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Abstract We present a linear rectification algorithm for gen-
eral, unconstrained stereo rigs. The algorithm takes the two
perspective projection matrices of the original cameras, and
computes a pair of rectifying projection matrices. It is com-
pact (22-line MATLAB code) and easily reproducible. We
report tests proving the correct behavior of our method, as
well as the negligible decrease of the accuracy of 3-D recon-
struction performed from the rectified images directly.
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1 Introduction and motivations

Given a pair of stereo images, rectification determines a trans-
formation of each image plane such that pairs of conjugate
epipolar lines become collinear and parallel to one of the im-
age axes (usually the horizontal one). The rectified images
can be thought of as acquired by a new stereo rig, obtained
by rotating the original cameras. The important advantage
of rectification is that computing stereo correspondences [3]
is made simpler, because search is done along the horizontal
lines of the rectified images.

We assume that the stereo rig is calibrated, i.e., the cam-
eras’ internal parameters, mutual position and orientation
are known. This assumption is not strictly necessary, but
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leads to a simpler technique. On the other hand, when recon-
structing 3-D shape of objects from dense stereo, calibration
is mandatory in practice, and can be achieved in many situ-
ations and by several algorithms [2,13].

Rectification is a classical problem of stereo vision; how-
ever, few methods are available in the Computer Vision lit-
erature, to our knowledge. Ayache [1] introduced a rectifi-
cation algorithm, in which a matrix satisfying a number of
constraints is hand-crafted. The distinction between neces-
sary and arbitrary constraints is unclear. Some authors report
rectification under restrictive assumptions; for instance, [11]
assumes a very restrictive geometry (parallel vertical axes of
the camera reference frames). Recently, [6,14,8] have intro-
duced algorithms which perform rectification given a weakly
calibrated stereo rig, i.e., a rig for which only points corre-
spondences between images are given.

Latest work, published after the preparation of this ma-
nuscript includes [10,9,12]. Some of this work also concen-
trates on the issue of minimizing the rectified image distor-
tion. We do not address this problem, partially because dis-
tortion is less severe than in the weakly calibrated case.

This paper presents a novel algorithm rectifying a cali-
brated stereo rig of unconstrained geometry and mounting
general cameras. Our work improves and extends [1]. We
obtain basically the same results, but in a more compact and
clear way. The algorithm is simple and detailed. Moreover,
given the shortage of easily reproducible, easily accessible
and clearly stated algorithms we have made the code avail-
able on the Web.

2 Camera model and epipolar geometry

This section recalls briefly the mathematical background on
perspective projections necessary for our purposes. For more
details see [4].
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2.1 Camera model

A pinhole camera is modeled by its optical center C and its
retinal plane (or image plane) R. A 3-D point W is pro-
jected into an image point M given by the intersection of R
with the line containing C and W. The line containing C and
orthogonal to R is called the optical axis and its intersection
with R is the principal point. The distance between C and
R is the focal length.

Let w= [x y z]> be the coordinates of W in the world ref-
erence frame (fixed arbitrarily) and m = [u v]> the coordi-
nates of M in the image plane (pixels). The mapping from 3-
D coordinates to 2-D coordinates is the perspective projec-
tion, which is represented by a linear transformation in ho-
mogeneous coordinates. Let m̃ = [u v 1]> and w̃ = [x y z 1]>

be the homogeneous coordinates of M and W respectively;
then the perspective transformation is given by the matrix P̃:

λm̃ = P̃w̃, (1)

where λ is an arbitrary scale factor. The camera is there-
fore modeled by its perspective projection matrix (hence-
forth PPM) P̃, which can be decomposed, using the QR fac-
torization, into the product

P̃ = A[R | t]. (2)

The matrix A depends on the intrinsic parameters only, and
has the following form:

A =

αu γ u0
0 αv v0
0 0 1

 , (3)

where αu = − f ku, αv = − f kv are the focal lengths in hori-
zontal and vertical pixels, respectively ( f is the focal length
in millimeters, ku and kv are the effective number of pix-
els per millimeter along the u and v axes), (u0,v0) are the
coordinates of the principal point, given by the intersection
of the optical axis with the retinal plane, and γ is the skew
factor that models non-orthogonal u− v axes..

The camera position and orientation (extrinsic parame-
ters), are encoded by the 3× 3 rotation matrix R and the
translation vector t, representing the rigid transformation that
brings the camera reference frame onto the world reference
frame.

Let us write the PPM as

P̃ =

q>1 q14
q>2 q24
q>3 q34

= [Q|q̃]. (4)

In Cartesian coordinates, the projection (1) writes
u =

q>1 w+q14

q>3 w+q34

v =
q>2 w+q24

q>3 w+q34
.

(5)

The focal plane is the plane parallel to the retinal plane
that contains the optical center C. The coordinates c of C are
given by

c =−Q−1q̃. (6)

Therefore P̃ can be written:

P̃ = [Q|−Qc]. (7)

The optical ray associated to an image point M is the line
M C, i.e. the set of 3-D points {w : m̃ = P̃w̃}. In parametric
form:

w = c+λQ−1m̃, λ ∈ R. (8)

2.2 Epipolar geometry

Let us consider a stereo rig composed by two pinhole cam-
eras (Fig. 1). Let C1 and C2 be the optical centers of the left
and right cameras respectively. A 3-D point W is projected
onto both image planes, to points M1 and M2, which con-
stitute a conjugate pair. Given a point M1 in the left image
plane, its conjugate point in the right image is constrained
to lie on a line called the epipolar line (of M1). Since M1

may be the projection of an arbitrary point on its optical ray,
the epipolar line is the projection through C2 of the optical
ray of M1. All the epipolar lines in one image plane pass
through a common point (E1 and E2 respectively) called the
epipole, which is the projection of the optical center of the
other camera.

E2
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E
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1

1

2

R
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2

Fig. 1 Epipolar geometry. The epipole of the first camera E is the pro-
jection of the optical center C2 of the second camera (and vice versa).

When C1 is in the focal plane of the right camera, the
right epipole is at infinity, and the epipolar lines form a bun-
dle of parallel lines in the right image. A very special case
is when both epipoles are at infinity, that happens when the
line C1C2 (the baseline) is contained in both focal planes,
i.e., the retinal planes are parallel to the baseline. Epipolar
lines, then, form a bundle of parallel lines in both images.



3

Any pair of images can be transformed so that epipolar lines
are parallel and horizontal in each image. This procedure is
called rectification.

3 Rectification of camera matrices

We assume that the stereo rig is calibrated, i.e., the PPMs
P̃o1 and P̃o2 are known. The idea behind rectification is to
define two new PPMs P̃n1 and P̃n2 obtained by rotating the
old ones around their optical centers until focal planes be-
comes coplanar, thereby containing the baseline. This en-
sures that epipoles are at infinity, hence epipolar lines are
parallel. To have horizontal epipolar lines, the baseline must
be parallel to the new X axis of both cameras. In addition,
to have a proper rectification, conjugate points must have
the same vertical coordinate. This is obtained by requiring
that the new cameras have the same intrinsic parameters.
Note that, being the focal length the same, retinal planes are
coplanar too, as in Figure 2.

M2

M1

R 2

R1

C1

C

W

2

Fig. 2 Rectified cameras. Retinal planes are coplanar and parallel to
the baseline.

In summary: positions (i.e, optical centers) of the new
PPMs are the same as the old cameras, whereas the new ori-
entation (the same for both cameras) differs from the old
ones by suitable rotations; intrinsic parameters are the same
for both cameras. Therefore, the two resulting PPMs will
differ only in their optical centers, and they can be thought
as a single camera translated along the X axis of its reference
system.

Let us write the new PPMs in terms of their factorization.
From (2) and (7):

P̃n1 = A[R |−R c1], P̃n2 = A[R |−R c2]. (9)

The intrinsic parameters matrix A is the same for both PPMs,
and can be chosen arbitrarily (see MATLAB code). The opti-
cal centers c1 and c2 are given by the old optical centers,

computed with (6). The matrix R, which gives the cam-
era’s pose, is the same for both PPMs. It will be specified
by means of its row vectors

R =

r>1
r>2
r>3

 (10)

that are the X, Y, and Z axes, respectively, of the camera
reference frame, expressed in world coordinates.

According to the previous comments, we take:

1. The new X axis parallel to the baseline: r1 =(c1−c2)/||c1−
c2||

2. The new Y axis orthogonal to X (mandatory) and to k:
r2 = k∧ r1

3. The new Z axis orthogonal to XY (mandatory) : r3 =

r1∧ r2

In point 2, k is an arbitrary unit vector, that fixes the position
of the new Y axis in the plane orthogonal to X. We take
it equal to the Z unit vector of the old left matrix, thereby
constraining the new Y axis to be orthogonal to both the
new X and the old left Z.

This algorithm fails when the optical axis is parallel to
the baseline, i.e., when there is a pure forward motion.

In [5] we formalize analytically the rectification require-
ments, and we show that the algorithm given in the present
section satisfies those requirements.

4 The rectifying transformation

In order to rectify – let’s say – the left image, we need
to compute the transformation mapping the image plane of
P̃o1 = [Qo1|q̃o1] onto the image plane of P̃n1 = [Qn1|q̃n1].
We will see that the sought transformation is the collinearity
given by the 3× 3 matrix T1 = Qn1Q−1

o1 . The same result
applies to the right image.

For any 3-D point w we can write{
m̃o1 = P̃o1w̃
m̃n1 = P̃n1w̃.

(11)

According to (8) , the equations of the optical rays are the
following (since rectification does not move the optical cen-
ter):{

w = c1 +λoQ−1
o1 m̃o1

w = c1 +λnQ−1
n1 m̃n1;

(12)

hence

m̃n1 = λQn1Q−1
o1 m̃o1, (13)

where λ is an arbitrary scale factor (it is an equality between
homogeneous quantities).
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The transformation T1 is then applied to the original left
image to produce the rectified image, as in Figure 5. Note
that the pixels (integer-coordinate positions) of the rectified
image correspond, in general, to non-integer positions on the
original image plane. Therefore, the gray levels of the recti-
fied image are computed by bilinear interpolation.

Reconstruction of 3-D points by triangulation [7] can be
performed from the rectified images directly, using Pn1,Pn2.

5 Summary of the rectification algorithm

Given the high diffusion of stereo in research and applica-
tions, we have endeavored to make our algorithm as eas-
ily reproducible and usable as possible. To this purpose, we
give the working MATLAB code of the algorithm; the code is
simple and compact (22 lines), and the comments enclosed
make it understandable without knowledge of MATLAB. The
usage of the rectify function (see MATLAB code) is the
following:

– Given a stereo pair of images I1,I2 and PPMs Po1,Po2
(obtained by calibration);

– compute [T1,T2,Pn1,Pn2] = rectify(Po1,Po2);
– rectify images by applying T1 and T2.

function [T1,T2,Pn1,Pn2] = rectify(Po1,Po2)

% RECTIFY: compute rectification matrices

% factorize old PPMs

[A1,R1,t1] = art(Po1);

[A2,R2,t2] = art(Po2);

% optical centers (unchanged)

c1 = - inv(Po1(:,1:3))*Po1(:,4);

c2 = - inv(Po2(:,1:3))*Po2(:,4);

% new x axis (= direction of the baseline)

v1 = (c1-c2);

% new y axes (orthogonal to new x and old z)

v2 = cross(R1(3,:)’,v1);

% new z axes (orthogonal to baseline and y)

v3 = cross(v1,v2);

% new extrinsic parameters

R = [v1’/norm(v1)

v2’/norm(v2)

v3’/norm(v3)];

% translation is left unchanged

% new intrinsic parameters (arbitrary)

A = (A1 + A2)./2;

A(1,2)=0; % no skew

% new projection matrices

Pn1 = A * [R -R*c1 ];

Pn2 = A * [R -R*c2 ];

% rectifying image transformation

T1 = Pn1(1:3,1:3)* inv(Po1(1:3,1:3));

T2 = Pn2(1:3,1:3)* inv(Po2(1:3,1:3));

% ------------------------

function [A,R,t] = art(P)

% ART: factorize a PPM as P=A*[R;t]

Q = inv(P(1:3, 1:3));

[U,B] = qr(Q);

R = inv(U);

t = B*P(1:3,4);

A = inv(B);

A = A ./A(3,3);

A “rectification kit” including C and MATLAB imple-
mentation of the algorithm, data sets and documentation can
be found on line 1.

6 Experimental results

We ran tests to verify that the algorithm performed rectifi-
cation correctly, and also to check that the accuracy of the
3-D reconstruction did not decrease when performed from
the rectified images directly.

Correctness. The tests used both synthetic and real data.
Each set of synthetic data consisted of a cloud of 3-D points
and a pair of PPMs. For reasons of space, we report only two
examples. Figure 3 shows the original and rectified images
with a nearly rectified stereo rig: the camera translation was
−[100 2 3] mm and the rotation angles roll=1.5o, pitch=2o,
yaw=1o. Figure 4 shows the same with a more general ge-
ometry: the camera translation was −[100 20 30] mm and
the rotation angles roll=19o pitch=32o and yaw=5o.

Real-data experiments used calibrated stereo pairs, cour-
tesy of INRIA-Syntim. We show the results obtained with a
nearly rectified stereo rig (Figure 5) and with a more general
stereo geometry (Figure 6). The pixel coordinates of the rec-
tified images are not constrained to lie in any special part of
the image plane, and an arbitrary translation were applied to
both images to bring them in a suitable region of the plane;
then the output images were cropped to the size of the input
images. In the case of the “Sport” stereo pair (image size
768×576), we started from the following camera matrices:

Po1 =

 9.765·102 5.382·101 −2.398·102 3.875·105

9.849·101 9.333·102 1.574·102 2.428·105

5.790·10−1 1.108·10−1 8.077·10−1 1.118·103



Po2 =

 9.767·102 5.376·101 −2.400·102 4.003·104

9.868·101 9.310·102 1.567·102 2.517·105

5.766·10−1 1.141·10−1 8.089·10−1 1.174·103

 .
After adding the statement A(1,3) = A(1,3) + 160

to the rectify program, to keep the rectified image in the

1 http://www.sci.univr.it/˜fusiello/rect.html
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Fig. 3 Nearly rectified synthetic stereo pair (top) and rectified pair
(bottom). The figure shows the epipolar lines of the points marked with
a circle in both images.
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Fig. 4 General synthetic stereo pair (top) and rectified pair (bottom).
The figure shows the epipolar lines of the points marked with a circle
in both images.

center of the 768×576 window, we obtained the following
rectified camera matrices:

Pn1 =

 1.043·103 7.452·101 −2.585·102 4.124·105

1.165·102 9.338·102 1.410·102 2.388·105

6.855·10−1 1.139·10−1 7.190·10−1 1.102·103



Pn2 =

 1.043·103 7.452·101 −2.585·102 4.069·104

1.165·102 9.338·102 1.410·102 2.388·105

6.855·10−1 1.139·10−1 7.190·10−1 1.102·103

 .
Accuracy. In order to evaluate the errors introduced by rec-
tification on reconstruction, we compared the accuracy of

Left image Right image

Rectified left image Rectified right image

Fig. 5 “Sport” stereo pair (top) and rectified pair (bottom). The right
pictures plot the epipolar lines corresponding to the points marked in
the left pictures.

Left image Right image

Rectified left image Rectified right image

Fig. 6 “Color” stereo pair (top) and rectified pair (bottom). The right
pictures plot the epipolar lines corresponding to the points marked in
the left pictures.

3-D reconstruction computed from original and rectified im-
ages. We used synthetic, noisy images of random clouds of
3-D points. Imaging errors were simulated by perturbing the
image coordinates, and calibration errors by perturbing the
intrinsic and extrinsic parameters, both with additive, Gaus-
sian noise. Reconstruction were performed using the Linear-
Eigen method [7].

Figures 7 and 8 show the average (over the set of points)
relative error measured on 3-D point position, plotted against
noise. Figure 7 shows the results for the stereo rig used in
Figure 4, and Figure 8 for the one used in Figure 3. Each
point plotted is an average over 100 independent trials. The
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Fig. 7 Reconstruction error vs noise levels in the image coordinates
(left) and calibration parameters (right) for the general synthetic stereo
pair. Crosses refer to reconstruction from rectified images, circles to
reconstruction from unrectified images.
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Fig. 8 Reconstruction error vs noise levels in the image coordinates
(left) and calibration parameters (right) for the nearly rectified syn-
thetic stereo pair. Crosses refer to reconstruction from rectified images,
circles to reconstruction from unrectified images.

abscissa is the standard deviation of the relative error on co-
ordinates of image point or calibration parameters.

7 Conclusion

Dense stereo matching is greatly simplified if images are
rectified. We have developed a simple algorithm, easy to un-
derstand and to use. Its correctness has been demonstrated
analytically and by experiments. Our tests show that recon-
structing from the rectified image does not introduce appre-
ciable errors compared with reconstructing from the original
images. We believe that a general rectification algorithm, to-
gether with the material we have made available on line, can
prove a useful resource for the research and application com-
munities alike.
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