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Abstract— This paper proposes a robust feature tracker
based on an efficient outlier rejection scheme, suitable for
feature tracking in subsea video sequences. We extend the
Shi-Tomasi-Kanade scheme by introducing a technique for
rejecting spurious features. We employ a simple and effi-
cient outlier rejection rule, called X84, and prove that its
theoretical assumptions are satisfied in the feature track-
ing scenario. Experiments with synthetic and real subsea
sequence confirm that our algorithm locates and discards
unreliable features accurately and consistently, and tracks
good features reliably over many frames. We also illus-
trate quantitatively the benefits introduced by the algo-
rithm with the example of fundamental matrix estima-
tion.

I. Introduction

Feature tracking is an important issue in computer
vision, as many algorithms rely on the accurate compu-
tation of correspondences through a sequence of images
[1], [2], [3]- Two important examples are depth ranging
by stereo and visual servoing (e.g., estimation of vehicle
motion relative to a target, station keeping, hovering).

When an image sequence is acquired and sampled at a
sufficiently high time frequency, frame-to-frame dispar-
ities are small enough to make optical-flow techniques
viable [4]. If frame-to-frame disparities are large (e.g.,
the images are taken from quite different viewpoints),
stereo matching techniques [5] are used instead, often
in combination with Kalman filtering [6], [7], [8]. Ro-
bust tracking means detecting automatically unreliable
matches, or outliers, over an image sequence (see [9] for
a survey of robust methods in computer vision). Recent
examples of such robust algorithms include [10], which
identifies tracking outliers while estimating the funda-
mental matrix, and [11], which adopts a RANSAC ap-
proach to eliminate outliers for estimating the trifocal
tensor. Such approaches increase the computational cost
of tracking significantly.

This paper concentrates on the well-known Shi-
Tomasi-Kanade tracker, and proposes a robust version
based on an efficient outlier rejection scheme. Building

on results from [12], Tomasi and Kanade [13] introduced
a feature tracker based on SSD matching and assum-
ing translational frame-to-frame displacements. Subse-
quently, Shi and Tomasi [14] proposed an affine model,
which proved adequate for region matching over longer
time spans. Their system classified a tracked feature as
good (reliable) or bad (unreliable) according to the resid-
ual of the match between the associated image region in
the first and current frames; if the residual exceeded a
user-defined threshold, the feature was rejected. Visual
inspection of results demonstrated good discrimination
between good and bad features, but the authors did not
specify how to reject bad features automatically.

This is the problem that our paper solves. We extend
the Shi-Tomasi-Kanade tracker (Section 2) by introduc-
ing an automatic scheme for rejecting spurious features.
We employ a simple, efficient, model-free outlier rejection
rule, called X8/, and prove that its assumptions are satis-
fied in the feature tracking scenario (Section 3). Experi-
ments with synthetic and real subsea sequences confirm-
ing that our algorithm locates and discards unreliable
features accurately and consistently, and tracks good fea-
tures reliably over many frames (Section 4). We illustrate
quantitatively the benefits introduced by the algorithm
with the example of fundamental matrix estimation. The
complete code of the robust tracker is available via ftp
at: ftp://taras.dimi.uniud.it/pub/sources/rtrack.tar.gz.

II. The Shi-Tomasi-Kanade tracker

In this section the Shi-Tomasi-Kanade tracker [14], [13]
will be briefly described. Consider an image sequence
I(x,t), with x = [u,v]T, the coordinates of an image
point. If the time sampling frequency is sufficiently high,
we can assume that small image regions are displaced but
their intensities remain unchanged:

I(x,t) = I1(6(x),t + 1), (1)



where §(-) is the motion field, specifying the warping that
is applied to image points. The fast-sampling hypothesis
allows us to approximate the motion with a translation,
that is, §(x) = x + d, where d is a displacement vec-
tor. The tracker’s task is to compute d for a number of
selected points for each pair of successive frames in the
sequence.

As the image motion model is not perfect, and because
of image noise, Eq. (1) is not satisfied exactly. The prob-
lem is then finding the displacement d which minimizes
the SSD residual:

e=> [I(x+d,t+7)—I(x,0)]" ()
w

where W is a small image window centered on the point
for which d is computed. By plugging the first-order
Taylor expansion of I(x+d,t+7) into (2), and imposing
that the derivatives with respect to d are zero, we obtain
the linear system

with [I,, I,] = VI = [01/0u 01 /dv] and I; = 0I/0t. The
tracker is based on Eq. (3): given a pair of successive
frames, the solution of (3), that is, d = G le, is used
to predict a new (registered) frame. The procedure is
iterated according to a Newton-Raphson scheme, until
convergence of the displacement estimates.

A. Feature extraction

In this framework, a feature can be tracked reliably
if a numerically stable solution to Eq. (3) can be found,
which requires that G is well-conditioned and its entries
are well above the noise level. In practice, since the larger
eigenvalue is bounded by the maximum allowable pixel
value, the requirement is that the smaller eigenvalue is
sufficiently large. Calling A\; and A, the eigenvalues of G,
we accept the corresponding feature if min(Ag, A2) > A,
where ) is a user-defined threshold [14].

B. Affine Model

The translational model cannot account for certain
transformations of the feature window, for instance rota-
tion, scaling, and shear. An affine motion field is a more
accurate model [14], that is,

§(x) = Ax +d, (4)

where d is the displacement, and A is a 2 x 2 matrix
accounting for affine warping, and can be written as
A =1+ D, with D=[d;;] a deformation matrix and 1
the identity matrix. Similarly to the translational case,

one estimates the motion parameters, D and d, by min-
imising the residual

e=> [I(Ax+d,t+7) - I(x,1)]". (5)
w

By plugging the first-order Taylor expansion of I(Ax +
d, ¢+ 7) into (5), and imposing that the derivatives with
respect to D and d are zero, we obtain the linear system

Tz = a, (6)

in which z = [dy; dia d21 doo di d2]" contains the un-
known motion parameters, and

a= —TZL& [wl, uwl, vI, vI, I, IU]T’

w
u Vv
=[5 6]
w
with
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Again, Eq. (6) is solved for z using a Newton-Raphson
iterative scheme. If frame-to-frame affine deformations
are negligible, the pure translation model is preferable
(the matrix A is assumed to be the identity).

ITI. Robust Monitoring

To monitor the quality of the features, the tracker
checks the residuals between the first and the current
frame: high residuals indicate bad features which must
be rejected. Following [14], we adopt the affine model,
as a pure translational model would not work well with
long sequences: too many good features are likely to un-
dergo significant rotation, scaling or shearing, and would
be incorrectly discarded. Non-affine warping, which will
yield high residuals, is caused by occlusions, perspective
distorsions and strong intensity changes (e.g. specular
reflections). This section introduces our method for se-
lecting a robust rejection threshold automatically.

A. Distribution of the residuals

We begin by establishing which distribution is to be
expected for the residuals when comparing good features,
i.e, almost identical regions. We assume that the inten-
sity I(6(x),t) of each pixel in the current-frame region is
equal to the intensity of the corresponding pixel in the
first frame I(x,0) plus some Gaussian noise n~n(0,1).
Hence

1(6(x),t) — I(x,0) ~ n(0,1).



Since the square of a Gaussian random variable has a
chi-square distribution, we obtain

[1(5(x),t) — I(x,0)] =~ x*(1).

The sum of n chi-square random variables with one de-
gree of freedom is distributed as a chi-square with n de-
grees of freedom (as it is easy to see by considering the
moment-generating functions). Therefore, the residual
computed according to (2) over a NxN window W is
distributed as a chi-square with N2 degrees of freedom:

e= S [I(6(x),1) — I(x,0)]" ~ x3(N?).  (7)

w

As the number of degrees of freedom increases, the chi-
square distribution approximates a Gaussian, which is in
fact used to approximate the chi-square whenever N >
30. Therefore, since the window W associated to each
feature is at least 7 x 7, we can safely assume a Gaussian
distribution of the residual for the good features:

e ~n(N? 2N?).

B. The X8/ rejection rule

When the two regions over which we compute the
residual are bad features (they are not warped by an
affine transformation), the residual is not a sample from
the normal distribution of good features: it is an out-
lier. Hence, the detection of bad features reduces to a
problem of outlier detection, which is equivalent to the
problem of estimating the mean and variance of the cor-
rupted Gaussian distribution. To do this, we employ a
simple but effective model-free rejection rule, X84 [15],
which achieves robustness by employing median and me-
dian deviation instead of the usual mean and standard
deviation. This rule prescribes to reject values which are
more than k¥ Median Absolute Deviations (MADs) away
from the median:

MAD = med{l|e; — med ¢j|}. (8)
i J

In our case, ¢; are the tracking residuals. A value of k£ =
5.2, is adequate in practice, as it corresponds to about
3.5 standard deviations, and the range [u—3.50, u+3.50]
contains more than the 99.9% of a Gaussian distribution
[15]. The rejection rule X84 has a breakdown point of
50%: any majority of the data can overrule any minority.

C. Photometric normalisation

Our robust implementation of the Shi-Tomasi-Kanade
tracker incorporates also a normalised SSD matcher for
residual computation. This limits the effects of inten-
sity changes between frames, by subtracting the average
grey level (uy,ur) and dividing by the standard devia-
tion (07,07) in each of the two regions considered:

oy [ 1]

oJ o1

w

where J(-)=I(-,t + 1), I(-)=I(-,1t).

A more elaborate normalisation is described in [16];
[17] reports a modification of the Shi-Tomasi-Kanade
tracker based on explicit photometric models.

IV. Experimental results

We evaluated our tracker in a series of experiments,
of which we report three. The Platform sequence is a
20-frame synthetic sequence of 256x256 images, gener-
ated on a Silicon Graphics Indy. It simulates a vehicle
moving around an imaginary platform sitting on a sandy
floor, which is a grey-level rendering of a sonar sidescan.
The sequence is part of the SOFA (Sequences for Optical
Flow Analysis) public-domain set of test sequences avail-
able at http://www.cee.hw.ac.uk/“mtc/sofa. The Hyball
sequence was acquired by a Hydrovision Hyball ROV in
the test tank of the Ocean Systems Laboratory at Heriot-
Watt University. It consists of 31 grey-level frames, each
of 170x256 pixel. The Smallrock sequence of 170x256
frames was acquired by a ROV on a scientific mission in
the Mediterranean sea. Figures 1, 3 and 5 show, for each
sequence, the first frame with extracted features super-
imposed and the last frame with features and trajectories
superimposed. Filled windows indicate features rejected
by the robust tracker. MPEG sequences are available on
the Internet from http://www.dimi.uniud.it/ fusiello/.

In Figures 2, 4 and 6 the residuals of all features
against the frame number are plotted. The horizontal
line indicate the threshold set automatically by X84.

The effect of aliasing in the Platform sequence, which
is synthetic, is clearly visible. The rejected features num-
ber 23, 28, 32 slightly shifted during the tracking, hence
they are correctly rejected. Features number 5, 21, 26
are attached to the correct point, but they undergo a
strong deformation.

In the Hyball sequence, features 30 and 32 end up
superimposed. Features 21 is rejected because of the
marked shape deformation, whereas feature 26 under-
goes a severe brightness change.

In the Smallrock sequence, all features are good, but
the ones with the higher residual are rejected anyway.
Yet, false negatives like in this case are not as dangerous
as false positives (fail to reject an outlier), which never
occurred in our experiments.

To illustrate quantitatively the benefits of our robust
tracker, we used the tracked features to compute the fun-
damental matrix between the first and last frame of the
three sequences. We used the nonlinear method based on
distances between points and epipolar lines, implemented
by Zhang [3]. As a measure of the goodness of the esti-
mated epipolar geometry, we took the RMS distance of
the tracked points from the corresponding epipolar lines:
if the epipolar geometry is estimated exactly, all points
should lie on epipolar lines. The results are shown in
Table 1. In one case we used all the features, in the
other we discarded some of them, according to the X84
rejection rule. With all the sequences, the robust tracker
brings a decrease in the RMS distance.
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Table 1: RMS distance of points from epipolar lines.

Platform | Hyball | Smallrock
All 1.88 0.23 0.58
X84 1.63 0.18 0.53

V. Conclusions

We have presented a robust extension of the Shi-
Tomasi-Kanade tracker, based on the X84 outlier re-
jection rule. The computational cost is much less than
that of schemes based on robust regression and random
sampling like RANSAC or LMedSq [9], [11], yet experi-
ments indicate excellent reliability in the presence of non-
affine feature warping (most reliable features preserved,
all unreliable features rejected). Our experiments have
also pointed out the pronounced sensitivity of the Shi-
Tomasi-Kanade tracker to illumination changes. We be-
lieve that our robust tracker can be useful to the large
community of researchers needing efficient and reliable
trackers. To facilitate dissemination and enable direct
comparisons and experimentation, we have made the
code available on the Internet.

Acknowledgements

This work was supported by a British Council-
MURST/CRUI grant, and by the EU programmes
SOCRATES and MAST (contract MAS3-CT97-0083
“ARAMIS”, Advanced ROV Package for Automatic In-
vestigation of Sediments). Thanks to Chris Smith of the
Institute of Marine Biology of Crete for the Smallrock
data, and to Stuart Clarke of the Heriot-Watt Image
Analysis Laboratory for the sidescan seabed image used
in Platform.

References

[1] L. Robert, C. Zeller, O. Faugeras, and M. Hébert, “Appli-
cations of non-metric vision to some visually-guided robotics
tasks,” in Visual Navigation: From Biological Systems to Un-
manned Ground Vehicles, Y. Aloimonos, Ed., chapter 5, pp.
89-134. Lawrence Erlbaum Associates, 1997.

[2] C. Tomasi and T. Kanade, “Shape and motion from image
streams under orthography — a factorization method,” In-
ternational Journal of Computer Vision, vol. 9, no. 2, pp.
137-154, November 1992.

[3] Z.Zhang, “Determining the epipolar geometry and its uncer-
tainty: A review,” Tech. Rep. 2927, INRIA Sophia-Antipolis,
France, July 1996.

[4] J.L.Barron, D. J. Fleet, and S. Beauchemin, “Performance of
optical flow techniques,” International Journal of Computer
Vision, vol. 12, no. 1, pp. 43-77, 1994.

[5] A. Fusiello, V. Roberto, and E. Trucco, “Efficient stereo with
multiple windowing,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Puerto Rico,
June 1997, pp. 858-863, IEEE Computer Society Press.

[6] L.Matthies, T. Kanade, and R. Szelisky, “Kalman filter based
algorithms for estimating depth from image sequences,” In-
ternational Journal of Computer Vision, vol. 3, pp. 209236,
1989.

[7] L.S. Shapiro, H. Wang, and J.M. Brady, “A matching and
tracking strategy for indipendently moving objects,” in Pro-
ceedings of the British Machine Vision Conference. BMVA
Press, 1992, pp. 306-315.

[8] E. Trucco, V. Roberto, S. Tinonin, and M. Corbatto, “SSD
disparity estimation for dynamic stereo,” in Proceedings of

[10]

11]

(12]

(13]

14]

[15]

the British Machine Vision Conference, R. B. Fisher and
E. Trucco, Eds. BMVA Press, 1996, pp. 342-352.

P. Meer, D. Mintz, D. Y. Kim, and A. Rosenfeld, “Robust
regression methods in computer vision: a review,” Interna-
tional Journal of Computer Vision, vol. 6, pp. 59-70, 1991.
P. H. S. Torr, A. Zisserman, and S. Maybank, “Robust detec-
tion of degeneracy,” in Proceedings of the IEEE International
Conference on Computer Vision, E. Grimson, Ed. 1995, pp.
1037-1044, Springer—Verlag.

P. H. S. Torr and A. Zisserman, “Robust parameterization
and computation of the trifocal tensor,” in British Machine
Vision Conference, R. Fisher and E. Trucco, Eds. September
1996, pp. 6565-664, BMVA, Edinburgh.

B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in Proceedings
of International Joint Conference on Artificial Intelligence,
1981.

C. Tomasi and T. Kanade, “Detection and tracking of point
features,” Technical Report CMU-CS-91-132, Carnegie Mel-
lon University, Pittsburg, PA, April 1991.

J. Shi and C. Tomasi, “Good features to track,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, June 1994, pp. 593-600.

F.R. Hampel, P.J. Rousseeuw, E.M. Ronchetti, and W.A.
Stahel, Robust Statistics: the Approach Based on Influ-
ence Functions, Wiley Series in probability and mathematical
statistics. John Wiley & Sons, 1986.

I.J. Cox, S. Roy, and S.L. Hingorani, “Dynamic histogram
warping of image pairs for constant image brightness,” in
Proceedings of the IEEE International Conference on Image
Processing, 1995, pp. 366—369.

G.D. Hager and P.N. Belhumeur, “Real-time tracking of im-
age regions with changes in geometry and illumination,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1996, pp. 403—410.



