
AUGMENTEDREALITY BY INTEGRATINGMULTIPLE SENSORY MODALITIES FORUNDERWATER SCENE UNDERSTANDINGVittorio Murino and Andrea FusielloDipartimento Sienti�o e Tenologio, University of VeronaCa' Vignal 2, Strada Le Grazie, 37134 Verona, ItalyEmail: {murino,fusiello}�si.univr.itAbstrat This paper proposes a method for the integration of aousti and optialdata to enhane the pereption of an underwater environment in teleop-eration tasks. O�-shore appliations are addressed, in whih an under-water remotely operated vehile is approahing an oil rig for inspetion,maintenane and repairing tasks. A tehnique is presented whih takesadvantage of optial features to segment an aousti three-dimensionalimage. Cylindrial surfaes are than extrated from 3-D points, andwhole ylinders are reonstruted. The �nal step is to present usefulinformation to the human operator, by displaying the superposition ofmeasured aousti data and geometri primitives �tted to parts of it, i.e.an augmented reality view. Experimental results are reported showingthe e�etiveness of the proposed approah.1. INTRODUCTIONThis paper is devoted to the onstrution of an augmented realityview that an help a human operator of an underwater remotely oper-ated vehile (ROV) to better pereive and understand the surroundingenvironment. Two sensing hannels are available, optial and aousti.The former gives an image easier to read by a human, but visibilityis very limited due to low illumination and lutter presene. On theother hand, aousti data are not a�eted by illumination problems andprovide inherently 3-D information, but are more ompliated to under-stand for a human operator. From these onsiderations it arises the needto integrate, whenever possible, the two hannels in order to exploit the1
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Figure 1.1 Rendering of the VRML model of the oil rig with the ROV.
best of both, so as to ompensate their laks. Moreover, presenting asyntheti model of the sene superimposed on data, i.e., generating anaugmented reality image, is muh more useful and readable for a humanoperator.The appliative senario onsists in an ROV approahing an oil rigmade up of onneted pipes (see Fig. 1.1). The ROV is equipped withan optial and an aousti amera. The optial amera provides lassi-al gray-levels images and the aousti one provides (aousti) intensityimages assoiated with a set of 3-D points [17℄.A virtual reality view is obtained by displaying the superposition ofmeasured 3-D points and of a syntheti model automatially onstrutedfrom data. The key issue for automati modeling is the segmentationof the range data into subsets of points orresponding to the desiredprimitives, ylinders in our ase. Due to the noisy and low-density natureof the aousti range data, segmentation using di�erential geometry orstep-edges is infeasible. Therefore we propose to integrate aousti andoptial images, and to use optial edges to segment the aousti data.First we extrat pipes boundaries in the optial image. Then, assum-ing that the mutual position of the two ameras is known, aousti (3-D)



Augmented Reality by Integrating Multiple Sensory Modalities 3data points are projeted onto to the image plane. The points fallinginside pipes boundaries are segmented. Pipe diretion and radius arethen estimated and a syntheti model is generated by �tting ylinders.Fusion and integration of di�erent kinds of data is atually a matter ofative researh. When available information is of di�erent nature, prob-abilisti, heuristi, or fuzzy methods are typially used [15, 3℄. In ase ofvisual data, a straightforward approah onsists in reovering symboliinformation separately from the several types of data, and then performdata fusion at the highest (symboli) level. Classial symboli Arti�ialIntelligene tehnique [1℄ are applied in this ase. In our ase, due tothe similarity of the data at hand (they are both images), we wouldlike to integrate them at a lower proessing level, possibly to improve orfailitate the reognition proedure on either sensorial hannel.Some works are present in literature about data fusion and integra-tion of the di�erent sensors funtionalities. Among these ones, someinteresting papers an be onsidered onerning the fusion of intensityand range data, mainly derived by a laser range �nder [10, 23, 22℄.In [10℄, a Markov Random Field (MRF) model is proposed for the fu-sion of registered range and intensity images aimed at image segmenta-tion. An extended weak membrane model is utilized as prior knowledgedevoted to enfore the line proess, so improving edge detetion. Thefusion ourred by means of a oupled term in the energy funtion thatpenalized di�erent edge on�gurations in the two kinds of images. Asimilar method for the fusion of range and intensity images was followedin [23℄ by integrating in a single framework edge detetion, semantilabeling and surfae reonstrution. Initial edge labeling and lassi�a-tion is based on a physial analysis of the loal behavior of intensity andrange data. Then, an MRF model is used to relax the edge on�gurationwhile performing onurrently the reonstrution of the surfaes. In [22℄,an intensity-guided range sensing tehnique is presented.Conerning spei�ally on 3-D sene modeling, there are several workon roboti appliations mainly devoted to deontamination and deom-missioning tasks in hazardous environments [16℄. The losest to ourwork are [9, 12, 13℄. In [9℄, segmentation of range data in pipes and toriiis proposed by using a proedure estimating loal enters of urvature.Loally �tting a bi-quadrati funtion the lous of enters of urvatureis estimated using a robust least squares method. Then, these enters ofurvatures are used to disriminate between straight and urved ylin-ders, so allowing the aurate reonstrution of these parts for CADmodeling. A-priori information is utilized to set some algorithms' pa-rameters in order to inrease the preision of the segmentation. In [12℄,quadri surfae parameters (representing ylinders) are used to estimate



4radius, axis and position, so that the resulting ylinders are displayedto an operator, without performing an atual reognition phase. Gener-alized ylinders are �tted to range data in [13℄. The extration of axispoints is done by omputing midpoints between two ontour points, thenthe axis urve is represented as a third degree polynomialIn our work the aousti range data and the optial intensity image areused in a ooperative way to extrat useful (topologial and geometrial)information allowing the onstrution of a virtual environment. Ourgoal is to automatially model signi�ant objets present in a lutteredsene and failitate human interpretation by displaying suh objets inan augmented reality view. In another work [6℄ we deal with the similarproblem of �tting (a portion of) a known model of the rig to the senseddata.The rest of the paper is organized as follows. Setion 2 desribes theproessing of intensity and range data and their integration, in orderto obtain a segmentation of range data. In Setion 3 the extration ofylinders from range data is outlined and in Setion 4 the augmentedreality view is obtained. Finally, Setion 5 shows some results of themethod applied on real data and, in Setion 6, onlusions are drawn.2. SEGMENTATIONThe �rst proessing step onsist in �ltering and segmenting bothaousti and optial data.2.1 ACOUSTIC DATA PROCESSINGThree-dimensional data are obtained by a high resolution aoustiamera, the Ehosope [11℄. The sene is insoni�ed by a high-frequenyaousti pulse and a two-dimensional array of transduer gathers thebaksattered signals. The whole set of raw signals is then proessedin order to enhane those oming from �xed steering diretions (alledbeamsignals) and to attenuate those oming from other diretions. Thedistane of a 3-D point an be measured by deteting the time instantat whih the maximum peak ours in the beamsignal (see Fig 1.2. Arange image is formed by 64�64 points ordered aording to an angularrelation, as adjaent points orrespond to adjaent beamsignals. More-over, the intensity of the maximum peak an be used to generate anotherimage, representing the reliability of the assoiated 3-D measures: thehigher the intensity, the safer the assoiated measure.The aousti image is a�eted by false reetions, aused by seondarylobes, and by aquisition noise, whih is modeled as spekle noise. Theintensity image turns out to provide very useful information to disrim-
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Figure 1.2 Aousti amera.inate between \good data" and noise. A dramati improvement of theimage quality is obtained by disarding points whose assoiated inten-sity is lower than a threshold. Then, the onneted omponents areextrated by a perolation tehnique: a sphere of radius R is drawnaround eah point, and two points are onsidered to be onneted iftheir spheres interset. Finally, a size �lter eliminates the small blobsaused by noise and lutters. The radius R, the threshold on the inten-sity, and the threshold on the blob size are hosen basing on a prioriknowledge of the spatial resolution and diretivity harateristis of thesensor [8℄.2.2 OPTICAL DATA PROCESSINGThe image, obtained by a onventional optial amera is �rst �lteredwith an edge preserving anisotropi smoothing [18℄, that is a smoothingoperator whose strength depends on the loal gray-level gradient.Straight lines are extrated by ombining Canny's edge detetor [5℄and Burn's Plane Fit Algorithm [4℄. First edge points are extrated withthe Canny edge detetor, that allows to �nd very sharp edges (oftenone pixel large) thanks to the non-maxima suppression. Then, pixelsare lustered in support regions if they are spatially adjaent and iftheir gradient orientation is roughly the same. The line parameters areomputed with intersetions of the weighted �t plane to the intensityvalues and the horizontal average pixel intensity plane, within a supportregion. The weight favors intensity values of pixels with high gradient
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Figure 1.3 Syntheti optial (left) and aousti (right) images of a joint.magnitude. Taking mainly the gradient orientation as evidene for a lineand using the plane �t method, the algorithm extrats long, straight linesas well as shorter lines and is e�etive in �nding low-ontrast lines.Eah extrated segment is then labeled, and its attributes (midpoint,length, et ...) are omputed. In order to �nd pipes in the image, pairs ofsegments are grouped together, whih are possibly the projetion of theboundaries of a pipe. Grouping is based on proximity and parallelismriteria: two segments are paired if the distane between their midpointsis less than a threshold (that is related to the expeted distane of pipesboundaries in the image), and if their angle is in the range 180�30 deg.Finally, the onvex hulls of all the paired segments are omputed.2.3 INTEGRATIONOptial and aousti data are integrated by projeting 3-D pointsobtained by the aousti amera onto the image plane of the optialamera. Points falling inside a onvex hull are deemed to belong to aandidate pipe. Points that lie outside every onvex hull are disarded.In suh a way a segmentation of the aousti image is obtained.In order to projet 3-D points onto the image plane, the relative pose(i.e., position and orientation) of optial and aousti ameras is needed.This information is obtained o�-line, one and for all, by means of asemi-automati alibration proedure. Both aousti and optial dataare registered to the same known model of a given objet in the sene,thereby obtaining the relative pose of optial and aousti ameras.



Augmented Reality by Integrating Multiple Sensory Modalities 7
Figure 1.4 Projetion of the aousti points onto the image plane, where the optialedges are also depited (left). Segmented points after omputing the onvex hulls(right).In our approah, we used the oil rig itself as a alibration objet. Itmust be stressed that this is the only point in this work where we use theCAD model of the oil rig. In the rest of the paper, desribing the on-linefuntioning, only generi assumptions will be made (namely, knowingthat the rig onsists of pipes). The proedure an be summarized asfollows (for more details refer to [7℄):alibrate amera intrinsi parameters, using Roberts' algorithm[19℄ and a suitable alibration rig;register 3-D data points to the model by using the Iterative ClosestPoint algorithm [2℄, thereby obtaining the pose of the aoustiamera;math image segments and model segments in the image, using analgorithm due to Sott and Longuett-Higgins [21℄;register optial segments to the model, using Lowe's algorithm [14℄to �nd the pose of the amera.Figure 1.4 shows an example of segmentation of syntheti data.3. CYLINDERS EXTRACTIONRegions segmented in the optial plane are now bak-projeted intothe original 3-D frame where the we look for ylindrial surfaes. Thesubsequent phase onsists in estimating the axis and the radius of thepipes in order to reonstrut a syntheti representation of the objets.



83.1 FINDING CYLINDRICAL REGIONSPipe-like regions are deteted by analyzing their inertial tensor (thisriterion is related to the so alled prinipal omponent analysis as dis-ussed in [8℄). The inertial tensor I of a set of 3-D points fxig of unitmass is de�ned as: J =Xi (xi � o) u (xi � o)where o is the enter of mass of the distribution and the symbol udenotes the following operator:a u b � 0� (ayby + azbz) �axby �axbz�aybx (axbx + azbz) �aybz�azbx �azby (axbx + ayby)1AWe denote with f�ig i = 1; 2; 3 the eigenvalues of J ordered by magni-tude and with ei the respetive eigenvetors. For a ylindrial distribu-tion of points, it an be shown that the eigenvetor e1 points in the axisdiretion and the following relations holds for the eigenvalues:�1 � �2; �2 ' �3:Therefore, if one eigenvalue is muh smaller with respet to the others,the region is lassi�ed as a ylinder, otherwise it is disarded. Thisalgorithm needs a threshold to deide to what extent �1 has to be smallerwith respet to the other two eigenvalues. If this threshold is too small,elongated regions an be mislassi�ed as ylinders. On the other hand,if it is too high, some pipes ould be lost.3.2 FITTING CYLINDERSIn order to �t a ylinder to the ylindrial regions extrated in theprevious step we need to �nd the axis and the radius. Axis diretionis given by e1=jje1jj, axis length is obtained by projeting the pointsbelonging to the ylinder onto a plane parallel to the axis and omputingthe height of the bounding box of the points.In order to �nd the radius of the pipe, we projet the points belongingto the ylinder onto a plane perpendiular to its axis. 3-D points are notdistributed on a ylindrial surfae, but only on a portion of it, as onlythe setor of the pipe faing the amera baksatters the sonar signal.Hene, their projetions lie approximately on a irular setor. Theenter of the irle �xes the position of the ylinder and the radius givesthe radius of the ylinder. The problem of �tting a irle to the pointsis a lassial parametri regression problem, that we solved using the



Augmented Reality by Integrating Multiple Sensory Modalities 9robust Least Median of Squares (LMedS) tehnique [20℄. The priniplebehind LMedS is the following:1. given a regression problem, in whih d is the minimum number ofpoints determining a solution (three, in our ase)2. ompute a andidate model based on a randomly hosen d-tuplefrom the data;3. estimate the �t of this model to all the data, measured by themedian of the squared residuals;4. if the urrent �t is better than the previous one update the model;5. repeat from step 2.The optimal model represents the majority of data. Data points thatdo not �t into this model are outliers. The breakdown point, i.e., thesmallest fration of outliers that an yield arbitrary estimate values, is50%. Although, in priniple, all the d-tuples should be evaluated, inpratie a Monte Carlo tehnique is applied, in whih only a randomsample of size m is onsidered. Assuming that the whole set of pointsmay ontain up to a fration � = 0:5 of outliers, and requiring that theprobability of missing the optimal solution be P = 0:1, the sample sizem is [24℄: m = log(P )log(1� (1� �)d) = 17: (1.1)Although LMedS is usually a omputationally intensive method it ispratiable in our ase, due to the low dimensionality of the problem.Moreover, the following observation helps in reduing the number ofevaluations. When the three points of the sample are very lose to eahother the estimation of the irle from suh points is instable, and it isa waste of time to evaluate suh a sample. In order to ahieve bettereÆieny we used a buketing tehnique, analogous to the one developedin [24℄, whih works as follows. The retangle ontaining the n points ispartitioned in three regions (bukets) along the major dimension, eahof them ontaining n=3 points. Eah triple to be �tted with a irle isbuilt by taking one random point from eah buket. This tehnique doesnot hange the probability of a point to be seleted, sine eah bukethas the same number of points.An example of robust irle �tting is shown in Figure 1.5, where someof the irles that have been �tted in the LMedS proess are depited,and the seleted one is drawn in bold line.



10
Figure 1.5 Some �tted irles and, in bold, the LMedS one.3.3 FINDING INTERSECTIONSIn general, the axis of pipes belonging to a joint will not interset ex-atly in one point or may not interset at all. To extrat an approximateintersetion we use the following simple algorithm: for every axes pairi, we ompute the midpoint mi of the unique segment that onnet thetwo lines de�ned by the axes and that is perpendiular to both of them.If the number of axes is n, the number of possible pairs is n(n� 1)=2.We de�ne the entre of the joint as the enter of mass of these midpoints,i.e.: n(n�1)=2Xi=1 min(n� 1)=2 (1.2)Sine we onsider the line ontaining the axis, we retain only inter-setions that are lose enough too the axis endpoints.This method works straightforward if there is only one joint in thesene; if this is not the ase it is neessary to preliminary subdivide theset of extrated pipes in subsets ontaining pipes that belong to the samejoint. To do this, it is suÆient to group pipes whose distane, de�nedas the distane between the lines passing through the axis, is below athreshold that depends on the radius of the pipes. This an be done bybuilding the inidene graph G of the pipes, i.e. a graph whose nodes arethe pipes and in whih two nodes are onneted if the distane betweenthe orresponding pipes is below the given threshold. A joint orrespondto a maximal omplete subgraph of G i.e, a omplete subgraph that isnot ontained in any larger omplete subgraph. Two distint joint anhave no more than one node in ommon, orresponding to the pipe thatonnet them. The algorithm an be summarized as follows:
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Figure 1.6 Cylinders axes as extrated from data (left) and after omputing theintersetion (right).1. start with the graph G of order n (the total number of pipes) andwith an empty list of joints;2. while n > 1 repeat the following steps:3. searh for a omplete subgraph ofG of order n that is not ontainedin a subgraph of the list of joints.4. if the latter exists, add it to the list of joints. Otherwise derement n.A omplete subgraph of order three may not represent a real joint, buta triangle formed by three pipes (See Figure 1.7). This a degenerate asewhih is easily handled. It is suÆient to alulate the three midpointsmi de�ned above for the three pairs of pipes and disard those for whihthe distane is greater than a threshold.
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1 3Figure 1.7 Example of a degenerate ase. The rig depited on the left has a properjoint and a false one, as its graph (right) has two omplete subgraph of order three.The proper joint (2,3,4) shares two pipes with the false one (1,2,3).



12For eah of the remaining joints its enter is omputed using For-mula 1.2.4. AUGMENTED REALITY

Figure 1.8 Augmented reality: virtual reonstrution of the joint with 3-D pointssuperimposed, from two di�erent viewpoints.One pipe axes have been estimated together with their radius andtheir reiproal intersetion, it is possible to build a VRML (Virtual Re-ality Modeling Language) representation of the sene observed. Owingto the registration of optial and aousti data to the model, the syn-theti representation an be superimposed on atual data, to supportthe ROV operator.5. EXPERIMENTAL RESULTSWe performed experiments with real and syntheti images. Figures1.3,1.4,1.6,1.8, show an example of our tehnique applied to a synthetiase. Due to the nature of the data, this ase is not partiularly inter-esting. In this setion we desribe results obtained in a real ase.Figure 1.10 shows a real image of a joint between four pipes, andthe segments extrated from the image as desribed previously. Notethat, due to the low quality of the image, only some segments have beendeteted.Figure 1.9 shows the orresponding 3-D data, as returned by the Eho-sope and the the result of pre-proessing.Using the algorithm illustrated in Setion 3., ylinders are �tted to3-D data. As one might expet, the axis diretion is estimated with
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Figure 1.9 Aousti 3-D data. Raw, from the Ehosope (top) and proessed (bot-tom). Please note that the sale is di�erent in the two images.
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Figure 1.10 Real image (from the underwater amera) of a joint (left) and the pro-essed image with extrated segments (right) .far better auray than the radius. Indeed, we obtain, on the average,a relative error of 1% on the axis diretion and of 20% on the radius.Figure 1.11 shows the projetion onto the image plane of the 3-D pointstogether with the boundaries of the extrated ylinders.Finally, the reonstruted joint along with the original 3-D data areshown in Figure 1.12. Note that some pipes are missing in this joint,namely, the ones orresponding to the missing segments in the image.We are not assuming here that a high level desription of the imagedportion of the rig is available. The number, position and radius of theylinders are obtained from the data only.

Figure 1.11 3-D points and pipes boundaries in the image plane.



Augmented Reality by Integrating Multiple Sensory Modalities 156. SUMMARYIn this paper, the integration of optial and 3-D aousti data forvirtual sene reonstrution is addressed.This work, arried out within the VENICE projet (http://www.disi.unige.it/projet/venie/), is aimed at presenting an integrated and in-formative view of the working environment to an underwater ROV op-erator. The ROV is equipped with an aousti amera and an optialamera, and its task is the inspetion, maintenane and repairing of anoil rig. The only a-priori information that we exploit is that the rig on-sists of onneted pipes. No high level (CAD) desription of the portionof the rig in the view frustum is available.Our method an be summarized as follows:1. extrat pipe boundaries in the optial image;2. projet 3-D aousti points onto the optial image plane;3. segment points using pipes boundaries in the image and bak-projet them into the 3-D frame;4. build a virtual reonstrution by �tting ylinders to the segmenteddata.This is one of the few attempt to integrate di�erent sensor modalitiesand atually fuse data having di�erent nature and physial harateris-tis.Presently, there is only a one-way inuene of optial features on theanalysis of 3-D aousti data. We plan to investigate other shemesinorporating baktraking and mutual inuene.AknowledgmentsThis work is supported by the European Commission under the BRITE-EURAMIII projet no. BE-2013 VENICE (Virtual Environment Interfae by Sensor In-tegration for Inspetion and Manipulation Control in Multifuntional UnderwaterVehiles). The authors would like to thank Dr. R.K. Hansen of Omniteh A/S(http://www.omniteh.no) for kindly providing the images aquired by the Ehosopeaousti amera, Riardo Giannitrapani for the fruitful disussions, and Claudio Mi-atto, who wrote part of the ode used in experiments.Referenes[1℄ D. H. Ballard and Brown C. M. Computer Vision. Prentie-HallIn., 1982.
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Figure 1.12 Augmented reality: virtual reonstrution of the joint with 3-D pointssuperimposed, from two di�erent viewpoints

Figure 1.13 Augmented reality: virtual reonstrution of the joint with 3-D pointssuperimposed, from two di�erent viewpoints
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