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t This paper proposes a method for the integration of a
ousti
 and opti
aldata to enhan
e the per
eption of an underwater environment in teleop-eration tasks. O�-shore appli
ations are addressed, in whi
h an under-water remotely operated vehi
le is approa
hing an oil rig for inspe
tion,maintenan
e and repairing tasks. A te
hnique is presented whi
h takesadvantage of opti
al features to segment an a
ousti
 three-dimensionalimage. Cylindri
al surfa
es are than extra
ted from 3-D points, andwhole 
ylinders are re
onstru
ted. The �nal step is to present usefulinformation to the human operator, by displaying the superposition ofmeasured a
ousti
 data and geometri
 primitives �tted to parts of it, i.e.an augmented reality view. Experimental results are reported showingthe e�e
tiveness of the proposed approa
h.1. INTRODUCTIONThis paper is devoted to the 
onstru
tion of an augmented realityview that 
an help a human operator of an underwater remotely oper-ated vehi
le (ROV) to better per
eive and understand the surroundingenvironment. Two sensing 
hannels are available, opti
al and a
ousti
.The former gives an image easier to read by a human, but visibilityis very limited due to low illumination and 
lutter presen
e. On theother hand, a
ousti
 data are not a�e
ted by illumination problems andprovide inherently 3-D information, but are more 
ompli
ated to under-stand for a human operator. From these 
onsiderations it arises the needto integrate, whenever possible, the two 
hannels in order to exploit the1
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Figure 1.1 Rendering of the VRML model of the oil rig with the ROV.
best of both, so as to 
ompensate their la
ks. Moreover, presenting asyntheti
 model of the s
ene superimposed on data, i.e., generating anaugmented reality image, is mu
h more useful and readable for a humanoperator.The appli
ative s
enario 
onsists in an ROV approa
hing an oil rigmade up of 
onne
ted pipes (see Fig. 1.1). The ROV is equipped withan opti
al and an a
ousti
 
amera. The opti
al 
amera provides 
lassi-
al gray-levels images and the a
ousti
 one provides (a
ousti
) intensityimages asso
iated with a set of 3-D points [17℄.A virtual reality view is obtained by displaying the superposition ofmeasured 3-D points and of a syntheti
 model automati
ally 
onstru
tedfrom data. The key issue for automati
 modeling is the segmentationof the range data into subsets of points 
orresponding to the desiredprimitives, 
ylinders in our 
ase. Due to the noisy and low-density natureof the a
ousti
 range data, segmentation using di�erential geometry orstep-edges is infeasible. Therefore we propose to integrate a
ousti
 andopti
al images, and to use opti
al edges to segment the a
ousti
 data.First we extra
t pipes boundaries in the opti
al image. Then, assum-ing that the mutual position of the two 
ameras is known, a
ousti
 (3-D)



Augmented Reality by Integrating Multiple Sensory Modalities 3data points are proje
ted onto to the image plane. The points fallinginside pipes boundaries are segmented. Pipe dire
tion and radius arethen estimated and a syntheti
 model is generated by �tting 
ylinders.Fusion and integration of di�erent kinds of data is a
tually a matter ofa
tive resear
h. When available information is of di�erent nature, prob-abilisti
, heuristi
, or fuzzy methods are typi
ally used [15, 3℄. In 
ase ofvisual data, a straightforward approa
h 
onsists in re
overing symboli
information separately from the several types of data, and then performdata fusion at the highest (symboli
) level. Classi
al symboli
 Arti�
ialIntelligen
e te
hnique [1℄ are applied in this 
ase. In our 
ase, due tothe similarity of the data at hand (they are both images), we wouldlike to integrate them at a lower pro
essing level, possibly to improve orfa
ilitate the re
ognition pro
edure on either sensorial 
hannel.Some works are present in literature about data fusion and integra-tion of the di�erent sensors fun
tionalities. Among these ones, someinteresting papers 
an be 
onsidered 
on
erning the fusion of intensityand range data, mainly derived by a laser range �nder [10, 23, 22℄.In [10℄, a Markov Random Field (MRF) model is proposed for the fu-sion of registered range and intensity images aimed at image segmenta-tion. An extended weak membrane model is utilized as prior knowledgedevoted to enfor
e the line pro
ess, so improving edge dete
tion. Thefusion o

urred by means of a 
oupled term in the energy fun
tion thatpenalized di�erent edge 
on�gurations in the two kinds of images. Asimilar method for the fusion of range and intensity images was followedin [23℄ by integrating in a single framework edge dete
tion, semanti
labeling and surfa
e re
onstru
tion. Initial edge labeling and 
lassi�
a-tion is based on a physi
al analysis of the lo
al behavior of intensity andrange data. Then, an MRF model is used to relax the edge 
on�gurationwhile performing 
on
urrently the re
onstru
tion of the surfa
es. In [22℄,an intensity-guided range sensing te
hnique is presented.Con
erning spe
i�
ally on 3-D s
ene modeling, there are several workon roboti
 appli
ations mainly devoted to de
ontamination and de
om-missioning tasks in hazardous environments [16℄. The 
losest to ourwork are [9, 12, 13℄. In [9℄, segmentation of range data in pipes and toriiis proposed by using a pro
edure estimating lo
al 
enters of 
urvature.Lo
ally �tting a bi-quadrati
 fun
tion the lo
us of 
enters of 
urvatureis estimated using a robust least squares method. Then, these 
enters of
urvatures are used to dis
riminate between straight and 
urved 
ylin-ders, so allowing the a

urate re
onstru
tion of these parts for CADmodeling. A-priori information is utilized to set some algorithms' pa-rameters in order to in
rease the pre
ision of the segmentation. In [12℄,quadri
 surfa
e parameters (representing 
ylinders) are used to estimate



4radius, axis and position, so that the resulting 
ylinders are displayedto an operator, without performing an a
tual re
ognition phase. Gener-alized 
ylinders are �tted to range data in [13℄. The extra
tion of axispoints is done by 
omputing midpoints between two 
ontour points, thenthe axis 
urve is represented as a third degree polynomialIn our work the a
ousti
 range data and the opti
al intensity image areused in a 
ooperative way to extra
t useful (topologi
al and geometri
al)information allowing the 
onstru
tion of a virtual environment. Ourgoal is to automati
ally model signi�
ant obje
ts present in a 
luttereds
ene and fa
ilitate human interpretation by displaying su
h obje
ts inan augmented reality view. In another work [6℄ we deal with the similarproblem of �tting (a portion of) a known model of the rig to the senseddata.The rest of the paper is organized as follows. Se
tion 2 des
ribes thepro
essing of intensity and range data and their integration, in orderto obtain a segmentation of range data. In Se
tion 3 the extra
tion of
ylinders from range data is outlined and in Se
tion 4 the augmentedreality view is obtained. Finally, Se
tion 5 shows some results of themethod applied on real data and, in Se
tion 6, 
on
lusions are drawn.2. SEGMENTATIONThe �rst pro
essing step 
onsist in �ltering and segmenting botha
ousti
 and opti
al data.2.1 ACOUSTIC DATA PROCESSINGThree-dimensional data are obtained by a high resolution a
ousti

amera, the E
hos
ope [11℄. The s
ene is insoni�ed by a high-frequen
ya
ousti
 pulse and a two-dimensional array of transdu
er gathers theba
ks
attered signals. The whole set of raw signals is then pro
essedin order to enhan
e those 
oming from �xed steering dire
tions (
alledbeamsignals) and to attenuate those 
oming from other dire
tions. Thedistan
e of a 3-D point 
an be measured by dete
ting the time instantat whi
h the maximum peak o

urs in the beamsignal (see Fig 1.2. Arange image is formed by 64�64 points ordered a

ording to an angularrelation, as adja
ent points 
orrespond to adja
ent beamsignals. More-over, the intensity of the maximum peak 
an be used to generate anotherimage, representing the reliability of the asso
iated 3-D measures: thehigher the intensity, the safer the asso
iated measure.The a
ousti
 image is a�e
ted by false re
e
tions, 
aused by se
ondarylobes, and by a
quisition noise, whi
h is modeled as spe
kle noise. Theintensity image turns out to provide very useful information to dis
rim-
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Figure 1.2 A
ousti
 
amera.inate between \good data" and noise. A dramati
 improvement of theimage quality is obtained by dis
arding points whose asso
iated inten-sity is lower than a threshold. Then, the 
onne
ted 
omponents areextra
ted by a per
olation te
hnique: a sphere of radius R is drawnaround ea
h point, and two points are 
onsidered to be 
onne
ted iftheir spheres interse
t. Finally, a size �lter eliminates the small blobs
aused by noise and 
lutters. The radius R, the threshold on the inten-sity, and the threshold on the blob size are 
hosen basing on a prioriknowledge of the spatial resolution and dire
tivity 
hara
teristi
s of thesensor [8℄.2.2 OPTICAL DATA PROCESSINGThe image, obtained by a 
onventional opti
al 
amera is �rst �lteredwith an edge preserving anisotropi
 smoothing [18℄, that is a smoothingoperator whose strength depends on the lo
al gray-level gradient.Straight lines are extra
ted by 
ombining Canny's edge dete
tor [5℄and Burn's Plane Fit Algorithm [4℄. First edge points are extra
ted withthe Canny edge dete
tor, that allows to �nd very sharp edges (oftenone pixel large) thanks to the non-maxima suppression. Then, pixelsare 
lustered in support regions if they are spatially adja
ent and iftheir gradient orientation is roughly the same. The line parameters are
omputed with interse
tions of the weighted �t plane to the intensityvalues and the horizontal average pixel intensity plane, within a supportregion. The weight favors intensity values of pixels with high gradient
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Figure 1.3 Syntheti
 opti
al (left) and a
ousti
 (right) images of a joint.magnitude. Taking mainly the gradient orientation as eviden
e for a lineand using the plane �t method, the algorithm extra
ts long, straight linesas well as shorter lines and is e�e
tive in �nding low-
ontrast lines.Ea
h extra
ted segment is then labeled, and its attributes (midpoint,length, et
 ...) are 
omputed. In order to �nd pipes in the image, pairs ofsegments are grouped together, whi
h are possibly the proje
tion of theboundaries of a pipe. Grouping is based on proximity and parallelism
riteria: two segments are paired if the distan
e between their midpointsis less than a threshold (that is related to the expe
ted distan
e of pipesboundaries in the image), and if their angle is in the range 180�30 deg.Finally, the 
onvex hulls of all the paired segments are 
omputed.2.3 INTEGRATIONOpti
al and a
ousti
 data are integrated by proje
ting 3-D pointsobtained by the a
ousti
 
amera onto the image plane of the opti
al
amera. Points falling inside a 
onvex hull are deemed to belong to a
andidate pipe. Points that lie outside every 
onvex hull are dis
arded.In su
h a way a segmentation of the a
ousti
 image is obtained.In order to proje
t 3-D points onto the image plane, the relative pose(i.e., position and orientation) of opti
al and a
ousti
 
ameras is needed.This information is obtained o�-line, on
e and for all, by means of asemi-automati
 
alibration pro
edure. Both a
ousti
 and opti
al dataare registered to the same known model of a given obje
t in the s
ene,thereby obtaining the relative pose of opti
al and a
ousti
 
ameras.
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Figure 1.4 Proje
tion of the a
ousti
 points onto the image plane, where the opti
aledges are also depi
ted (left). Segmented points after 
omputing the 
onvex hulls(right).In our approa
h, we used the oil rig itself as a 
alibration obje
t. Itmust be stressed that this is the only point in this work where we use theCAD model of the oil rig. In the rest of the paper, des
ribing the on-linefun
tioning, only generi
 assumptions will be made (namely, knowingthat the rig 
onsists of pipes). The pro
edure 
an be summarized asfollows (for more details refer to [7℄):
alibrate 
amera intrinsi
 parameters, using Roberts' algorithm[19℄ and a suitable 
alibration rig;register 3-D data points to the model by using the Iterative ClosestPoint algorithm [2℄, thereby obtaining the pose of the a
ousti

amera;mat
h image segments and model segments in the image, using analgorithm due to S
ott and Longuett-Higgins [21℄;register opti
al segments to the model, using Lowe's algorithm [14℄to �nd the pose of the 
amera.Figure 1.4 shows an example of segmentation of syntheti
 data.3. CYLINDERS EXTRACTIONRegions segmented in the opti
al plane are now ba
k-proje
ted intothe original 3-D frame where the we look for 
ylindri
al surfa
es. Thesubsequent phase 
onsists in estimating the axis and the radius of thepipes in order to re
onstru
t a syntheti
 representation of the obje
ts.



83.1 FINDING CYLINDRICAL REGIONSPipe-like regions are dete
ted by analyzing their inertial tensor (this
riterion is related to the so 
alled prin
ipal 
omponent analysis as dis-
ussed in [8℄). The inertial tensor I of a set of 3-D points fxig of unitmass is de�ned as: J =Xi (xi � o) u (xi � o)where o is the 
enter of mass of the distribution and the symbol udenotes the following operator:a u b � 0� (ayby + azbz) �axby �axbz�aybx (axbx + azbz) �aybz�azbx �azby (axbx + ayby)1AWe denote with f�ig i = 1; 2; 3 the eigenvalues of J ordered by magni-tude and with ei the respe
tive eigenve
tors. For a 
ylindri
al distribu-tion of points, it 
an be shown that the eigenve
tor e1 points in the axisdire
tion and the following relations holds for the eigenvalues:�1 � �2; �2 ' �3:Therefore, if one eigenvalue is mu
h smaller with respe
t to the others,the region is 
lassi�ed as a 
ylinder, otherwise it is dis
arded. Thisalgorithm needs a threshold to de
ide to what extent �1 has to be smallerwith respe
t to the other two eigenvalues. If this threshold is too small,elongated regions 
an be mis
lassi�ed as 
ylinders. On the other hand,if it is too high, some pipes 
ould be lost.3.2 FITTING CYLINDERSIn order to �t a 
ylinder to the 
ylindri
al regions extra
ted in theprevious step we need to �nd the axis and the radius. Axis dire
tionis given by e1=jje1jj, axis length is obtained by proje
ting the pointsbelonging to the 
ylinder onto a plane parallel to the axis and 
omputingthe height of the bounding box of the points.In order to �nd the radius of the pipe, we proje
t the points belongingto the 
ylinder onto a plane perpendi
ular to its axis. 3-D points are notdistributed on a 
ylindri
al surfa
e, but only on a portion of it, as onlythe se
tor of the pipe fa
ing the 
amera ba
ks
atters the sonar signal.Hen
e, their proje
tions lie approximately on a 
ir
ular se
tor. The
enter of the 
ir
le �xes the position of the 
ylinder and the radius givesthe radius of the 
ylinder. The problem of �tting a 
ir
le to the pointsis a 
lassi
al parametri
 regression problem, that we solved using the



Augmented Reality by Integrating Multiple Sensory Modalities 9robust Least Median of Squares (LMedS) te
hnique [20℄. The prin
iplebehind LMedS is the following:1. given a regression problem, in whi
h d is the minimum number ofpoints determining a solution (three, in our 
ase)2. 
ompute a 
andidate model based on a randomly 
hosen d-tuplefrom the data;3. estimate the �t of this model to all the data, measured by themedian of the squared residuals;4. if the 
urrent �t is better than the previous one update the model;5. repeat from step 2.The optimal model represents the majority of data. Data points thatdo not �t into this model are outliers. The breakdown point, i.e., thesmallest fra
tion of outliers that 
an yield arbitrary estimate values, is50%. Although, in prin
iple, all the d-tuples should be evaluated, inpra
ti
e a Monte Carlo te
hnique is applied, in whi
h only a randomsample of size m is 
onsidered. Assuming that the whole set of pointsmay 
ontain up to a fra
tion � = 0:5 of outliers, and requiring that theprobability of missing the optimal solution be P = 0:1, the sample sizem is [24℄: m = log(P )log(1� (1� �)d) = 17: (1.1)Although LMedS is usually a 
omputationally intensive method it ispra
ti
able in our 
ase, due to the low dimensionality of the problem.Moreover, the following observation helps in redu
ing the number ofevaluations. When the three points of the sample are very 
lose to ea
hother the estimation of the 
ir
le from su
h points is instable, and it isa waste of time to evaluate su
h a sample. In order to a
hieve bettereÆ
ien
y we used a bu
keting te
hnique, analogous to the one developedin [24℄, whi
h works as follows. The re
tangle 
ontaining the n points ispartitioned in three regions (bu
kets) along the major dimension, ea
hof them 
ontaining n=3 points. Ea
h triple to be �tted with a 
ir
le isbuilt by taking one random point from ea
h bu
ket. This te
hnique doesnot 
hange the probability of a point to be sele
ted, sin
e ea
h bu
kethas the same number of points.An example of robust 
ir
le �tting is shown in Figure 1.5, where someof the 
ir
les that have been �tted in the LMedS pro
ess are depi
ted,and the sele
ted one is drawn in bold line.
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Figure 1.5 Some �tted 
ir
les and, in bold, the LMedS one.3.3 FINDING INTERSECTIONSIn general, the axis of pipes belonging to a joint will not interse
t ex-a
tly in one point or may not interse
t at all. To extra
t an approximateinterse
tion we use the following simple algorithm: for every axes pairi, we 
ompute the midpoint mi of the unique segment that 
onne
t thetwo lines de�ned by the axes and that is perpendi
ular to both of them.If the number of axes is n, the number of possible pairs is n(n� 1)=2.We de�ne the 
entre of the joint as the 
enter of mass of these midpoints,i.e.: n(n�1)=2Xi=1 min(n� 1)=2 (1.2)Sin
e we 
onsider the line 
ontaining the axis, we retain only inter-se
tions that are 
lose enough too the axis endpoints.This method works straightforward if there is only one joint in thes
ene; if this is not the 
ase it is ne
essary to preliminary subdivide theset of extra
ted pipes in subsets 
ontaining pipes that belong to the samejoint. To do this, it is suÆ
ient to group pipes whose distan
e, de�nedas the distan
e between the lines passing through the axis, is below athreshold that depends on the radius of the pipes. This 
an be done bybuilding the in
iden
e graph G of the pipes, i.e. a graph whose nodes arethe pipes and in whi
h two nodes are 
onne
ted if the distan
e betweenthe 
orresponding pipes is below the given threshold. A joint 
orrespondto a maximal 
omplete subgraph of G i.e, a 
omplete subgraph that isnot 
ontained in any larger 
omplete subgraph. Two distin
t joint 
anhave no more than one node in 
ommon, 
orresponding to the pipe that
onne
t them. The algorithm 
an be summarized as follows:
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Figure 1.6 Cylinders axes as extra
ted from data (left) and after 
omputing theinterse
tion (right).1. start with the graph G of order n (the total number of pipes) andwith an empty list of joints;2. while n > 1 repeat the following steps:3. sear
h for a 
omplete subgraph ofG of order n that is not 
ontainedin a subgraph of the list of joints.4. if the latter exists, add it to the list of joints. Otherwise de
rement n.A 
omplete subgraph of order three may not represent a real joint, buta triangle formed by three pipes (See Figure 1.7). This a degenerate 
asewhi
h is easily handled. It is suÆ
ient to 
al
ulate the three midpointsmi de�ned above for the three pairs of pipes and dis
ard those for whi
hthe distan
e is greater than a threshold.
4

32

1

2 4

1 3Figure 1.7 Example of a degenerate 
ase. The rig depi
ted on the left has a properjoint and a false one, as its graph (right) has two 
omplete subgraph of order three.The proper joint (2,3,4) shares two pipes with the false one (1,2,3).



12For ea
h of the remaining joints its 
enter is 
omputed using For-mula 1.2.4. AUGMENTED REALITY

Figure 1.8 Augmented reality: virtual re
onstru
tion of the joint with 3-D pointssuperimposed, from two di�erent viewpoints.On
e pipe axes have been estimated together with their radius andtheir re
ipro
al interse
tion, it is possible to build a VRML (Virtual Re-ality Modeling Language) representation of the s
ene observed. Owingto the registration of opti
al and a
ousti
 data to the model, the syn-theti
 representation 
an be superimposed on a
tual data, to supportthe ROV operator.5. EXPERIMENTAL RESULTSWe performed experiments with real and syntheti
 images. Figures1.3,1.4,1.6,1.8, show an example of our te
hnique applied to a syntheti

ase. Due to the nature of the data, this 
ase is not parti
ularly inter-esting. In this se
tion we des
ribe results obtained in a real 
ase.Figure 1.10 shows a real image of a joint between four pipes, andthe segments extra
ted from the image as des
ribed previously. Notethat, due to the low quality of the image, only some segments have beendete
ted.Figure 1.9 shows the 
orresponding 3-D data, as returned by the E
ho-s
ope and the the result of pre-pro
essing.Using the algorithm illustrated in Se
tion 3., 
ylinders are �tted to3-D data. As one might expe
t, the axis dire
tion is estimated with
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Figure 1.9 A
ousti
 3-D data. Raw, from the E
hos
ope (top) and pro
essed (bot-tom). Please note that the s
ale is di�erent in the two images.
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Figure 1.10 Real image (from the underwater 
amera) of a joint (left) and the pro-
essed image with extra
ted segments (right) .far better a

ura
y than the radius. Indeed, we obtain, on the average,a relative error of 1% on the axis dire
tion and of 20% on the radius.Figure 1.11 shows the proje
tion onto the image plane of the 3-D pointstogether with the boundaries of the extra
ted 
ylinders.Finally, the re
onstru
ted joint along with the original 3-D data areshown in Figure 1.12. Note that some pipes are missing in this joint,namely, the ones 
orresponding to the missing segments in the image.We are not assuming here that a high level des
ription of the imagedportion of the rig is available. The number, position and radius of the
ylinders are obtained from the data only.

Figure 1.11 3-D points and pipes boundaries in the image plane.



Augmented Reality by Integrating Multiple Sensory Modalities 156. SUMMARYIn this paper, the integration of opti
al and 3-D a
ousti
 data forvirtual s
ene re
onstru
tion is addressed.This work, 
arried out within the VENICE proje
t (http://www.disi.unige.it/proje
t/veni
e/), is aimed at presenting an integrated and in-formative view of the working environment to an underwater ROV op-erator. The ROV is equipped with an a
ousti
 
amera and an opti
al
amera, and its task is the inspe
tion, maintenan
e and repairing of anoil rig. The only a-priori information that we exploit is that the rig 
on-sists of 
onne
ted pipes. No high level (CAD) des
ription of the portionof the rig in the view frustum is available.Our method 
an be summarized as follows:1. extra
t pipe boundaries in the opti
al image;2. proje
t 3-D a
ousti
 points onto the opti
al image plane;3. segment points using pipes boundaries in the image and ba
k-proje
t them into the 3-D frame;4. build a virtual re
onstru
tion by �tting 
ylinders to the segmenteddata.This is one of the few attempt to integrate di�erent sensor modalitiesand a
tually fuse data having di�erent nature and physi
al 
hara
teris-ti
s.Presently, there is only a one-way in
uen
e of opti
al features on theanalysis of 3-D a
ousti
 data. We plan to investigate other s
hemesin
orporating ba
ktra
king and mutual in
uen
e.A
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Figure 1.12 Augmented reality: virtual re
onstru
tion of the joint with 3-D pointssuperimposed, from two di�erent viewpoints

Figure 1.13 Augmented reality: virtual re
onstru
tion of the joint with 3-D pointssuperimposed, from two di�erent viewpoints
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