
Oceans'98 IEEE/OES ConferenceRobust Feature Trackingin Underwater Video SequencesT. Tommasini, A. Fusiello, V. RobertoMachine Vision LaboratoryDipartimento di Matematica e InformaticaUniversit�a di Udine, ITftommasin,fusiello,robertog@dimi.uniud.itE. TruccoComputer Vision Group and Ocean Systems LaboratoryDepartment of Computing and Electrical EngineeringHeriot-Watt University, UKmtc@cee.hw.ac.ukAbstract|This paper proposes a robust feature trackerbased on an e�cient outlier rejection scheme, suitable forfeature tracking in subsea video sequences. We extend theShi-Tomasi-Kanade scheme by introducing a technique forrejecting spurious features. We employ a simple and e�-cient outlier rejection rule, called X84, and prove that itstheoretical assumptions are satis�ed in the feature track-ing scenario. Experiments with synthetic and real subseasequence con�rm that our algorithm locates and discardsunreliable features accurately and consistently, and tracksgood features reliably over many frames. We also illus-trate quantitatively the bene�ts introduced by the algo-rithm with the example of fundamental matrix estima-tion. I. IntroductionFeature tracking is an important issue in computervision, as many algorithms rely on the accurate compu-tation of correspondences through a sequence of images[1], [2], [3]. Two important examples are depth rangingby stereo and visual servoing (e.g., estimation of vehiclemotion relative to a target, station keeping, hovering).When an image sequence is acquired and sampled at asu�ciently high time frequency, frame-to-frame dispar-ities are small enough to make optical-ow techniquesviable [4]. If frame-to-frame disparities are large (e.g.,the images are taken from quite di�erent viewpoints),stereo matching techniques [5] are used instead, oftenin combination with Kalman �ltering [6], [7], [8]. Ro-bust tracking means detecting automatically unreliablematches, or outliers, over an image sequence (see [9] fora survey of robust methods in computer vision). Recentexamples of such robust algorithms include [10], whichidenti�es tracking outliers while estimating the funda-mental matrix, and [11], which adopts a RANSAC ap-proach to eliminate outliers for estimating the trifocaltensor. Such approaches increase the computational costof tracking signi�cantly.This paper concentrates on the well-known Shi-Tomasi-Kanade tracker, and proposes a robust versionbased on an e�cient outlier rejection scheme. Building

on results from [12], Tomasi and Kanade [13] introduceda feature tracker based on SSD matching and assum-ing translational frame-to-frame displacements. Subse-quently, Shi and Tomasi [14] proposed an a�ne model,which proved adequate for region matching over longertime spans. Their system classi�ed a tracked feature asgood (reliable) or bad (unreliable) according to the resid-ual of the match between the associated image region inthe �rst and current frames; if the residual exceeded auser-de�ned threshold, the feature was rejected. Visualinspection of results demonstrated good discriminationbetween good and bad features, but the authors did notspecify how to reject bad features automatically.This is the problem that our paper solves. We extendthe Shi-Tomasi-Kanade tracker (Section 2) by introduc-ing an automatic scheme for rejecting spurious features.We employ a simple, e�cient, model-free outlier rejectionrule, calledX84, and prove that its assumptions are satis-�ed in the feature tracking scenario (Section 3). Experi-ments with synthetic and real subsea sequences con�rm-ing that our algorithm locates and discards unreliablefeatures accurately and consistently, and tracks good fea-tures reliably over many frames (Section 4). We illustratequantitatively the bene�ts introduced by the algorithmwith the example of fundamental matrix estimation. Thecomplete code of the robust tracker is available via ftpat: ftp://taras.dimi.uniud.it/pub/sources/rtrack.tar.gz.II. The Shi-Tomasi-Kanade trackerIn this section the Shi-Tomasi-Kanade tracker [14], [13]will be briey described. Consider an image sequenceI(x; t), with x = [u; v]> ; the coordinates of an imagepoint. If the time sampling frequency is su�ciently high,we can assume that small image regions are displaced buttheir intensities remain unchanged:I(x; t) = I(�(x); t + �); (1)



where �(�) is the motion �eld, specifying the warping thatis applied to image points. The fast-sampling hypothesisallows us to approximate the motion with a translation,that is, �(x) = x + d, where d is a displacement vec-tor. The tracker's task is to compute d for a number ofselected points for each pair of successive frames in thesequence.As the image motion model is not perfect, and becauseof image noise, Eq. (1) is not satis�ed exactly. The prob-lem is then �nding the displacement d̂ which minimizesthe SSD residual:� =XW �I(x+ d; t+ �) � I(x; t)�2 (2)where W is a small image window centered on the pointfor which d is computed. By plugging the �rst-orderTaylor expansion of I(x+d; t+�) into (2), and imposingthat the derivatives with respect to d are zero, we obtainthe linear system Gd = e; (3)whereG =XW � I2u IuIvIuIv I2v � ; e = ��XW It [Iu Iv ]> ;with [Iu Iv ] = rI = [@I=@u @I=@v] and It = @I=@t: Thetracker is based on Eq. (3): given a pair of successiveframes, the solution of (3), that is, d̂ = G�1e; is usedto predict a new (registered) frame. The procedure isiterated according to a Newton-Raphson scheme, untilconvergence of the displacement estimates.A. Feature extractionIn this framework, a feature can be tracked reliablyif a numerically stable solution to Eq. (3) can be found,which requires that G is well-conditioned and its entriesare well above the noise level. In practice, since the largereigenvalue is bounded by the maximum allowable pixelvalue, the requirement is that the smaller eigenvalue issu�ciently large. Calling �1 and �2 the eigenvalues of G,we accept the corresponding feature if min(�1; �2) > �;where � is a user-de�ned threshold [14].B. A�ne ModelThe translational model cannot account for certaintransformations of the feature window, for instance rota-tion, scaling, and shear. An a�ne motion �eld is a moreaccurate model [14], that is,�(x) = Ax+ d; (4)where d is the displacement, and A is a 2 � 2 matrixaccounting for a�ne warping, and can be written asA = 1 + D, with D=[dij ] a deformation matrix and 1the identity matrix. Similarly to the translational case,

one estimates the motion parameters, D and d, by min-imising the residual� =XW �I(Ax+ d; t+ �)� I(x; t)�2: (5)By plugging the �rst-order Taylor expansion of I(Ax +d; t+ �) into (5), and imposing that the derivatives withrespect to D and d are zero, we obtain the linear systemTz = a; (6)in which z = [d11 d12 d21 d22 d1 d2]> contains the un-known motion parameters, anda = ��XW It [uIu uIv vIu vIv Iu Iv ]> ;T =XW � U VV > G � ;with U = 2664 u2I2u u2IuIv uvI2u uvIuIvu2IuIv u2I2v uvIuIv uvI2vuvI2u uvIuIv v2I2u v2IuIvuvIuIv uvI2v v2IuIv v2I2v 3775 ;V > = � uI2u uIuIv vI2u vIuIvuIuIv uI2v vIuIv vI2v � :Again, Eq. (6) is solved for z using a Newton-Raphsoniterative scheme. If frame-to-frame a�ne deformationsare negligible, the pure translation model is preferable(the matrix A is assumed to be the identity).III. Robust MonitoringTo monitor the quality of the features, the trackerchecks the residuals between the �rst and the currentframe: high residuals indicate bad features which mustbe rejected. Following [14], we adopt the a�ne model,as a pure translational model would not work well withlong sequences: too many good features are likely to un-dergo signi�cant rotation, scaling or shearing, and wouldbe incorrectly discarded. Non-a�ne warping, which willyield high residuals, is caused by occlusions, perspectivedistorsions and strong intensity changes (e.g. specularreections). This section introduces our method for se-lecting a robust rejection threshold automatically.A. Distribution of the residualsWe begin by establishing which distribution is to beexpected for the residuals when comparing good features,i.e, almost identical regions. We assume that the inten-sity I(�(x); t) of each pixel in the current-frame region isequal to the intensity of the corresponding pixel in the�rst frame I(x; 0) plus some Gaussian noise n'�(0; 1).Hence I(�(x); t) � I(x; 0) ' �(0; 1):



Since the square of a Gaussian random variable has achi-square distribution, we obtain�I(�(x); t) � I(x; 0)�2 ' �2(1):The sum of n chi-square random variables with one de-gree of freedom is distributed as a chi-square with n de-grees of freedom (as it is easy to see by considering themoment-generating functions). Therefore, the residualcomputed according to (2) over a N�N window W isdistributed as a chi-square with N2 degrees of freedom:� =XW �I(�(x); t) � I(x; 0)�2 ' �2(N2): (7)As the number of degrees of freedom increases, the chi-square distribution approximates a Gaussian, which is infact used to approximate the chi-square whenever N >30. Therefore, since the window W associated to eachfeature is at least 7�7, we can safely assume a Gaussiandistribution of the residual for the good features:� ' �(N2; 2N2):B. The X84 rejection ruleWhen the two regions over which we compute theresidual are bad features (they are not warped by ana�ne transformation), the residual is not a sample fromthe normal distribution of good features: it is an out-lier. Hence, the detection of bad features reduces to aproblem of outlier detection, which is equivalent to theproblem of estimating the mean and variance of the cor-rupted Gaussian distribution. To do this, we employ asimple but e�ective model-free rejection rule, X84 [15],which achieves robustness by employing median and me-dian deviation instead of the usual mean and standarddeviation. This rule prescribes to reject values which aremore than k Median Absolute Deviations (MADs) awayfrom the median:MAD = medi fj�i �medj �jjg: (8)In our case, �i are the tracking residuals. A value of k =5:2, is adequate in practice, as it corresponds to about3.5 standard deviations, and the range [��3:5�; �+3:5�]contains more than the 99.9% of a Gaussian distribution[15]. The rejection rule X84 has a breakdown point of50%: any majority of the data can overrule any minority.C. Photometric normalisationOur robust implementation of the Shi-Tomasi-Kanadetracker incorporates also a normalised SSD matcher forresidual computation. This limits the e�ects of inten-sity changes between frames, by subtracting the averagegrey level (�J ; �I) and dividing by the standard devia-tion (�J ; �I) in each of the two regions considered:� =XW "J(Ax + d)� �J�J � I(x) � �I�I #2: (9)

where J(�)=I(�; t+ 1) , I(�)=I(�; t).A more elaborate normalisation is described in [16];[17] reports a modi�cation of the Shi-Tomasi-Kanadetracker based on explicit photometric models.IV. Experimental resultsWe evaluated our tracker in a series of experiments,of which we report three. The Platform sequence is a20-frame synthetic sequence of 256�256 images, gener-ated on a Silicon Graphics Indy. It simulates a vehiclemoving around an imaginary platform sitting on a sandyoor, which is a grey-level rendering of a sonar sidescan.The sequence is part of the SOFA (Sequences for OpticalFlow Analysis) public-domain set of test sequences avail-able at http://www.cee.hw.ac.uk/~mtc/sofa. The Hyballsequence was acquired by a Hydrovision Hyball ROV inthe test tank of the Ocean Systems Laboratory at Heriot-Watt University. It consists of 31 grey-level frames, eachof 170�256 pixel. The Smallrock sequence of 170�256frames was acquired by a ROV on a scienti�c mission inthe Mediterranean sea. Figures 1, 3 and 5 show, for eachsequence, the �rst frame with extracted features super-imposed and the last frame with features and trajectoriessuperimposed. Filled windows indicate features rejectedby the robust tracker. MPEG sequences are available onthe Internet from http://www.dimi.uniud.it/~fusiello/.In Figures 2, 4 and 6 the residuals of all featuresagainst the frame number are plotted. The horizontalline indicate the threshold set automatically by X84.The e�ect of aliasing in the Platform sequence, whichis synthetic, is clearly visible. The rejected features num-ber 23, 28, 32 slightly shifted during the tracking, hencethey are correctly rejected. Features number 5, 21, 26are attached to the correct point, but they undergo astrong deformation.In the Hyball sequence, features 30 and 32 end upsuperimposed. Features 21 is rejected because of themarked shape deformation, whereas feature 26 under-goes a severe brightness change.In the Smallrock sequence, all features are good, butthe ones with the higher residual are rejected anyway.Yet, false negatives like in this case are not as dangerousas false positives (fail to reject an outlier), which neveroccurred in our experiments.To illustrate quantitatively the bene�ts of our robusttracker, we used the tracked features to compute the fun-damental matrix between the �rst and last frame of thethree sequences. We used the nonlinear method based ondistances between points and epipolar lines, implementedby Zhang [3]. As a measure of the goodness of the esti-mated epipolar geometry, we took the RMS distance ofthe tracked points from the corresponding epipolar lines:if the epipolar geometry is estimated exactly, all pointsshould lie on epipolar lines. The results are shown inTable 1. In one case we used all the features, in theother we discarded some of them, according to the X84rejection rule. With all the sequences, the robust trackerbrings a decrease in the RMS distance.
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