of useful 3-
D information about a scene from images acquired by an
unspecified moving camera, for which the intrinsic and
the extrinsic parameters are unknown. This is obviously
an interesting issue for vision systems operating under-
water, where calibration can be lost due to collisions or
other unwanted events.

It is well known that when the intrinsic parameters of
the moving camera are known it is possible to recover
the Euclidean structure of the scene up to a similarity
tranformation. When dealing with uncalibrated cam-
eras, reconstruction is possible up to an unknown pro-
jective transformation, unless additional information on
the scene — such as the reciprocal position of at least 5
points or 3 pairs of parallel lines — are known, thereby al-
lowing to upgrade the reconstruction to Euclidean. This
makes the method suitable for application with struc-
tured scenes like ducts, manifolds, or benthic stations.

A. Notation and Camera Model

Vectors and matrices are represented in boldface ma-
trices in uppercase), while geometric entities such as
points and lines in Times Roman. For vectors u and

v, their inner product is represented as u’v.

The camera model considered is the well known pin-
hole model. The camera performs a perspective projec-
tion of an object point M onto a pixel m in the retinal
plane through the optical center C. The optical axis is
defined as the line going through the optical center C'
and perpendicular to the image plane.

II. The Feature Tracker

The tracker is based upon the previous work of
Tomasi-Kanade [1] and Tomasi-Shi [2]. The Shi-Tomasi-
Kanade tracker uses a SSD matching approach to fea-
ture tracking utilising an affine model for frame-to-frame
dependencies. This system classified a tracked feature
as reliable or unreliable according to the residual of the
match between the associated image region in the first
and subsequent frames; if the residual exceeded a user-
defined threshold, the feature was rejected.

This work has been extended by introducing an auto-
matic scheme for rejecting spurious features. In order to
do that job, a simple, efficient, model-free outlier rejec-
tion rule, called X84, is employed [3].

A. Feature detection and Tracking

Let us consider an image sequence I(x,t), with x =
[u,v]T, the coordinates of an image point. Provided that
the sequence is sampled at a sufficiently high frequency,
we can assume that small image regions are displaced
without any noticeable change in their intensity:

I(x,t) = I1(6(x),t + 1), (1)

where §() is a translational motion field specifying the
warping that is applied to image points between frames.
This motion field can be written as: d(x) = x+d, where
d is a displacement vector.

The motion parameter d, can now be estimated by
minimizing the residual

e=> [I(x+d,t+71)—I(x,1)]". (2)
w



Substituting the first-order Taylor expansion of I(x +
d,¢+ 7) into (2), and ensuring that the derivatives with
respect to d are zero, we obtain the linear system

Gd=e, (3)

where

2 LI, T
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with I,, = 0I/0u, I, = 8I/0v and I; = 9I/0t. Equa-
tion (3) is solved for d using a Newton-Raphson itera-
tive scheme. In this framework, a feature can be reliably
tracked if a numerically stable solution to (3) can be
found, which requires that G is well conditioned and its
entries above the noise level. This poses the requirement
that the smallest eigenvalue of G is sufficiently large,
since, in practice, the largest eigenvalue is bounded by
the maximum allowable pixel value. Therefore, if \;
and )\ are the eigenvalues of G, a feature is accepted
if min(A1, A2) > A, where A is a user defined threshold.

B. Robust Outlier Rejection

To monitor the quality of the features, the tracker
checks the residuals between the first and the current
frame: high residuals indicate bad features which must
be rejected. Following [2], we adopt the affine model,
as a pure translational model would not work well with
long sequences: too many good features are likely to un-
dergo significant rotation, scaling or shearing, and would
be incorrectly discarded. The affine motion field can be
written as

§(x) = Ax +d, (4)

where d is the displacement between frames, and A is a
2 X 2 matrix accounting for affine warping.

The residuals (computed according to the affine model
over a N X N window W) when comparing good features
can be seen as samples coming from a Gaussian distri-
bution:

e~ n(N? 2N?).

When the two regions over which the residual is com-
puted are a bad match (i.e. they are not warped by an
affine transformation), the residual is not a sample from
the normal distribution of good features. Hence, our out-
lier rejection becomes a problem of estimating the mean
and variance of the corrupted Gaussian distribution.

To increase robustness, X84, a simple but effective
model-free rejection rule is employed. X84 achieves ro-
bustness by employing median and median deviation in-
stead of the usual mean and standard deviation. This
rule rejects features whose residuals are more than & Me-
dian Absolute Deviations (MADs) away from the median:

MAD = medi{|ei — medjej|}

where € are the computed tracking residuals. A value
of k = 5.2 is always adequate in practice since it corre-
sponds to about 3.5 standard deviations, a range con-
taining more than 99% of a Gaussian distribution. X84

has a breakdown point of 50%, meaning that any major-
ity in the data can overrule any minority.

ITI. The Projective Reconstruction
Module

There are two steps in obtaining the projective recon-
struction of the scene, from the set of point correspon-
dences provided by the tracker.

First the Fundamental Matriz [4] relating two views
must be determined. The fundamental matrix expresses
the epipolar constraint and captures all the essential in-
formation about the epipolar geometry between the two
views and allows us to proceed with the projective re-
construction.

There are various different ways in the literature to
estimate the fundamental matrix. We have chosen to
implement a simple linear estimation of the matrix [4],
aided by the modifications proposed by Hartley [5]. Al-
though this method is not as accurate as the best of its
nonlinear relations [4], it is fast and sufficiently accurate
for our purposes.

The second step is to do the projective reconstruction
itself, utilising the fundamental matrix that has been
calculated in the first step. The method chosen, follows
closely the one proposed by Faugeras [6], with minor
modifications.

A. Fundamental Matriz Estimation

We can calculate the fundamental matrix by express-
ing the epipolar constraint as follows: For any given
point m in the first retina, the projective representation
1/, of its epipolar line in the second retina can be written
as:

I =Fm

But the point m', corresponding to m, is by definition a
point of I,. One can therefore see that:

m' Fm = 0 (5)

The 3 x 3 matrix F is the fundamental matrix.

Starting with (5), and writingm = (u,v,1)T and m’ =
(u',v',1)T, we see that each point match gives rise to a
set of linear equations in the entries of F':

ut f11 4+ uv' for + ufar +vu' fro + 00’ fao
+vfaa +u' fiz3 + 0 fos + fa3 =0

so each row of the equation matrix can be represented
by the vector (uu', uv', u, vu', vv',v,u',v’, 1). Eight point
matches are therefore sufficient to solve for the matrix
F and the method is therefore known as the &-point
algorithm. If more than eight matches are available,
then a linear least-squares minimisation problem must

be solved.
From all the point matches we obtain a system of linear

equations
Af =0 (6)



where f = (fi1,..., f33) is a 9-dimensional vector con-
taining the unknown entries of the fundamental matrix,
and A is the equation matrix. The fact that F and hence
vector f are defined only up to a scale factor, requires us
to impose an additional constraint on the solution in or-
der to avoid the trivial solution f = 0. This additional
constraint can be, for instance, that the norm of f should
be one, || f ||= 1.

In the presence of noise, another point must be taken
into account. Ordinarily, and assuming the existence of a
non-zero solution, the matrix A must be of rank 8. But
in the presence of noise, A will not be rank deficient,
it will have rank 9. In this case we will not be able
to find a non-trivial solution to (6), but we shall seek
instead for a least-squares solution. We shall seek the
vector f that minimises || AF ||, subject to the constraint
| £||=£Tf = 1. It is well known that this vector is the
unit eigenvector of AT A corresponding to the smallest
eigenvalue of A.

Simply deriving the fundamental matrix in this way
though does not guarantee an important property,
namely that the matrix is singular and in fact of rank
2. It is therefore necessary to enforce that, and we can
achieve that by correcting the matrix F found as the so-
lution of (5). Matrix F will be replaced by a matrix F’
that minimises the Frobenius Norm ||F — F'||, subject to
the condition det F' = 0.

Still more modifications have to be made, as this sim-
ple derivation of the fundamental matrix has been shown
to be very sensitive to noise. It has been demonstrated
though [5], that by taking into account specific numerical
considerations about the condition number of the linear
system being solved, the performance of the eight-point
algorithm can be improved considerably.

A simple transformation (translation and scaling) of
the point coordinates is enough to dramatically improve
the stability of the solution, without adding any signifi-
cant complexity. This transformation involves translat-
ing all the data points so that their centroid is at the
origin, and isotropically scaling the points so that the
average distance of a point from the origin is equal to
V2.

The translation and scaling steps can be combined into
a single transformation T, so the algorithm for determin-
ing the fundamental matrix would now read:

o Transform the image coordinates according to &; =
Tu;and @} = Tuj.

« Find the fundamental matrix F corresponding to the
matches 1; <> G}, and enforce the singularity constraint.
e Set F =T~ TFT.

B. Projective Reconstruction

The 3D projective reconstruction of the scene contains
four steps. First the projection matrix is defined, then
the location of the epipoles is determined, followed by the
location of the optical centers, and finally the projective
reconstruction of the points is effected.

B.1 Estimation of the projection matrix

The perspective projection of a four-dimensional scene
point M to a three-dimensional image point m (all quan-
tities are represented in homogenous coordinates), can be
represented by a 3 x 4 matrix P, such that:

m =PM (7)

and accordingly:
m' = P'M (8)
for the second camera.

The reconstruction problem can be cast in the fol-
lowing way: given the set of pixel correspondences
{m;, m}}, find the camera matrices {P, P’} and the
scene structure {M;} such that (7) and (8) hold for each
i.

Without further restrictions we will — in general — ob-
tain a projective reconstruction [6], that differs from the
true one by an arbitrary projective transformation. In-
deed, if P and M satisfies (7), also PT and T 'M sat-
isfies (7) for any 4 x 4 nonsingular matrix T.

Hence, one can obtain a projective reconstruction of
the scene — thereby fixing the matrix T — by choosing a
set of (any) five point correspondences between the two
images, and regarding the five 3D points that give rise to
these correspondences as the standard projective basis in
projective space.Accordingly the first four points of each
set of points in each image form the standard projective
basis for that image.

With this choise of coordinate systems, the projection
matrix can be written simply as [6]:

|-ozx—1 0 0 1-|
P= 0 Br—1 0 1
|_ 0 0 yr—1 IJ

where [a, 3, 7] is the fifth of the five-point set in each
image. So P is written now a function of just one pro-
jective parameter x, which will be determined once the
epipoles and optical centers have been defined.

B.2 Epipole Determination

The left and right null-spaces of the fundamental ma-
trix F' are generated by the vectors representing (in ho-
mogenous coordinates) the two epipoles in the two im-
ages. Since the fundamental matrix F has been deter-
mined, the epipoles can now be very easily determined
by solving the systems Fe = 0 and FTe’ = 0, for the left
and right epipoles respectively.

B.3 Optical Center Estimation

With all the above knowledge, we can now compute
the coordinates of the optical centers C and C’ and cal-
culate the projective parameter x of the projection ma-
trix. Observe that the projection matrix P projects all
world points onto the image, except for the optical cen-
ter C and all the points belonging to the focal plane.
Therefore:

PC=0 (9)



All that is left now is to determine z and z’. Since we
know the epipoles,  and z’ can be obtained from: PC' =
ce and P'C = ¢’e’ with ¢ # 0 and ¢’ # 0.

B.4 Relative Reconstruction of Points

We are now in a position, given a correspondence
(m, m’) to reconstruct the three dimensional point M
in the coordinate system defined by the five points. The
way to do this reconstruction is to intersect the lines that
go through m and C, and m’ and C’ respectively. These
lines are:

AC + p[Comy, Cymy, Com.,0]"

and -
NC' + ' [Chml, Chml, Clml., 0]

with \,u € R and not both 0, and X,y € R and

not both 0. Intersecting the lines, the three-dimensional

point M can be determined as:

M= -Clp+ Img, u+ Amy, u+ )\mz,u]T

IV. The Euclidean Reconstruction
Module

It is relatively easy to obtain a projective reconstruc-
tion. However we want to obtain an Fuclidean recon-
struction, a very special one that differs from the true
reconstruction by a similarity transformation.

Once the Euclidean coordinates of five points in 3D-
space are known, it is very straightforward to upgrade
the projective reconstruction to Euclidean. All that is
needed is to find the 4 x 4 matrix that relates the five
Euclidean points with their projective equivalents, and
apply this matrix to the rest of the reconstruction.

V. Experimental Results

In this section we report experiments with real data
collected in our laboratory tank. A video sequence of
objects in the tank is collected without any knowledge of
the camera characteristics and while the camera motion
remains completely arbitrary and unknown. Examples
of frames from this sequence can be seen in Figure 1 (for
reasons of space, only one experiment is reported).

This video sequence is fed to the tracker which in turn
provides the projective reconstruction module with cor-
respondences. The detected and tracked features can be
seen in Figure 2. Once the projective reconstruction is
effected, we need to supply the algorithm with the Eu-
clidean 3D coordinates of five points, in order to be able
to move from the projective to the Euclidean reconstruc-
tion.

The coordinates of these five points do not need to be
known with any great accuracy. Indeed, in the reported
case, they were extracted by having knowledge of the
various objects dimensions and then trying to extract
the coordinates of the five points by aproximating the
positioning of one object with respect to the other, based

Fig. 1:

Fig. 2: (a) First image in the sequence with detected fea-
tures superimposed. (3) Last image in the sequence
with tracked features superimposed. Outliers in solid
white squares.

on optical observations from the video sequence only.
The reconstructed features can be seen in Figure 3.

As can be clearly seen from Figure 3, although the
camera caracteristics and motion were unknown and the
a-priori information available at best vague, the algo-
rithm manages to reconstruct the tracked features of Fig-
ure 2(3) with acceptable accuracy.

VI. Conclusions

This paper has presented a method for 3-D shape
reconstruction from uncalibrated underwater video se-
quences. Approximate knowledge of a few distances be-
tween scene points is necessary, which makes the method
suitable for estimating the shape of man-made objects
(typically, installations). The reconstruction is efficient
and experimentation indicates that accuracies are suit-
able for ROV visual servoing in typical tasks like station
keeping. We are currently working on a dynamic exten-
sion of this work suitable for integration in a complete
ROV visual servoing system.
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