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Abstract  This paper proposes a method for the integration of acoustic and optical
data to enhance the perception of an underwater environment in teleop-
eration tasks. Off-shore applications are addressed, in which an under-
water remotely operated vehicle is approaching an oil rig for inspection,
maintenance and repairing tasks. A technique is presented which takes
advantage of optical features to segment an acoustic three-dimensional
image. Cylindrical surfaces are than extracted from 3-D points, and
whole cylinders are reconstructed. The final step is to present useful
information to the human operator, by displaying the superposition of
measured acoustic data and geometric primitives fitted to parts of it, i.e.
an augmented reality view. Experimental results are reported showing
the effectiveness of the proposed approach.

1. INTRODUCTION

This paper is devoted to the construction of an augmented reality
view that can help a human operator of an underwater remotely oper-
ated vehicle (ROV) to better perceive and understand the surrounding
environment. Two sensing channels are available, optical and acoustic.
The former gives an image easier to read by a human, but visibility
is very limited due to low illumination and clutter presence. On the
other hand, acoustic data are not affected by illumination problems and
provide inherently 3-D information, but are more complicated to under-
stand for a human operator. From these considerations it arises the need
to integrate, whenever possible, the two channels in order to exploit the
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Figure 1.1 Rendering of the VRML model of the oil rig with the ROV.

best of both, so as to compensate their lacks. Moreover, presenting a
synthetic model of the scene superimposed on data, i.e., generating an
augmented reality image, is much more useful and readable for a human
operator.

The applicative scenario consists in an ROV approaching an oil rig
made up of connected pipes (see Fig. 1.1). The ROV is equipped with
an optical and an acoustic camera. The optical camera provides classi-
cal gray-levels images and the acoustic one provides (acoustic) intensity
images associated with a set of 3-D points [17].

A virtual reality view is obtained by displaying the superposition of
measured 3-D points and of a synthetic model automatically constructed
from data. The key issue for automatic modeling is the segmentation
of the range data into subsets of points corresponding to the desired
primitives, cylinders in our case. Due to the noisy and low-density nature
of the acoustic range data, segmentation using differential geometry or
step-edges is infeasible. Therefore we propose to integrate acoustic and
optical images, and to use optical edges to segment the acoustic data.

First we extract pipes boundaries in the optical image. Then, assum-
ing that the mutual position of the two cameras is known, acoustic (3-D)
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data points are projected onto to the image plane. The points falling
inside pipes boundaries are segmented. Pipe direction and radius are
then estimated and a synthetic model is generated by fitting cylinders.

Fusion and integration of different kinds of data is actually a matter of
active research. When available information is of different nature, prob-
abilistic, heuristic, or fuzzy methods are typically used [15, 3]. In case of
visual data, a straightforward approach consists in recovering symbolic
information separately from the several types of data, and then perform
data fusion at the highest (symbolic) level. Classical symbolic Artificial
Intelligence technique [1] are applied in this case. In our case, due to
the similarity of the data at hand (they are both images), we would
like to integrate them at a lower processing level, possibly to improve or
facilitate the recognition procedure on either sensorial channel.

Some works are present in literature about data fusion and integra-
tion of the different sensors functionalities. Among these ones, some
interesting papers can be considered concerning the fusion of intensity
and range data, mainly derived by a laser range finder [10, 23, 22].

In [10], a Markov Random Field (MRF') model is proposed for the fu-
sion of registered range and intensity images aimed at image segmenta-
tion. An extended weak membrane model is utilized as prior knowledge
devoted to enforce the line process, so improving edge detection. The
fusion occurred by means of a coupled term in the energy function that
penalized different edge configurations in the two kinds of images. A
similar method for the fusion of range and intensity images was followed
in [23] by integrating in a single framework edge detection, semantic
labeling and surface reconstruction. Initial edge labeling and classifica-
tion is based on a physical analysis of the local behavior of intensity and
range data. Then, an MRF model is used to relax the edge configuration
while performing concurrently the reconstruction of the surfaces. In [22],
an intensity-guided range sensing technique is presented.

Concerning specifically on 3-D scene modeling, there are several work
on robotic applications mainly devoted to decontamination and decom-
missioning tasks in hazardous environments [16]. The closest to our
work are [9, 12, 13]. In [9], segmentation of range data in pipes and torii
is proposed by using a procedure estimating local centers of curvature.
Locally fitting a bi-quadratic function the locus of centers of curvature
is estimated using a robust least squares method. Then, these centers of
curvatures are used to discriminate between straight and curved cylin-
ders, so allowing the accurate reconstruction of these parts for CAD
modeling. A-priori information is utilized to set some algorithms’ pa-
rameters in order to increase the precision of the segmentation. In [12],
quadric surface parameters (representing cylinders) are used to estimate
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radius, axis and position, so that the resulting cylinders are displayed
to an operator, without performing an actual recognition phase. Gener-
alized cylinders are fitted to range data in [13]. The extraction of axis
points is done by computing midpoints between two contour points, then
the axis curve is represented as a third degree polynomial

In our work the acoustic range data and the optical intensity image are
used in a cooperative way to extract useful (topological and geometrical)
information allowing the construction of a virtual environment. Our
goal is to automatically model significant objects present in a cluttered
scene and facilitate human interpretation by displaying such objects in
an augmented reality view. In another work [6] we deal with the similar
problem of fitting (a portion of) a known model of the rig to the sensed
data.

The rest of the paper is organized as follows. Section 2 describes the
processing of intensity and range data and their integration, in order
to obtain a segmentation of range data. In Section 3 the extraction of
cylinders from range data is outlined and in Section 4 the augmented
reality view is obtained. Finally, Section 5 shows some results of the
method applied on real data and, in Section 6, conclusions are drawn.

2. SEGMENTATION

The first processing step consist in filtering and segmenting both
acoustic and optical data.

2.1 ACOUSTIC DATA PROCESSING

Three-dimensional data are obtained by a high resolution acoustic
camera, the Echoscope [11]. The scene is insonified by a high-frequency
acoustic pulse and a two-dimensional array of transducer gathers the
backscattered signals. The whole set of raw signals is then processed
in order to enhance those coming from fixed steering directions (called
beamsignals) and to attenuate those coming from other directions. The
distance of a 3-D point can be measured by detecting the time instant
at which the maximum peak occurs in the beamsignal (see Fig 1.2. A
range image is formed by 64 x 64 points ordered according to an angular
relation, as adjacent points correspond to adjacent beamsignals. More-
over, the intensity of the maximum peak can be used to generate another
image, representing the reliability of the associated 3-D measures: the
higher the intensity, the safer the associated measure.

The acoustic image is affected by false reflections, caused by secondary
lobes, and by acquisition noise, which is modeled as speckle noise. The
intensity image turns out to provide very useful information to discrim-
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Figure 1.2 Acoustic camera.

inate between “good data” and noise. A dramatic improvement of the
image quality is obtained by discarding points whose associated inten-
sity is lower than a threshold. Then, the connected components are
extracted by a percolation technique: a sphere of radius R is drawn
around each point, and two points are considered to be connected if
their spheres intersect. Finally, a size filter eliminates the small blobs
caused by noise and clutters. The radius R, the threshold on the inten-
sity, and the threshold on the blob size are chosen basing on a prior:
knowledge of the spatial resolution and directivity characteristics of the
sensor [8].

2.2 OPTICAL DATA PROCESSING

The image, obtained by a conventional optical camera is first filtered
with an edge preserving anisotropic smoothing [18], that is a smoothing
operator whose strength depends on the local gray-level gradient.

Straight lines are extracted by combining Canny’s edge detector [5]
and Burn’s Plane Fit Algorithm [4]. First edge points are extracted with
the Canny edge detector, that allows to find very sharp edges (often
one pixel large) thanks to the non-maxima suppression. Then, pixels
are clustered in support regions if they are spatially adjacent and if
their gradient orientation is roughly the same. The line parameters are
computed with intersections of the weighted fit plane to the intensity
values and the horizontal average pixel intensity plane, within a support
region. The weight favors intensity values of pixels with high gradient



Figure 1.3 Synthetic optical (left) and acoustic (right) images of a joint.

magnitude. Taking mainly the gradient orientation as evidence for a line
and using the plane fit method, the algorithm extracts long, straight lines
as well as shorter lines and is effective in finding low-contrast lines.
Each extracted segment is then labeled, and its attributes (midpoint,
length, etc ...) are computed. In order to find pipes in the image, pairs of
segments are grouped together, which are possibly the projection of the
boundaries of a pipe. Grouping is based on proximity and parallelism
criteria: two segments are paired if the distance between their midpoints
is less than a threshold (that is related to the expected distance of pipes
boundaries in the image), and if their angle is in the range 180 £ 30 deg.
Finally, the convex hulls of all the paired segments are computed.

2.3 INTEGRATION

Optical and acoustic data are integrated by projecting 3-D points
obtained by the acoustic camera onto the image plane of the optical
camera. Points falling inside a convex hull are deemed to belong to a
candidate pipe. Points that lie outside every convex hull are discarded.
In such a way a segmentation of the acoustic image is obtained.

In order to project 3-D points onto the image plane, the relative pose
(i.e., position and orientation) of optical and acoustic cameras is needed.
This information is obtained off-line, once and for all, by means of a
semi-automatic calibration procedure. Both acoustic and optical data
are registered to the same known model of a given object in the scene,
thereby obtaining the relative pose of optical and acoustic cameras.
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Figure 1.4 Projection of the acoustic points onto the image plane, where the optical
edges are also depicted (left). Segmented points after computing the convex hulls
(right).

In our approach, we used the oil rig itself as a calibration object. It
must be stressed that this is the only point in this work where we use the
CAD model of the oil rig. In the rest of the paper, describing the on-line
functioning, only generic assumptions will be made (namely, knowing
that the rig consists of pipes). The procedure can be summarized as
follows (for more details refer to [7]):

m calibrate camera intrinsic parameters, using Roberts’ algorithm
[19] and a suitable calibration rig;

m register 3-D data points to the model by using the Tterative Closest
Point algorithm [2], thereby obtaining the pose of the acoustic
camera;

= match image segments and model segments in the image, using an
algorithm due to Scott and Longuett-Higgins [21];

m register optical segments to the model, using Lowe’s algorithm [14]
to find the pose of the camera.

Figure 1.4 shows an example of segmentation of synthetic data.

3. CYLINDERS EXTRACTION

Regions segmented in the optical plane are now back-projected into
the original 3-D frame where the we look for cylindrical surfaces. The
subsequent phase consists in estimating the axis and the radius of the
pipes in order to reconstruct a synthetic representation of the objects.
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3.1 FINDING CYLINDRICAL REGIONS

Pipe-like regions are detected by analyzing their inertial tensor (this
criterion is related to the so called principal component analysis as dis-
cussed in [8]). The inertial tensor I of a set of 3-D points {x;} of unit
mass is defined as:

J=> (x; —0)M(x; —0)
i
where o is the center of mass of the distribution and the symbol M
denotes the following operator:

(ayby + a.b.) —agby —agb,
alb= —ayby (ayby + azb,) —ayb,
—a,by —ab, (agby + ayby)

We denote with {)\;} i = 1,2,3 the eigenvalues of .J ordered by magni-
tude and with e; the respective eigenvectors. For a cylindrical distribu-
tion of points, it can be shown that the eigenvector e; points in the axis
direction and the following relations holds for the eigenvalues:

/\1 < /\2, )\2 ~ )\3.

Therefore, if one eigenvalue is much smaller with respect to the others,
the region is classified as a cylinder, otherwise it is discarded. This
algorithm needs a threshold to decide to what extent A\; has to be smaller
with respect to the other two eigenvalues. If this threshold is too small,
elongated regions can be misclassified as cylinders. On the other hand,
if it is too high, some pipes could be lost.

3.2 FITTING CYLINDERS

In order to fit a cylinder to the cylindrical regions extracted in the
previous step we need to find the axis and the radius. Axis direction
is given by eq/||e1||, axis length is obtained by projecting the points
belonging to the cylinder onto a plane parallel to the axis and computing
the height of the bounding box of the points.

In order to find the radius of the pipe, we project the points belonging
to the cylinder onto a plane perpendicular to its axis. 3-D points are not
distributed on a cylindrical surface, but only on a portion of it, as only
the sector of the pipe facing the camera backscatters the sonar signal.
Hence, their projections lie approximately on a circular sector. The
center of the circle fixes the position of the cylinder and the radius gives
the radius of the cylinder. The problem of fitting a circle to the points
is a classical parametric regression problem, that we solved using the
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robust Least Median of Squares (LMedS) technique [20]. The principle
behind LMedS is the following:

1. given a regression problem, in which d is the minimum number of
points determining a solution (three, in our case)

2. compute a candidate model based on a randomly chosen d-tuple
from the data;

3. estimate the fit of this model to all the data, measured by the
median of the squared residuals;

4. if the current fit is better than the previous one update the model;
5. repeat from step 2.

The optimal model represents the majority of data. Data points that
do not fit into this model are outliers. The breakdown point, i.e., the
smallest fraction of outliers that can yield arbitrary estimate values, is
50%. Although, in principle, all the d-tuples should be evaluated, in
practice a Monte Carlo technique is applied, in which only a random
sample of size m is considered. Assuming that the whole set of points
may contain up to a fraction € = 0.5 of outliers, and requiring that the
probability of missing the optimal solution be P = 0.1, the sample size
m is [24]:
o log(P)
log(1— (1—)%)

=17. (1.1)

Although LMedS is usually a computationally intensive method it is
practicable in our case, due to the low dimensionality of the problem.
Moreover, the following observation helps in reducing the number of
evaluations. When the three points of the sample are very close to each
other the estimation of the circle from such points is instable, and it is
a waste of time to evaluate such a sample. In order to achieve better
efficiency we used a bucketing technique, analogous to the one developed
in [24], which works as follows. The rectangle containing the n points is
partitioned in three regions (buckets) along the major dimension, each
of them containing n/3 points. Each triple to be fitted with a circle is
built by taking one random point from each bucket. This technique does
not change the probability of a point to be selected, since each bucket
has the same number of points.

An example of robust circle fitting is shown in Figure 1.5, where some
of the circles that have been fitted in the LMedS process are depicted,
and the selected one is drawn in bold line.
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Figure 1.5 Some fitted circles and, in bold, the LMedS one.

3.3 FINDING INTERSECTIONS

In general, the axis of pipes belonging to a joint will not intersect ex-
actly in one point or may not intersect at all. To extract an approximate
intersection we use the following simple algorithm: for every axes pair
i, we compute the midpoint m; of the unique segment that connect the
two lines defined by the axes and that is perpendicular to both of them.

If the number of axes is n, the number of possible pairs is n(n —1)/2.
We define the centre of the joint as the center of mass of these midpoints,
ie.

n(n—1)/2

> m,
= (1.2)
n(n—1)/2

Since we consider the line containing the axis, we retain only inter-
sections that are close enough too the axis endpoints.

This method works straightforward if there is only one joint in the
scene; if this is not the case it is necessary to preliminary subdivide the
set of extracted pipes in subsets containing pipes that belong to the same
joint. To do this, it is sufficient to group pipes whose distance, defined
as the distance between the lines passing through the axis, is below a
threshold that depends on the radius of the pipes. This can be done by
building the incidence graph G of the pipes, i.e. a graph whose nodes are
the pipes and in which two nodes are connected if the distance between
the corresponding pipes is below the given threshold. A joint correspond
to a maximal complete subgraph of G i.e, a complete subgraph that is
not contained in any larger complete subgraph. Two distinct joint can
have no more than one node in common, corresponding to the pipe that
connect them. The algorithm can be summarized as follows:
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Figure 1.6 Cylinders axes as extracted from data (left) and after computing the
intersection (right).

1. start with the graph G of order n (the total number of pipes) and
with an empty list of joints;

2. while n > 1 repeat the following steps:

3. search for a complete subgraph of G of order n that is not contained
in a subgraph of the list of joints.

4. if the latter exists, add it to the list of joints. Otherwise decrement n.

A complete subgraph of order three may not represent a real joint, but
a triangle formed by three pipes (See Figure 1.7). This a degenerate case
which is easily handled. It is sufficient to calculate the three midpoints
m; defined above for the three pairs of pipes and discard those for which
the distance is greater than a threshold.

[
1 1 3

Figure 1.7 Example of a degenerate case. The rig depicted on the left has a proper
joint and a false one, as its graph (right) has two complete subgraph of order three.
The proper joint (2,3,4) shares two pipes with the false one (1,2,3).
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For each of the remaining joints its center is computed using For-
mula 1.2.

4. AUGMENTED REALITY

Figure 1.8 Augmented reality: virtual reconstruction of the joint with 3-D points
superimposed, from two different viewpoints.

Once pipe axes have been estimated together with their radius and
their reciprocal intersection, it is possible to build a VRML (Virtual Re-
ality Modeling Language) representation of the scene observed. Owing
to the registration of optical and acoustic data to the model, the syn-
thetic representation can be superimposed on actual data, to support
the ROV operator.

5. EXPERIMENTAL RESULTS

We performed experiments with real and synthetic images. Figures
1.3,1.4,1.6,1.8, show an example of our technique applied to a synthetic
case. Due to the nature of the data, this case is not particularly inter-
esting. In this section we describe results obtained in a real case.

Figure 1.10 shows a real image of a joint between four pipes, and
the segments extracted from the image as described previously. Note
that, due to the low quality of the image, only some segments have been
detected.

Figure 1.9 shows the corresponding 3-D data, as returned by the Echo-
scope and the the result of pre-processing.

Using the algorithm illustrated in Section 3., cylinders are fitted to
3-D data. As one might expect, the axis direction is estimated with
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Figure 1.9 Acoustic 3-D data. Raw, from the Echoscope (top) and processed (bot-
tom). Please note that the scale is different in the two images.



Figure 1.10 Real image (from the underwater camera) of a joint (left) and the pro-
cessed image with extracted segments (right) .

far better accuracy than the radius. Indeed, we obtain, on the average,
a relative error of 1% on the axis direction and of 20% on the radius.
Figure 1.11 shows the projection onto the image plane of the 3-D points
together with the boundaries of the extracted cylinders.

Finally, the reconstructed joint along with the original 3-D data are
shown in Figure 1.12. Note that some pipes are missing in this joint,
namely, the ones corresponding to the missing segments in the image.
We are not assuming here that a high level description of the imaged
portion of the rig is available. The number, position and radius of the
cylinders are obtained from the data only.

Figure 1.11 3-D points and pipes boundaries in the image plane.
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6. SUMMARY

In this paper, the integration of optical and 3-D acoustic data for
virtual scene reconstruction is addressed.

This work, carried out within the VENICE project (http://www.disi.
unige.it/project/venice/), is aimed at presenting an integrated and in-
formative view of the working environment to an underwater ROV op-
erator. The ROV is equipped with an acoustic camera and an optical
camera, and its task is the inspection, maintenance and repairing of an
oil rig. The only a-priori information that we exploit is that the rig con-
sists of connected pipes. No high level (CAD) description of the portion
of the rig in the view frustum is available.

Our method can be summarized as follows:

1. extract pipe boundaries in the optical image;
2. project 3-D acoustic points onto the optical image plane;

3. segment points using pipes boundaries in the image and back-
project them into the 3-D frame;

4. build a virtual reconstruction by fitting cylinders to the segmented
data.

This is one of the few attempt to integrate different sensor modalities
and actually fuse data having different nature and physical characteris-
tics.

Presently, there is only a one-way influence of optical features on the
analysis of 3-D acoustic data. We plan to investigate other schemes
incorporating backtracking and mutual influence.
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