
Efficient On-line Mosaicing from 3D Acoustical Images

U. Castellani, A. Fusiello, V. Murino ∗
Department of Computer Science

University of Verona

L. Papaleo, E. Puppo †

Department of Computer and Information Sciences
University of Genova

Stefania Repetto‡

Biophysical and Electronic Engineering Department
University of Genova

M. Pittore §

e-Magine IT srl
Genova

Abstract

This paper presents a system for the 3D reconstruction of an un-
derwater environment on the basis of multiple range views from an
acoustical camera. The challenge is to provide the reconstruction
on-line, as the range views are obtained from the sensor. The fi-
nal target of the work is to improve the understanding of a human
operator driving an underwater Remotely Operated Vehicle (ROV).
The acoustic camera provides a sequence of 3D images in real time
(about 5fps in the current version). Data must be registered and
fused to generate a unique 3D mosaic in the form of a triangle
mesh, which is rendered through a graphical interface. Available
technologies for registration and meshing have been modified to
match time constraints. We report experiments on real data.

1 Introduction

A Remotely Operated Vehicle (ROV) is a vehicle attached through
an umbilical cable to either a ship or a docking station, which is
teleoperated by a remote pilot, and is used to perform complex tasks
underwater in a variety of domains, including offshore oil industry,
underwater construction work, research, environmental studies, sea
bottom surveys, survey of shipwrecks, dredging, fisheries etc. A
ROV must be equipped with imaging devices and other sensors, in
order to provide the necessary feedback to the pilot. Optical cam-
eras and sonar are standard devices which often provide only poor
and hardly useful information to the pilot. In fact, most activities
are carried out in turbid water.

In the context of European Project ARROV (GROWTH Programme
- V Framework) we have investigated the use of an acoustic camera
- or 3D multibeam sonar - which generates 3D data from a volume
spanned by a single acoustic pulse. This device can offer great
advantages over traditional ones, since it is able to provide 3D data
in real time. Our final goal is to provide a 3D scene model to the
human operator(s) of a ROV, in order to facilitate navigation and
understanding of the surrounding environment. The main challenge
here is to use 3D data from the acoustic camera in order to build a
3D model on-line, while range images are captured.

Data provided by an acoustic camera are noisy: speckle noise is
typically present due to the coherent nature of the acoustic signals.
Resolution is low and depends on the frequency of the acoustic sig-
nal (it is about 3 cm at 500 KHz): the higher the frequency, the
higher the resolution, the narrower field of view. Consequently we
are forced to operate with a limited field of view and a technique
to reconstruct progressively the scene while the sensor is moving is
necessary.

∗e-mail: castella—fusiello—murino@disi.unige.it
†e-mail: papaleo—puppo@disi.unige.it
‡e-mail: repetto@dibe.unige.it
§e-mail: pittore@e-magine-it.it

In order to achieve our goal, we have developed a complete data
processing pipeline, which starts from data acquisition, and pro-
duces and visualizes a geometric model of the observed scene, in
the form of a mesh of triangles. The mesh is called a mosaic be-
cause it is built by adding new portions of scene frame by frame.
The pipeline includes the following stages, each of which is de-
scribed in a separate section of the paper:

1. Data capture, in which the acoustic camera produces a new
range image (Sec. 3);

2. Single frame reconstruction, in which and a single range im-
age is processed to obtain a triangle mesh (Sec. 4);

3. Registration, in which the new frame is brought to the same
coordinate system of the 3D mosaic built on all previous
frames (Sec. 5);

4. Geometric fusion, in which the new frame is merged into the
3D mosaic to update its geometry (Sec. 6);

5. Visualization, in which the updates of the mosaic are delivered
to the graphic engine (Sec. 7).

In Section 8 we show some results, and in Section 9 we make some
concluding remarks.

2 Related work

In this section we report on related work, by focusing on the two
most crucial stages of the pipeline, i.e., registration and geometric
fusion.

The registration of two points sets is usually performed by the Iter-
ative Closest Point (ICP) procedure [Besl and McKay 1992; Chen
and Medioni 1992]. Many variants to ICP have been proposed to
cope with partially overlapping views and false matches in general,
including the use of thresholds to limit the maximum distance be-
tween points [Zhang 1994], disallowing matching on the surface
boundaries [Turk and Levoy 1994], and the use of robust regression
[Masuda and Yokoya 1995; Trucco et al. 1999].

Albeit early approaches also focused on efficiency, recently this is-
sue has become more and more relevant, as real-time registration
has started to become more feasible. In [S. Rusinkiewicz 2001] a
survey on the main ICP variations is presented focusing both on
the accuracy of results and speed. In order to reduce the time spent
finding corresponding points in the ICP procedure, we implemented
a technique inspired to the reverse calibration [Blais and Levine
1995], that exploits the spatial organization of range data.

Many methods have been proposed in the last few years to address
the problem of shape reconstruction from 3D data. Our input comes
in the form of a sequence of range images, each of which is very
noisy, and we need to process such images on-line by integrating
each of them in the mosaic. So we are interested in methods that:

��������������������	�
��������	�����

accept sets of range images as input; produce an approximating (not
interpolant) mesh; can take into account data accuracy; can process
sequences of images on-line; offer a good trade-off between speed
and accuracy.

The methods proposed in [Curless and Levoy 1996; Rocchini et al.
2001] fulfill all but the last two requirements. They are both based
on a discretization of the 3D space. The resolution of the dis-
cretization can be used as a trade-off between time performance
and accuracy of the result. Both methods rely on the preliminary
construction of mesh from each frame, although they use it differ-
ently. The method in [Curless and Levoy 1996] uses the registered
meshes to evaluate a signed distance field from the surface to be
reconstructed. The surface is then extracted as the zero level set of
such a field, through the Marching Cubes algorithm [Lorensen and
Cline 1987]. On the contrary, the method in [Rocchini et al. 2001]
intersects each mesh with the edges of the cells in the discretized
space, performs a fusion of intersections that lie close in space, and
connects such intersections through a variant of the same Marching
Cubes algorithm.

No method has been specifically designed to handle data on-line. A
crucial point is that processing a new image should have only local
effect on the mosaic and its complexity should depend only on the
size of the new mesh. We developed a variant of the method in
[Rocchini et al. 2001] – which seemed more suitable to this purpose
– which fulfills all such requirements.

3 Data Capture

Three-dimensional acoustic data are obtained with a high resolu-
tion acoustic camera, the Echoscope 1600 [Hansen and Andersen
1996]. The scene is insonified by a high-frequency acoustic pulse,
and a two-dimensional array of transducers gathers the backscat-
tered signals. The whole set of raw signals is then processed in
order to form computed signals whose profiles depend on echoes
coming from fixed steering directions (called beam signals), while
those coming from other directions are attenuated. Successively,
the distance of a 3D point is measured by detecting the time instant
at which the maximum peak occurs in the beam signal [Urik 1983].

According to the spherical scanning technology, range values are
measured from each steering direction u(i, j) where i and j are in-
dices related to the elevation (tilt) and azimuth (pan) angles respec-
tively. The Echoscope carries out 64 measures for both tilt and pan
by defining a 64× 64 range image ri, j . Coordinates are eventually
converted from spherical to Cartesian.

Figure 1 shows a range image and the related points cloud. There
is a tradeoff between range resolution and field of view. Resolution
depends on the frequency of the acoustic signal (it is about 5 cm at
500KHz): roughly speaking, the higher the frequency, the higher
the resolution, the narrower the field of view.

Unfortunately, the acoustic image is affected by false reflections,
caused by secondary lobes, and by acquisition noise, which is mod-
elled as speckle. The intensity of the maximum peak is used to gen-
erate another image, representing the reliability of the associate 3D
measures. In general, the higher the intensity, the more reliable the
associated distance. A dramatic improvement of the range image
quality is obtained by discarding points whose related intensity is
lower than a threshold, depending on the secondary lobes [Murino
et al. 1998; Murino and Trucco 2000]. The Echoscope 1600 can
provide pre-processed images at the rate of about five frames per
second.

(a) (b)

Figure 1: A range image (a) and the corresponding cloud of points
(b). The scene consists of a pipe underwater

4 Single frame reconstruction

The problem of reconstructing a triangle mesh from a single image
is often considered trivial and solved in a straightforward procedure
that connects each group of four adjacent pixels to form a pair tri-
angles. Unfortunately, acoustic images are very noisy and data are
missing at many pixels. Therefore, we developed a more sophisti-
cated algorithm that tests for possible connections of each pixel and
all other pixels in a 5×5 window around it.

Our input consists of an input matrix I[i][j], where each entry (i, j)
contains either the coordinates (x,y,z) of a point, or a vacancy. We
use a single parameter, a connectivity threshold (θ), used to evalu-
ate whether or not two points should be considered adjacent.

The method considers the points corresponding to non-vacant en-
tries and connect them pairwise to form edges: cycles of three edges
form triangles of the output mesh. A potential edge exists between
a pair of points v ≡ (x1,y1,z1) and w ≡ (x2,y2,z2) if their radial
distance is smaller than threshold (θ):∣∣∣∣

√
x2

1 + y2
1 + z2

1 −
√

x2
2 + y2

2 + z2
2

∣∣∣∣ < θ . (1)

The first phase of the algorithm considers each 2×2 block

Bl =
[
v1 v2
v3 v4

]

where v1 is not vacant tries to find feasible edges: the method tests
independently for horizontal and vertical connectivity (v1, v2 and
v1,v3); then it tests for connectivity along diagonal(v1,v4); if there
is no connectivity along this diagonal, it tests for connectivity along
the other diagonal v3,v2. The second phase considers each vacant
entry v in the lattice, and tests for connectivity between pairs of
entries in the 3×3 window surrounding v. The approach first tests
vertical and horizontal connectivity, then it tests the two diagonal
adjacencies;

In a third phase, 3×3 windows are scanned again, checking for the
possible eight semi-diagonal edges connecting entries at the bound-
ary of the window. Again, each potential adjacency is validated
only if there are no existing edges crossing it. At most two of the
feasible semi-diagonal edges can coexist.

Finally, the isolated vertices are cut off, and the normal vectors for
faces and vertices are computed and added to the mesh structure.
The connectivity information coming from the mesh is used to filter
out connected components smaller than a given size. This latter
step, called size filter, greatly improves the quality of the acoustic
images by filtering speckle noise.

�����

5 Registration

Registration refers to the geometric alignment of a pair or more
of 3D point sets. We addressed this problem using the classical
Iterative Closest Point (ICP) algorithm [Besl and McKay 1992], a
general purpose method for the registration of rigid 3D shapes.

ICP can give very accurate results when one set is a subset of
the other, but results deteriorate with pairs of partially overlapping
range images. In this case, the overlapping surface portions must
start very close to each other to ensure convergence, making the
initial position a critical parameter. However, modifications to the
original ICP are now widely used to achieve accurate registration
even with fairly general starting positions [Zhang 1994; Turk and
Levoy 1994; Trucco et al. 1999]. We implemented a variation sim-
ilar to the one proposed by Zhang [Zhang 1994], using a modified
cost function based on robust statistics to limit the maximum dis-
tance between closest points [Castellani et al. 2002].

However, in order to be able to work on-line, ICP needs to be mod-
ified. In general, the speed enhancement of ICP algorithm can be
achieved by: i) reducing the number of iterations necessary to con-
verge and ii) reducing the time spent in each iteration. Finding
closest points is the responsible for the bulk of the time spent in
each iteration. Corresponding points, however, needs not to be nec-
essarily the closest points. For example, [Chen and Medioni 1992]
uses normal shooting and [Blais and Levine 1995] suggests to use
the so-called reverse calibration technique, that projects the source
point onto the destination mesh, from the point of view of the desti-
nation mesh’s range camera. We focused on the latter approach and
developed an acceleration method based on it.

The technique is based on the fact that the sensor outputs both an
unorganized cloud of 3D point V and range image rV [Besl 1988].
Given a 3D point v ∈ V (data set), let rW (i, j) be the projection of
v onto the range image of the model set W . The 3D point w ∈ W
associated to rW (i, j) is the tentative corresponding point of v. The
connectivity information given by the range image is used to search
in the neighborhood Nw of w defined as:

Nw = {w′ ∈W | w′ = B(rW (i+ k, j +h)) ;
h, � = −d, . . .d}

where d is the dimension of a window centered on rW (i, j) and B(·)
is the operator that re-projects a range point onto the Euclidean 3D
space. The closest point to v in Nw is taken as the corresponding
point of v.

It is worth noting that the range image is not defined everywhere,
because after the initial filtering step points have been discarded.
If the projection of v falls onto an empty area, this point remains
without correspondence.

The projection of a 3D point (x,y,z) onto the range image is speci-
fied by the following equation:

i =
α − IOFF

sα
; j =

β − JOFF

sβ
(2)

where
α = arctan

y
z
; β = arctan

x
z

(3)

and sα , sβ , IOFF and JOFF are sensor’s parameter that determine its
field of view and resolution (see Section 3).

The cost of the projection (i.e., computing i and j) is largely due to
the computation of the arctan. In order to avoid it, we store in a table
the values of tanαi and tanβ j , where αi and β j are the angles on the
model image (i.e., according to the spherical scanning principle),

which we know a priori. When a 3D point (x,y,z) from data set is
processed, the values x

z and y
z are compared with the values stored

in the table.

We verified that the alignment based on the reverse projection could
fail when the two views are not close enough. To cope with this
problem and to increase the robustness of the registration, we run
few iteration of the classical ICP algorithm (without reverse pro-
jection), which allow to obtain a good pre-alignment from which
the reverse-calibration alignment converge fast and correctly to the
optimal solution.

6 Geometric Fusion

The meshes built on single frames, when represented in the same
coordinate system, after registration, would freely overlap and in-
tersect. Jumps, cracks and redundant surfaces would occur at over-
laps. Thus, the simple collection of such meshes is not sufficient to
give a final mosaic of the sensed objects. Meshes must undergo a
process of geometric fusion which produces a single mesh starting
at the various registered meshes.

Since our mosaic is built on-line, at a given instant of time a mesh
M is given, which represents the mosaic obtained from all previous
frames, and a new mesh SFM comes, which is built from the current
frame, as explained in Section 4. Our aim is to merge such meshes
in a consistent way, in order to obtain a new mesh M’ which rep-
resents the scene spanned by both M and SFM. This must be a fast
process, since real time visualization of the mosaic should be sup-
ported at each frame. In particular, the workload at each frame
should be proportional to the size of mesh SFM, which is bounded
from above by the fixed size of input images.

Our method is a modification of the Marching Intersection Algo-
rithm (MIA) [Rocchini et al. 2001], which offers a valid trade-off
between speed and accuracy, and takes into account the reliability
of input data. The original MIA is based on a volumetric approach
that locates the geometric intersections between the meshes built on
single frames and a virtual 3D reference grid. Intersections are first
merged and the output grid is found by joining together intersection
points that lie close to each other along an edge of the grid.

In order to make it applicable to an on-line setting, we have mod-
ified the MIA to deal with a pre-computed mesh M which fits the
reference grid (i.e., it has its vertices on grid edges, and each face
is completely contained in a grid cell), and a new mesh SFM which
intersects the grid properly. Basically, the mosaicing algorithm can
be divided into three main phases:

1. Rasterization and Intersection management

2. Fusion, with cleaning and removal operations

3. Mesh generation

6.1 Input

At each iteration, our method takes as input: a single frame mesh
SFM; and a registration matrix RM in homogeneous coordinates,
which describes current position and orientation of mesh SFM in
a global coordinate system. Moreover, the algorithm makes use
of two global parameters: a resolution value GR used to define a
virtual grid G of cubic cells that discretize 3D space; and a fusion
threshold value FT, representing the minimum distance along a grid
edge between two vertices generated by different frames. The Fu-
sion threshold is usually smaller than grid resolution.

�����

Figure 2: A portion of mesh and the rasterization lines intersecting
it.

6.2 Data structures

The current mosaic M is initialized by the first frame and it is kept
as an internal status of the algorithm. We actually do not store the
mesh directly. We rather store the collection of all and only those
cells of grid G that intersect M and, for each cell, the configuration
of intersections of its edges with M. Such cells are maintained in a
map and each cell can be addressed via the coordinates of its center.

We also store three (virtually infinite) 2D arrays, called the rasteri-
zation planes, which correspond to discretizations at resolution GR
of the coordinate planes XY , XZ and YZ. Each entry in each array
corresponds to a straight line orthogonal to the plane represented
by the array, called a rasterization line (see Figure 2). This entry
actually contains a pointer to a list of intersections between meshes
M and SFM and the rasterization line, which are computed during
the rasterization phase, and modified during the fusion phase. Each
rasterization plane is stored as an associative collection (hash table)
of doubly-linked lists, keeping only real intersections.

6.3 Rasterization and Intersection Management

Every face fq of mesh SFM is projected independently on the three
rasterization planes XY , XZ and YZ. Each projection is rasterized
at resolution GR so that each point obtained from rasterization will
correspond to an intersection between fq and one of the rasteri-
zation lines, as described before. Thus a simple scan of the raster
points is sufficient to update the content of intersection lists attached
to the rasterization planes (see Figure 3).

Each intersection is characterized by the intersection value ic (i.e.,
its coordinate along the rasterization line) and a weight w which
measures the reliability of the datum and is used in the fusion phase.
This weight is computed by linearly interpolating the intensity val-
ues of the vertices that describe the current face. If d0, d1, d2 are
the distances of the intersection point from the vertices, and I0, I1,
I2 are their intensities, then the weight w is defined as follows:

w= (I0·d1·d2+I1·d2·d0+I2·d1·d0)
(d1·d2+d2·d0+d1·d0)

(4)

Intersections on a given rasterization line are inserted into the cor-
responding list, sorted with respect to their values ic (see Figure
4). Note that each list of intersections is composed of just a few ele-
ments, usually one or two intersections with M and one intersection
with SFM.

Figure 3: Computation of an intersection point between a triangle
(green) and a rasterization line (dotted black). The red triangle is
the projection of the green triangle on the rasterization plane (YZ).
Each raster point along the blue raster line corresponds to an inter-
section point. The third coordinate (x in this case) is obtained by
linear interpolation.

Figure 4: Each intersection point is inserted into the list correspond-
ing to its rasterization line.

6.4 Fusion

Fusion can be viewed as a warping process that acts on meshes M
and SFM by moving their vertices along edges of the reference grid
in order to align them in regions of overlap (see Figure 5).

In order to avoid processing all existing intersection lists, we keep
track of all and only lists that were updated with intersections on
SFM during the rasterization phase. Only such lists are scanned to
perform fusion. For every intersection list, each pair of consecutive
intersections i1 and i2 is considered for fusion. Intersections i1 and
i2 are merged if and only if: (i) one of them belongs to M and the
other belongs to SFM; (ii) the surface normals at both intersections
(which are computed during rasterization) have concordant signs;
and (iii) the distance between i1 and i2 is shorter than the fusion
threshold FT. Fusion is computed as a weighted average that takes
into account the reliability of the measurements wi1 ,wi2 .

Figure 6 shows an example of two overlapping surfaces, and their
points of intersection with the grid, which are candidate for fusion.
Note that, unlikely the case of MIA, in our case only pairs of inter-

�����

Figure 5: Effect of fusion on two overlapping surfaces (example is
2D for simplicity).

Figure 6: Two overlapping surfaces (example is 2D for simplicity).
Pairs of intersection points marked with surface normals will be
merged.

sections (one from M and one from SFM) will need to be merged.
This suggests how the on-line approach is able to distribute the
workload through time, performing a small number of operations
as a new frame comes.

The fusion operation corresponds to merge two concordant surfaces
which cross the same virtual cell edge. If the two intersections i1,
i2 lie on different virtual cells, then the fusion operator performs a
shift of the intersections toward the new average location. When-
ever we move an intersection from a virtual cell to another, addi-
tional intersections must be created or some existing intersections
must be removed. For details on these latter operations see the orig-
inal MIA [Rocchini et al. 2001].

6.5 Mesh generation

The mesh generation phase uses a modified versions of the popular
Marching Cubes (MC) algorithm [Lorensen and Cline 1987]. The
basic idea is that the reconstruction of a 3D surface is completely
defined if all the intersections of the surface with the lines of a reg-
ular grid are known. Faces of the output mesh can be computed
independently on each cell of grid G that contains intersections on
its edges, via a MC lookup table. We call such cells the active cells,
and store them in a map, as described previously.

Each time, during fusion, we either find a new intersection with
SFM, or we shift an existing intersection with M because it is fused
with another intersection with SFM, we update the existing pool of
active cells of grid G accordingly. A cell may change its status for
three reasons:

(a) it contains a new intersection;

(b) an existing intersection along one of its edges is moved to a
different location along the same edge;

(c) it lost one intersection (which was shifted to a adjacent cell
because of fusion).

We keep track of cells that changed their status and we generate
only the portion of M corresponding to those cells. Note that the
rest of M was generated during previous cycles (when processing
previous frames) and remains unchanged.

7 Visualization

Our data processing pipeline must work in a distribuited system,
where the computer performing visualization (called the viewer) is
different from that performing data processing. Therefore, meshes
must go through the bottleneck of a network with limited bandwidth
before being delivered to the viewer. In this situation, it would not
be practical to resend the whole mosaic at each frame. Therefore,
we segment our mesh M into different portions and transmit such
portions in batches ba following a lazy update approach.

All cells of type (a) found when processing a new frame contribute
to form a new portion of mesh, that will correspond to a display
list at the viewer. Note that cells of type (a) are not sufficient to
update the graphics at a given frame. In fact, also portions of mesh
containing existing active cells of type either (b) or (c) should be
updated. On the other hand, many lists at the viewer could be pos-
sibly updated only because of few changes for each of them.

In order to avoid uncontrolled overload of the transmission chan-
nel, we update lists only when changes are beyond a given update
threshold UT. Active cells of type (b) and (c) are updated in the lo-
cal geometric structure, and each update increases a request value
for its related display list. The list is regenerated and transmitted
only when the request value exceeds the update threshold.

So, display lists received by the viewer at a given time can be of
two kinds:

• New mesh: a mesh that was generated in the current frame,
from cells of type (a). In this case, this list must be added to
those held by viewer.

• Modified mesh: a mesh that was generated in a previous
frame and modified in the current frame, for more than UT
cells with respect to that stored at the viewer. In this case, this
list must substitute that having the same name in the collection
held by the viewer.

�����

(a) (b)

Figure 7: In (a) three range images before the registration procedure
is applied. In (b) the result of registration.

Figure 8: Input data from the whole system after registration.

This mechanism proved to be sufficient to support real time visu-
alization in a distribuited environment, without showing relevant
artifacts because of updates deferred from the lazy update mecha-
nism.

8 Experiments

In this section some experiments are presented. We tested the regis-
tration algorithm on a sequence of real images in which the scene is
composed of an underwater wall and some pillars. The aperture of
the sensor was about 90× 90 degrees. The sequence is composed
by 30 frames and each frame has been registered with respect to the
previous one. Figure 7 shows the registration of three images, while
Figure 7.a shows the images before the registration and Figure 7.b
shows their alignment by allowing the enlargement of the field of
view.

Figure 8 shows the points from all the range images represented in
the same reference system after registration. The transformations
that bring each view on to the mosaic are computed just combining
the sequential pairwise matrices. Figure 9 show shows the perfor-
mance of the registration in terms of accuracy and speed of each
frames pair. The mean values of accuracy is 13.58 cm; the mean
value of time necessary for registering a pair of images is 0.1069
sec. Therefore, speed of registration supports more than 9 frames
per second and it is sufficient to observe a rough mosaic of the scene
in real time by rendering just the points. The accuracy of registra-
tion is reasonable since it is little higher than the image resolution.

For what concern the integration with the geometric fusion phase,
we presented some initial experimental results. They have been ob-
tained by elaborating the same sequence of the experiments above.
Figure 10 shows the final result of mosaicing the 30 frames. Tim-
ings have been computed by software profiling, on a P4 1.5GHz,

(a)

(b)

Figure 9: Evaluation of the pairwise registration: accuracy (a) and
speed (b). Each value i refers to the registration between frame i
and i− 1. The accuracy is given by the residual of the last ICP
iteration

with 392Mb Ram, on 10 experiments. We chose 5 different ras-
terization steps, from a coarse (step = 50) to a fine (step = 15)
spatial resolution.

Note that spatial resolution depends on the input data range, which
is not normalized, and can vary from case to case. Therefore, the
value of step = 20 means a very fine sampling of the meshes in
the current sequence. As we can see, the rasterization step affects
the total number of the cells which will compose the mosaic, and
for this reason, every successive computation phases.

Looking at the results, we can remark that the fusion phase of the
mosaicing pipeline does not represent a bottleneck for the entire
procedure, while rasterization does. We should also stress that ras-
terization is strongly affected by the size of the original mesh, while
the other phases (particulary meshing) depend on the chosen raster-
ization step.

Raster Mosaic Rasterization Fusion Cell Update Meshing
Step(int) Cells (msec.) (msec.) (msec.) (msec.) (msec.)

15 23414 209 228 981 1000
20 11838 125 135 554 561
30 4384 63 67 250 251
40 2224 43 45 163 163
50 1233 32 33 99 99

Table 1: 7 rasterization steps, from a coarse (step = 50) to a fine
(step= 15) spatial resolution and relative timing form the recon-
struction procedures

�����

Figure 10: On-line mosaic from 30 frames. Total number of faces is about 100.000

�����

9 Conclusions

This paper presented a technique for on-line 3D scene reconstruc-
tion from a sequence of range data acquired by an acoustic camera.
The final goal was to provide a 3D scene model to the human oper-
ator of an underwater remotely operated vehicle (ROV), in order to
facilitate navigation and understanding of the surrounding environ-
ment.

As we said in Section 1, registration and geometric fusion are the
critical phases for the on-line version of our pipeline. In the regis-
tration phase, we modified the ICP algorithm reducing the number
of points to be registered by subsampling. Moreover, we reduced
the number of iterations and the time spent in each iteration by im-
plementing a corresponding point search procedure inspired to the
reverse calibration [Blais and Levine 1995]. For the geometric fu-
sion phase, we developed an on-line reconstruction method on the
basis of the Marching Intersection Algorithm (MIA) proposed in
[Rocchini et al. 2001]. At each new frame, only the grid cells in-
tersecting it need to be analyzed, so that the computational load is
dependent on the size of the new image, but independent on the size
of the whole mosaic.

In order to prevent overload of the graphics engine, we also de-
veloped a lazy update strategy for display lists, which updates the
graphical structures in batches and avoids delivering large meshes
all togther and too frequently.

Our processing pipeline already meets the rate at which images are
captured by the acoustic sensor, thus supporting interactive use.
We are currenting integrating a motion tracking technique based
on Kalman filter, which exploits feedback from motion sensors on
board the ROV in order to improve and speed up registration. We
are also optimizing the code of the fusion phase. We are confident
that with such improvments, our system will became more accurate
and at least twice as fast.

Acknowledgments

This work was partially supported by the European Commission
under the project no. GRD1-2000-25409 ARROV (Augmented Re-
ality for Remotely Operated Vehicles based on 3D acoustical and
optical sensors for underwater inspection and survey) and by the
Italian Space Agency (ASI) under project AUREA (AUgmented
REAlity for the teleoperation of free-flying robots”). The imple-
mentation of the ICP is partially due to Linmi Tao.

References

BESL, P., AND MCKAY, N. 1992. A method for registration of 3-
D shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence 14, 2 (February), 239–256.

BESL, P. J. 1988. Active, optical imaging sensors. Machine Vision
and Applications, 127–152.

BLAIS, G., AND LEVINE, M. D. 1995. Registering multiview
range data to create 3-D computer objects. IEEE Transactions
on Pattern Analysis and Machine Intelligence 17, 8, 820–824.

CASTELLANI, U., FUSIELLO, AND MURINO, V. 2002. Registra-
tion of multiple acoustic range views for underwater scene re-
construction. Computer Vision and Image Understanding 87, 3
(July), 78–89.

CHEN, Y., AND MEDIONI, G. 1992. Object modeling by registra-
tion of multiple range images. Image and Vision Computing 10,
3, 145–155.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for
building complex models from range images. Computer Graph-
ics 30, Annual Conference Series, 303–312.

HANSEN, R. K., AND ANDERSEN, P. A. 1996. A 3-D underwa-
ter acoustic camera - properties and applications. In Acoustical
Imaging, P.Tortoli and L.Masotti, Eds. Plenum Press, 607–611.

LORENSEN, W., AND CLINE, H. 1987. Marching cube: A high
resolution 3d surface construction algorithm. Computer Graph-
ics 21, 4, 163–170.

MASUDA, T., AND YOKOYA, N. 1995. A robust method for reg-
istration and segmentation of multiple range images. Computer
Vision and Image Understanding 61, 3 (May), 295–307.

MURINO, V., AND TRUCCO, A. 2000. Three-dimensional image
generation and processing in underwater acoustic vision. Pro-
ceeding of the IEEE 88, 12 (December), 1903–1946.

MURINO, V., TRUCCO, A., AND REGAZZONI, C. 1998. A prob-
abilistic approach to the coupled reconstruction and restoration
of underwater acoustic images. IEEE Transactions on Pattern
Analysis and Machine Intelligence 20, 1 (January), 9–22.

ROCCHINI, C., CIGNONI, P., GANOVELLI, F., MONTANI, C.,
PINGI, P., AND SCOPIGNO, R. 2001. Marching Intersections:
an efficient resampling algorithm for surface management. In
Int. Conf. on Shape Modeling and Applications, IEEE Comp.
Society, Genova, Italy, 296–305.

S. RUSINKIEWICZ, M. L. 2001. Efficient variants of the icp algo-
rithm. In IEEE Int. Conf. on 3-D Imaging and Modeling, 3DIM
’01.

TRUCCO, E., FUSIELLO, A., AND ROBERTO, V. 1999. Robust
motion and correspondence of noisy 3-D point sets with missing
data. Pattern Recognition Letters 20, 9 (September), 889–898.

TURK, G., AND LEVOY, M. 1994. Zippered polygon meshes
from range images. In Proceedings of SIGGRAPH ’94 (Orlando,
Florida, July 24–29, 1994), ACM Press, A. Glassner, Ed., Com-
puter Graphics Proceedings, Annual Conference Series, ACM
SIGGRAPH, 311–318. ISBN 0-89791-667-0.

URIK, R. J. 1983. Principles of Underwater Sound. McGraw-Hill.

ZHANG, Z. 1994. Iterative point matching of free-form curves
and surfaces. International Journal of Computer Vision 13, 2,
119–152.

�����

