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Abstract We present a general framework for geomet-
ric model fitting based on a set coverage formulation,
that caters for intersecting structures and outliers in
a simple and principled manner. The multi-model fit-
ting problem is formulated in terms of the optimiza-
tion of a consensus-based global cost function, which
allows to sidestep the pitfalls of preference approaches
based on clustering and to avoid the difficult trade-off
between data fidelity and complexity of other optimiza-
tion formulations. Two especially appealing character-
istics of this method are the ease with which it can
be implemented and its modularity with respect to the
solver and to the sampling strategy. Few intelligible pa-
rameters need to be set and tuned, namely the inlier
threshold and the number of desired models. The sum-
mary of the experiments is that our method compares
favourably with its competitors overall, and it is always
either the best performer or almost on par with the best
performer in specific scenarios.

Keywords Set cover · Multi-model fitting · Robust
estimation · Geometric fitting

1 Introduction

Finding multiple models (or structures) that fit data
corrupted by noise and outliers is an omnipresent prob-
lem in empirical sciences, including Computer Vision,
where organizing unstructured visual data in higher
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level geometric structures is a basic and necessary step
to derive better descriptions and understanding of a
scene. This challenging problem has a chicken-and-egg
pattern: in order to estimate models one needs to first
segment the data, and in order to segment the data it
is necessary to know which structure points belong to.

Moreover, the presence of multiple structures pushes
robust estimation to its limit, because, in addition to
rogue points, the outliers to a structure of interest in-
clude all the inliers to the other structures.

Among the wide range of methods proposed in Com-
puter Vision to address the challenge of multiple mod-
els geometric fitting, the analysis of consensus together
with its counterpart, the analysis of preferences, can be
recognized as leitmotifs recurring throughout the exten-
sive literature on the subject. The consensus set of a
model is simply defined as the set of points that are in-
liers to that model. Dually, the preference set of a point
is the set of models to which that point is inlier. Most
of the multi-model fitting techniques proposed in the
literature can be ascribed to one of these two concepts,
according to which horn of the chicken-egg-dilemma is
addressed first.

Consensus-based algorithms put the emphasis on
the estimation part and focus on models that describe
as many points as possible. On the other hand, prefer-
ence approaches concentrate on the segmentation side
of the problem, and aim at finding a proper partition
of the data, from which model estimation follows.

In this paper we formulate the multi-model fitting
problem within the consensus framework, and cast it
into a Maximum Coverage problem, that caters for in-
tersecting structures and outliers in a simple and prin-
cipled manner.

A preliminary version of this paper appeared as [1].
In this paper we expanded the introductory material
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with additional insights, and added some new experi-
ments on 3D point clouds.

2 Background

In this section we shall pursue the path that has been
followed in the literature to address the challenges of
multiple structures recovery, starting from consensus
throughout preference analysis.

2.1 Consensus analysis

Consensus analysis stands out as one of the first suc-
cessful efforts to address robust model estimation. The
methods belonging to this category follow a common
paradigm. At first the space Θ of all the feasible struc-
tures is approximated as a suitable finite hypothesis
space Ξ in different ways. Then a voting procedure
elects the structures in Ξ that best explain the data
in terms of consensus.

The idea of exploiting consensus is at the core of
the celebrated Ransac (Random Sample Consensus) [2],
aimed at estimating the parameters of a single model in
the presence of large amounts of outliers. Ransac max-
imizes the size of the consensus set of a structure by
searching through a pool of putative structures deter-
mined by random sampling. In particular at each it-
eration a Minimum Sample Set (MSS) – composed by
the minimum number, say ζ, of points necessary to in-
stantiate the free parameters of a model – is drawn. In
this way the estimation problem in the continuous do-
main Θ is converted into a selection problem in a finite
discretized subset Ξ ⊂ Θ. For each estimated model
the corresponding consensus set is computed counting
the residuals below the inlier threshold. This procedure
is repeated until a structure having enough supporting
inliers is discovered among the data.

A number of efforts have been made to improve the
RANSAC paradigm. For example, MSAC (M-estimator
Sample Consensus) and MLESAC (Maximum Likeli-
hood Estimation Sample Consensus) [3] propose to in-
crease the robustness of the Ransac paradigm incor-
porating the use of M-estimator techniques. A lot of
other refinements in terms of both accuracy and effi-
ciency have been made [4], for example different sam-
pling strategies have been proposed in the literature to
reduce the number of iterations necessary to recovery
an inlier structure. A nice survey on all these advance-
ments can be found in [5] or in the more comprehen-
sive overview of recent researches presented in [6] where
Usac (Universal Framework for Random Sample Con-
sensus) is derived.

A straightforward generalization to multiple mod-
els is Sequential Ransac, an iterative, greedy algorithm
that executes Ransac many times and removes the found
inliers from the data as each structure is detected. Zu-
liani et al. [7] pointed out some drawbacks of this greedy
esitmate-and-remove approach, which in fact may hap-
pen to be sub-optimal since the quality of the attained
solution can be affected by inaccurate estimation of the
initial structures. In order to correct this behaviour [7]
introduced Multi-Ransac, that replaces the sequential
scheme with a parallel approach. Rather than looking
for a single structure having the largest consensus, κ
models having maximal support are searched simulta-
neously at each iteration. This is done by updating it-
eratively a collection of κ models with κ new sampled
structures using a fusion procedure that enforces ex-
plicitly the disjointness of the obtained consensus sets.
However, as demonstrated experimentally in [8], this
method falls short in the presence of intersecting struc-
tures.

The Hough transform and its randomized version
[9] can be regarded as well as consensus-oriented algo-
rithms. In these approaches the parameter space Θ is
approximated as a quotient space Ξ = Θ/∼ in which
models are represented as equivalence classes of similar
structures. The space Ξ is hence employed to build an
accumulator collecting data votes: every point adds a
vote to the bins representing the structures it belongs
to. After voting is complete, the accumulator is anal-
ysed to locate the maxima that individuate the desired
structures. Differently from Ransac, where Ξ is a dis-
crete sampled version of Θ, in Hough transform the
elements of the hypothesis space provide an exhaustive
representation of the parameter space, and tentative
models are all considered simultaneously. This however
comes at the cost of defining a proper quantization of
the space, which rapidly becomes intractable as the de-
grees of freedom of the models increase. The Random-
ized Hough Transform instead of considering the votes
of all the points, exploits random sampling to approx-
imate the accumulator for votes, thereby reducing the
computational load.

A more general approach consists in finding modes
directly inΘ (e.g . [10]). In this way the difficulties of the
quantization step are alleviated by mapping the data
into the parameter space through random sampling and
then by seeking the modes of the distribution (e.g . with
with mean-shift [11]).

In all these consensus based methods, the approxi-
mation of Θ is a recurring and tricky issue. The crucial
point is that, when multiple structures are hidden in
the data, consensus oriented algorithms have to dis-
ambiguate between genuine structures and redundant
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ones, i.e. instances of the same model with slightly
different parameter. This issue is addressed by enforc-
ing several disjointedness criteria, either explicitly or
implicitly by different approximations of the solution
space.

For instance, Hough transform handles redundancy
by capturing similar structures in the same equivalence
class via the quantization of Θ. Along the same line,
the bandwidth used in mean shift can be thought as a
(softer) way to localize and aggregate redundant mod-
els. Also Sequential Ransac and Multi-Ransac enforce
disjointedness by avoiding to sample similar models.
In Sequential Ransac, this is implemented by the it-
erative removal of the discovered inliers and the sub-
sequent sampling of the hypotheses on the remaining
data. In Multi-Ransac this is more evident, since this
algorithm explicitly search for the best collection of k
disjoint models.

2.2 Preference analysis

In order to overcome some of the drawbacks inherent to
consensus methods, the problem has been tackled from
a different point of view, where the role of data and
models are switched: rather than representing models
and inspecting which points support them, the prefer-
ence sets of individual data points are examined.

This idea can be traced back to [12] where the resid-
uals distribution of points, with respect to a set of puta-
tive structures randomly sampled, is analysed. In par-
ticular, the most significant structures are revealed as
peaks in the histograms of the residuals. In addition, the
number of models is automatically determined by the
median number of modes found over all data points. In
practice, the mode-finding step of this strategy has low
accuracy and depends critically on the bin size adopted.
However this method has the merit to reformulate the
model-estimation task in a space where points are de-
scribed by their residuals.

Building on this idea, the J-Linkage algorithm [8,13]
was the first successful application of a preference-based
representation of data. A two steps first-represent-then-
cluster scheme is implemented: data are represented by
the votes they grant to a set of model hypotheses, then a
greedy agglomerative clustering is performed to obtain
a partition of the data.

Several elements in common with previous methods
can be recognized: an inlier threshold ε is used as in
Ransac and the idea of casting votes echoes Random-
ize Hough Transform. Despite that, J-Linkage does not
rely on a quantized space, which causes the shortcoming
of Hough Transform, nor on the residual space, which

leads to the difficulties of modes estimation, but ex-
plicitly introduces a conceptual space [14] where points
are portrayed by the preferences they have accorded to
random provisional models. The changes of perspective
entailed by preference analysis results in a different ap-
proach to the chicken-&-egg dilemma. Structures are
recognized as cluster of points in this preference space
therefore the emphasis is shifted from the estimation to
the segmentation part of the problem. T-Linkage [15]
extends this idea by using soft votes to depict points
preference more accurately.

Along the same line of J-Linkage, Kernel Fitting
(KF) [16], Robust Preference Analysis [17] (RPA) and
Random Cluster Model Simulated Annealing (RCMSA)
[18] exploits points preferences.

KF and RPA first derive a kernel matrix to mea-
sure agreement between preferences, then a (different)
transformation is applied in order to detect and remove
outliers. Then the cleaned kernel matrix is used by KF
to over-segment the remaining inliers and reassemble
the structures with a merging scheme. RPA performs
symmetric non negative factorization of the cleaned ker-
nel matrix, in order to extract the most representative
models. Robust statistic is then employed to assign the
points to the recovered structures.

RCMSA [18] organizes point preferences in a weighted
graph and the multi-model fitting task is stated as a
graph cut problem which is solved efficiently in an an-
nealing framework.

Finally, we can ascribe to preference analysis also all
the approaches based on higher order clustering [19,20,
21,22], where higher order similarity tensors are defined
between n-tuple of points as the probability of points
to be clustered together measured in terms of residual
errors with respect to provisional models. In this way
preferences give rise to a hypergraph whose hyperedges
encode the existence of a structure able to explain the
incident vertices. The problem of multi-model fitting is
hence reduced to finding highly connected component
in this preference hypergrpah. In practice, this similar-
ity tensor is usually flattened into a pairwise similarity
matrix and fed to a clustering method.

It goes without saying that the state-of-the art on
multi-model fitting can be also described along other
dimensions. The interested reader is referred to [23] for
a review of multi-model fitting from the perspective of
the optimization of a global energy functional.

2.3 A unified view

If one abstracts from the subtle differences between
the implementations of the various multi-model fitting
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techniques based on either consensus or preferences, a
unified view can be readily achieved by looking at the
consensus/preference matrix P defined as

P (i, j) =

{
1 if err(xi, θj) < ε

0 otherwise
(1)

where xi ∈ X are data points, θj ∈ Ξ are tentative
structures, err : X×Θ → R+ is a suitable error function
that associates to every point-model pair (x, θ) ∈ X×Θ
the corresponding deviation or residual err(x, θ), and ε
is the inlier threshold.

The binary matrix P can be interpreted in several
ways. It can be regarded as the incidence matrix of
an hyper-graph where rows correspond to vertices and
columns represent hyper-edges. Its rows, identified with
preference sets, can be interpreted as representations
of data in high dimensional spaces. In both these cases
multi-model fitting boils down to cluster analysis.

Changing the perspective, if columns are taken into
account they can be regarded as a collection of consen-
sus sets. Ransac and Sequential Ransac simply aim at
finding the column or the k columns respectively hav-
ing greatest sums. Multi-Ransac seeks for the k “most
orthogonal” columns having maximal consensus.

The binary preference matrix can be also viewed as
the biadjacency matrix of a bipartite graph, where one
set of vertices represents points and the other one rep-
resents structures, an edge links two vertices if the cor-
responding points belong to the consensus set of the re-
lated structures. Maximal bicliques in this graph corre-
spond to biclusters of points and structures. The prob-
lem of finding maximal edge biclique can be relaxed
to a continuous formulation that in turn is solved by
NMF [24]. However, strictly speaking in multi-model
fitting we are not interested in maximizing the number
of edges of a biclique, as explained in Figure 1. Never-
theless this interpretation traces an interesting connec-
tion with RPA which relies also on symNMF, a partic-
ular instance of NMF.

2.4 Preference vs Consensus

All the preference-oriented techniques lean towards the
segmentation side of the multi-model fitting problem.
Indubitably, they have the great advantage of casting
specific multi-model fitting problems in the general clus-
tering framework. Nevertheless it has been largely rec-
ognized by the research community that the segmenta-
tion/clustering problem is ill-posed, and that a “no free
lunch theorem" [25] holds, which states that a given
clustering method can be optimal only with respect to
some specific type of datasets.

1

1 1

1 1

1

Data Bi-adiacency Biclique

Fig. 1: Biclique interpretation. The binary preference
matrix can be interpreted as a bi-adiacency matrix of
a bipartite graph. The maximal edge biclique induces
a segmentation of the data in which a unique cluster
is determined in correspondence of the intersection of
the two lines. Two points remain unassigned, whereas
maximizing consensus leaves a single point unexplained.

Moreover, Kleinberg [26] confirms that clustering
techniques are inherently fraught with ambiguities: he
conceives an axiomatic theory in which he defines three
desirable properties that a clustering scheme ought to
satisfy, namely scale-invariance, a richness condition that
all partitions are achievable, and a consistency require-
ment on the shrinking and stretching of distances. In
this setting an “impossibility theorem” is derived, demon-
strating that there is no clustering function satisfying
simultaneously all the three properties. For example,
linkage clustering with a distance-based stopping con-
dition enjoys the nice theoretical properties of scale-
invariance and richness, but not consistency.

In addition, two other main issues are not satisfacto-
rily handled by clustering techniques. In first instance,
classical clustering approaches are designed to yield a
partition of the data, hence they are not suitable for ex-
plicitly dealing with intersecting structures. As a result,
they are either ignored or handled indirectly with some
ad hoc post processing on the obtained segmentations.

In second place, the treatment reserved to outliers
is not completely sound. For estimation purposes, gross
outliers ought to fall in a special group of points, but
clustering treats all the segments in the same way. This
is the reason why partitional clustering schemes are not
able to enforce robustness by simply throwing in one
additional model with the hope that outliers will be
clustered together. Hierarchical methods in practice are
more resilient to rogue points, but in principle outliers
do not have a specific treatment during the clustering
phase: for example T-Linkage relies on a posteriori spe-
cific heuristics to ensure robustness.

Consensus-oriented methods focus more on the esti-
maton part of the problem. Classical algorithms such as
Ransac, Sequential Ransac and Multi-Ransac in prac-
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tice do not operate on the whole matrix P as is the
case with preference analysis. The subtle and decisive
difference is that these consensus based techniques gen-
erate the columns of P iteratively to save computa-
tional efforts. This principle of parsimony has no draw-
back in case of single model estimation, but in multiple
model scenarios it causes the shortcomings of Sequen-
tial Ransac. Once a structure of inlier is detected, its
supporting points are removed and successive hypoth-
esis are sampled exploiting only the remaining of the
data, as a consequence inaccurate detection at early
stage of the algorithm can heavily deteriorate the re-
sults. In addition, points in the intersections do not
contribute to the sampling of subsequent structures and
this greedy strategy is inherently prone to achieve a
suboptimal segmentation (see Figure 2).

Data Greedy Optimal

842

7

7

Fig. 2: Shortcomings of greediness on a fitting line ex-
ample. Data points (on the left): three lines supporting
each 2, 4 and 8 points are intersected by two lines col-
lecting half the total number of points each (7 points).
Clearly these two lines fit all the data points, therefore
the optimal value for the MC problem is opt = 2, the
greedy algorithm will pick the 3 remaining lines.

This estimate-and-remove approach is tantamount
of enforcing disjointness on the attained structures, which
is essentially meant to distinguish between genuine struc-
tures and redundant ones.

In practice, however, using consensus as the only
criterion seems short-sighted, for true models can have
mutual intersections greater than redundant ones; in
this case the algorithm would fail in discerning authen-
tic structures, as shown in Figure 3.

2.5 Our approach

In this work we sidestep the pitfalls of clustering and
focus on the goal of maximizing consensus, promoting
a well motivated global objective function to the detri-
ment of less controllable and more fragile segmenta-
tion methods. In doing this, we shall, at the same time,
counteract the greediness and poor handling of inter-
secting models typical of consensus-based approaches.
For these reasons, we substitute partitions with the no-
tion of covers, so to restate the multi-model fitting task

Fig. 3: Redundant structures (left) may happen to have
fewer points in common than genuine intersecting ones
(right), for this reason consensus based method struggle
in the presence of multiple-structures.

in terms of covering problems, namely Set Cover and
Maximum Coverage. The main advantages of this ap-
proach are that

– points lying in model intersections are allowed to
belong to multiple structures,

– if the number of desired model is specified, robust-
ness to outlier is easily achieved in a neat way,

– the typical shortcoming of sequential approaches can
be avoided leveraging on optimal solvers

– the discrete fra of covering problems eludes, to some
extent, the tricky trade-off between data-fidelity and
model complexity of some optimization-based multi-
model fitting method.

3 Set Cover Formulation

In what follows we will assume a discrete setting in
which point votes are expressed by binary values, as in
Ransac or J-linkage. A consensus matrix P has to be
instantiated via random sampling, but we are agnostic
here on the specific sampling strategy (e.g . [27,28,17]).

At first we concentrate on the case in which all the
points are inliers (the case of outliers will be dealt with
later on). A natural requirement is to ask that all the
points are explained by some structures, in other words,
the true structures determine, by means of their con-
sensus sets, a cover of the data, i.e. a collection of sets
whose union contains X:

F = {Sj : j ∈ J} such that X ⊆
⋃
j∈J

Sj , (2)

Note that we are not requiring that these sets are dis-
joint, so we are not limited to partitions and we can
properly handle the case of intersecting models. By in-
voking the Occam’s principle, a straightforward formu-
lation is therefore to ask for a cover consisting of a
minimal number of consensus sets. In this way we are
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implicitly discouraging redundant models. Thus we are
naturally led to a Set Cover problem.

Definition 1 (Set Cover) Given a ground set X and
F = {S1, . . . , Sm} a cover of X, select the minimum
number of subsets from F that covers X.

In this formulation, X = {x1, . . . , xn} contains the
data points and the collection F = {S1, . . . , Sm} is com-
posed by the consensus sets of the sampled models
θ1, . . . , θm ∈ Ξ: i.e. Sj = {x ∈ X : err(x, θj) < ε} in-
stantiated on minimal sample sets as in Ransac. The
property that F is a cover of X can be easily enforced
by requiring that every points of X is sampled at least
once. Set Cover can be rephrased rigorously using the
matrix P in the constraints formulation and introduc-
ing m binary variables zj ∈ {0, 1} for each subset Sj .
If Sj is selected in the solution then zj = 1, other-
wise zj = 0. In this way Set Cover can be shown to
be equivalent to an Integer Linear Programming (ILP)
problem:

minimize
m∑
j=1

zj

subject to Pz ≥ 1.

(3)

The constraint can be expanded as∑
j:Sj3xi

zj ≥ 1 ∀xi ∈ X (4)

to emphasize that it is meant to ensures that the solu-
tion {Sj}j:zj=1 is a cover of X.

Empirically, we found beneficial to preprocess the
input as follows. First of all, keeping in mind that our
aim is to maximize consensus, we refit a structure to
each consensus set via least squares, and, if the consen-
sus has increased, we update the structure and its sup-
porting points. The remaining sets are hence ordered
by cardinality |S1| ≥ |S2| ≥ . . . ≥ |Sk| and a set Sj is
discarded if

Sj ⊆
j−1⋃
i=1

Si. (5)

The rationale of this choice is to keep only those
structures that cover at least one point that otherwise
would be left uncovered by the union of larger ones.
Please note that in particular we are also removing sub-
sets that are contained in one larger set.

Set Cover is long known to be NP-hard [29]: not sur-
prisingly, since the inherent complexity of multi-model
fitting does not disappear by simply rephrasing it in dif-
ferent terms. Nevertheless, this optimization problem
is among the oldest, most studied and widespread ones

in the mathematical programming literature. Therefore
we can reap the outcomes of the efforts made by the sci-
entific community in addressing this issues, and enjoy
the fruits of several studies focused on approximating
the solutions of this problem.

For example, the greedy strategy – hereinafter Greedy-
RansaCov– which keeps choosing the set that covers
most uncovered points until they all are covered, em-
bodies the spirit of Sequential Ransac with the only
differences that the hypothesis space is not sampled it-
eratively and, instead of returning a partition, inter-
secting segments are allowed. It has been demonstrated
by Feige [30] that this greedy strategy is the best possi-
ble in terms of approximation ratio. More precisely an
approximation of h(n) holds in the case of Set Cover

problem, where h(n) denotes the n-th harmonic num-
ber. This result applies effortless to Greedy-RansaCov
giving a provable quality measure of the solution.

Another straightforward strategy consist in solving
a relaxed Linear Programming (LP) problem and con-
verting the solution by rounding up all non-zero vari-
ables to 1. In this case [31] shows that the solution
achieves an approximation guarantee of a factor equal
to the maximal point frequency, where the frequency of
a point is the number of sets that cover that point. In-
terestingly enough, our preprocessing not only reduces
the number of sets to be considered, but also improves
the approximation factor of the relaxed LP solution, for
it actually reduces the maximal frequency of the points.

In practice, more sophisticated strategies are used
by ILP solvers, but the relaxed LP solution is a good
starting point. In our algorithm – henceforth dubbed
ILP-RansaCov– we use the intlinprog Matlab func-
tion, which attempts to tighten the LP relaxation with
several heuristics and falls back to branch and bound
in case of failure.

4 Maximum Coverage formulation

If X is corrupted by rogue points we can integrate them
in the formulation of the problem at the cost of intro-
ducing an additional parameter k equal to the desired
number of structures. Requiring some extra information
to deal with outliers seems to be unavoidable. In this
respect, k is a more guessable parameter than others.

Instead of trying to find the smallest number of sets
that cover all elements, we search for the largest number
of points that can be covered by k sets, possibly leaving
some points (the outliers) uncovered. This leads to the
so called Maximum Coverage problem.

Definition 2 (Maximum Coverage) Given a ground
set X, F = {S1, . . . , Sm} a collection of subsets of X
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and an integer k, select from F at most k subsets that
cover the maximum number of points in X.

This problem is translated in an ILP one thanks to a
collection of n auxiliary variables yi, such that yi = 1

if xi belongs to the returned subsets, 0 otherwise:

maximize
n∑

i=1

yi

subject to
m∑
j=1

zj ≤ k∑
j:Sj3xi

zj ≥ yi ∀xi ∈ X

0 ≤ yi ≤ 1, zj ∈ {0, 1}.

(6)

The first condition enforces that no more than k

sets are picked and the second constraint ensures that
if yi ≥ 0 then at least one set Sj 3 xi is selected.

The Maximum Coverage formulation can be straight-
forward generalized to a weighted version, where the
objective function is not the number of the points cov-
ered but the sum of their weights. This allows to take
advantage of any kind of available prior information to
promote or discourage the coverage of certain points by
weighting them.

Definition 3 (Weighted Maximum Coverage) Gi-
ven a ground set X, F = {S1, . . . , Sm} a collection of
subsets of X, weights ci ≥ 0 associated to the elements
of X and an integer k, select from F at most k subsets
that maximize the sum of the weight of covered points
in X.

The ILP formulation of the problem changes accord-
ingly, replacing the objective function of Maximum Cov-

erage expressed in Equation (6) with the sum of weights
of the covered points:

max

n∑
i=1

ciyi. (7)

Finally, please note that if k is not available, a prac-
tical solution is to solve Set Cover and detect outliers
a-posteriori as points belonging to structures with the
smallest consensus sets, as in J-linkage [15].

5 Relationship to Facility Location.

The closest methods to our in the literature are those
casting multi-model fitting as a Facility Location prob-
lem: provided a set of potential facilities (which cor-
responds to the pool of tentative structures), Facility

Location selects an optimal subset of facilities and as-
signs customers (i.e. data points) to one facility each,
so as to minimize the sum of facility opening costs and
the distances between customers to their assigned fa-
cilities. This leads to the optimization of a cost func-
tion composed by two terms, mimicking the classical
MAP-MRF objectives: a modelling error (customers-
facility distances) which can be interpreted as a likeli-
hood term, and a penalty term (the cost to open the
facilities) that encodes model complexity. Some authors
solves it with ILP [32,33,34,35] while others propose
different combinatorial optimization techniques [23,36,
37,38]. Although Set Cover and Facility Location are
related (the first can be rephrased as a special case of
the second) and ILP has been used to solve both, ILP-
RansaCov differs from previous work based on Facility

Location in many respects.
In first instance, Facility Location methods need to

strike the correct trade-off between data fidelity and
model complexity, in order to achieve the proper bal-
ance between over and under fitting. For example PeARL
[37,23] regularizes the modeling-fitting error, expressed
in terms of residual, by introducing a label costs that
penalizes the number of different structures, whereas
FLoSS [35], aimed at fitting subspace of different di-
mensions to outlier-free data, exploits a penalty term
encoding subspace dimension. In contrast, ILP-Ransa-
Cov elude this thorny trade-off: in the oultier-free sce-
nario Set Cover regularizes the solution invoking the
minimality of cover, while, if outliers are present, Max-

imum Coverage plainly requires the maximum number
of models as a clear, intelligible parameter, instead of
balancing two incommensurable quantity in the cost
function.

Second, Facility Location methods minimize the fit-
ting error on the continuum of residuals, in the same
spirit of MLE estimators, while ILP-RansaCov gains
resiliency to outliers by maximizing the consensus à la
Ransac. This comes at the price of assuming that all the
structures have the same error scale, while MLE-like es-
timators can compute the scale along the parameters of
each model.

In our formulation the rogue points will be simply
left uncovered by Maximum Coverage, whereas Facility

Location methods cope with outliers either by intro-
ducing a special additional model for which a constant
fidelity measure has to be manually tuned [23], or an
upper bound to the total number of outliers has to be
defined [33]

Finally, Facility Location approaches enforce hard-
membership constraints, producing a partition of the
data, whereas ILP-RansaCov inherently caters for in-
tersecting solutions.
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6 Experiments on simulated data

In this section we investigate the performance of ILP-
RansaCov with respect to Greedy-RansaCov, which em-
ulates Sequential Ransac, J-Linkage [8] and T-Linkage
[15] on synthetic data, using the same sampling and the
same inlier threshold for all the methods (or, equiv-
alently, the same P matrix). We obtained the imple-
mentations of J-Linkage and T-Linkage from [39]. The
Matlab code of ILP-RansaCov is available on the web1.

Performances are measured by the misclassification
errors (ME) – i.e. the percentage of misclassified points
– which is computed as follows. First, of all the map
between ground-truth labels and estimated ones that
minimize standard ME is found (as in [32]), then a point
is deemed as correct if at least one of its label is in
correspondence with the correct ground-truth one.

The data sets (Figure 4) consist of segments in sev-
eral configurations and circles, as in [8]. Each structure
consists of 50 inliers points, contaminated by Gaussian
noise and outlying points in different percentages (re-
ported in Table 1). All the methods have been provided
with the correct number of structures k; in the case of
J-Linkage and T-Linkage, among the structures pro-
duced by the algorithms the k ones with more support-
ing points are kept as inliers.

outliers J-Lnkg T-Lnkg Grdy-RansaCov ILP-RansaCov

Stair4 50% 10.20 10.00 39.20 12.00
Star5 60% 15.20 14.40 10.40 3.80
Star11 50% 35.00 33.09 32.36 25.18
Circle4 50% 26.50 23.00 30.25 11.25

mean 20.12 20.12 28.05 13.06

Table 1: Misclassification error (ME %) on simulated
data.

The results are collected in Figure 4 while Table
1 reports the misclassification errors (ME) – i.e. the
percentage of misclassified points.

First of all we can notice that in the Stair4 ex-
periment (originally used in [7] to criticize Sequential
Ransac), Greedy-RansaCov performs poorly. The short-
comings of this greedy strategy are here afoot: the incor-
rect selection of the first structure compromises the sub-
sequent interpretation of the data. A greedy approach
to the Maximum Coverage problem yields a suboptimal
segmentation also on the Circle4 dataset, where one of
the four structures is over-segmented by Greedy-Ransa-
Cov at the expense of the smaller circle in the centre.

On Star11 J-linkage misses a ground truth segment.
During the merging process some inliers are incorrectly

1 www.diegm.uniud.it/fusiello/demo/cov/

aggregated to spurious models, hence the recovered seg-
ment that actually corresponds to a ground truth struc-
ture collects fewer inliers, to the point that it falls out-
side the first k largest models and is deemed as outlier.
In general the tendency of loosing inliers during the seg-
mentation step affects J-Linkage (and T-Linkage) also
in the other datasets, e.g . it is particularly evident on
Circle4,

Even when the discovered inliers are enough to re-
cover the corresponding structures, this behaviour has
a detrimental effect on the model estimate, for it in-
creases the variance.

ILP-RansaCov yields reliable segmentations in all
the experiments, and it achieves the best average ME.
The reason can be ascribed to the non-greedy minimiza-
tion strategy (w.r.t. Greedy-RansaCov) and to the de-
parture from the partitioning paradigm (w.r.t. J-Linkage
and T-Linkage). As a matter of fact, when models do
not intersect, as in Stair4, the performance of J-Linkage
and T-Linkage are in the same range of ILP-RansaCov.

6.1 Computational complexity.

We run an experiment to probe of how the running
time scales with the input dimension and where the
time is spent. To this end, we run ILP-RansaCov on
a line fitting problem extracted from Star11 with vari-
able number of sampled models and number of points.
The execution times, broken down for each step, are
reported in Figure 7.

The instantiation of the preference matrix (sam-
pling) dominates the complexity for moderate point
number, whereas ILP takes over when the number of
points increases. Also, while the dependence from the
number of sampled models appears to be polynomial,
the execution time grows exponentially with the num-
ber of points, in accordance with theoretical prediction.

The impact of the preprocessing step, related to
Equation (5), is negligible in terms of the running time,
but it improves the quality of the solution: e.g ., with
reference to Table 4 (F), the mean ME of ILP-Ransa-
Cov without this refinement raises to 11.44.

7 Experimental comparison on real data

In this section, we demonstrate the performance of ILP-
RansaCov on three classical Computer Vision applica-
tions, namely: i) vanishing point detection, ii) video mo-
tion segmentation, and iii) two-views segmentation. In
all these scenarios we compare ILP-RansaCov with J-
Linkage [8], T-linkage [15] and RPA [17], whose imple-
mentation is taken from [40].
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Fig. 4: Comparison on simulated data (outliers marked as x).

Fig. 5: A sample of the worst ILP-RansaCov results on YorkUrbanDB (vanishing point detection). Line mem-
bership is color-coded.

In addition, one reference method have been added
to the comparison for each specific scenario, namely:
MFIGP [38] in the vanishing point experiments, SSC
[41] for video motion segmentation and RCMSA [18]
for two-views segmentation. These methods have been
selected because i) they are among the best perform-
ers, ii) the original code from the authors is available
(MFIGP [42], RCMSA [42], SSC [43]), and iii) they
have been tested on the same respective datasets, and
this allows also indirect comparison with other methods
considered in the respective papers [38,41,18].

MFIGP and RCMSA are considered only in one sce-
nario out of three because the authors provided the
tuning parameters only for that particular application
(vanishing point detection and two-views segmentation,
respectively). SSC instead is tailored specifically to sub-
space segmentation, hence it cannot be applied in the
other two cases (where models are not linear or affine
subspaces).

All the algorithms but SSC and RCMSA were pro-
vided with the same pool of putative models, sampled
as in [17]. Since none of the competing algorithm had
special provisions for the outlier-free case, the Maximum
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Fig. 6: Results on YorkUrbanDB. (a) is the cumulative
distributions of the errors per sequence; (b) shows the
area above the curve (the smaller the better).
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Fig. 7: Execution time of ILP-RansaCov on simulated
data w.r.t. the dimensions of the problem.

Coverage version of ILP-RansaCov has been used in
this experiment, for the sake of fairness.

7.1 Vanishing point detection.

In this experiment we compare the performances of
ILP-RansaCov with MFIGP on vanishing point detec-
tion using the York Urban Line Segment Database [44],
or York Urban DB in short, a collection of 102 images of
architectural Manhattan-like environments (i.e. scenes
dominated by two or three mutually orthogonal van-
ishing directions). Annotated line-segments that match
with the 3-d orthogonal frame of the urban scene are
provided with the ground-truth, no outliers are present
in the data. The aim is to group the supplied segments
in order to recover two or three orthogonal vanishing
points.

MFIGP (Model Fitting with Interacting Geometric
Priors) is a recently proposed method [38] that builds
on [37] adding high-level geometric priors. In particular,
in this application, an additional term expressing inter-
action between vanishing points is included into the Fa-

cility Location formulation, to promote the extraction
of orthogonal vanishing points. The global input pa-
rameters recommended in the original paper have been
optimized individually for each single image to enhance
the results.

Figure 5 shows three images where ILP-RansaCov
achieved the worst ME, which are nevertheless qual-

J-Lnkg T-Lnkg RPA MFIGP Grdy-RansaCov ILP-RansaCov

Mean 2.85 1.44 1.08 3.51 2.38 0.19
Med 1.80 0.00 0.00 0.16 0.00 0.00

Table 2: Misclassification error (ME %) on YorkUr-
banDB.

itatively correct. Figure 6(a) reports the cumulative
distribution of the ME per sequence, i.e. the value on
the ordinate corresponds to the percentage number of
sequences where the algorithm achieved a ME lower
than the abscissa. The differences among the methods
can be better appreciated by plotting the area above
the cumulative distribution of ME (Figure 6(b)) or by
analysing the average and median ME, collated in Table
2. These quantitative results confirms that ILP-Ransa-
Cov achieves the most accurate performance, followed
by RPA. As MFIGP enhances PeARL, figures in Table
2 indirectly corroborate the advantage of ILP-Ransa-
Cov over PeARL. Please note also that Greedy-Ransa-
Cov, a proxy of the vilified Sequential Ransac, performs
better than other sophisticated methods, in this task.

7.2 Video motion segmentation.

In this experiments we considered Sparse Subspace Clus-
tering [41] a state-of-the-art technique that exploits a
sparse representation to build an affinity matrix, which
in turns is segmented by spectral clustering.

We use the 51 real video sequences from the Hopkins
155 dataset [45], each containing two or three moving
objects, with no outliers. The input data is a set of
features trajectories across a video taken by a moving
camera, and the aim is to recover the different rigid-
bodies. Motion segmentation can be seen as a subspace
segmentation problem under the assumption of affine
cameras. In this case all feature trajectories associated
with a single moving object lie in a linear subspace of
dimension at most 4 in R2f (where f is the number
of video frames). For this reason feature trajectories of
a dynamic scene containing n rigid motion lie in the
union of n low dimensional subspace of R2f and seg-
mentation can be reduced to clustering data points in a
union of subspaces. Following [46], in order to deal with
degenerate motions, we project the data onto an affine
4-dimensional space where the rigid-body segmentation
is translated in a 3-d plane fitting problem.

Figure 8 reports some sample results, in particular
three sequences belonging to Traffic2 and Others3
subsets, respectively, where ILP-RansaCov achieves sub-
optimal segmentations. Figure 9 and Table 3 provide a
comparison of the performances in terms of ME: ILP-
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Fig. 8: A sample of the worst ILP-RansaCov results on Hopkins155 (video motion segmentation). Point
membership is color-coded.
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Fig. 9: Results on Hopkins155. (a) is the cumulative
distributions of the errors per sequence; (b) shows the
area above the curve (the smaller the better).

J-Lnkg T-Lnkg RPA SSC Grdy-RansaCov ILP-RansaCov

Traffic3 Mean 1.58 0.48 0.19 0.76 28.65 0.35
Med 0.34 0.19 0.00 0.00 1.53 0.19

Traffic2 Mean 1.75 1.31 0.14 0.06 7.48 0.54
Med 0.00 0.00 0.00 0.00 0.00 0.00

Others3 Mean 6.91 5.32 9.11 2.13 14.89 2.13
Med 6.91 5.32 9.11 2.13 14.89 2.13

Others2 Mean 5.32 6.47 4.41 3.95 8.57 2.40
Med 1.30 2.38 2.44 0.00 0.20 1.30

All Mean 2.70 2.47 1.42 1.08 10.91 0.98
Med 0.00 0.00 0.00 0.00 0.00 0,00

Table 3: Misclassification error (ME %) on Hopkins155.

RansaCov places in the same range of SSC and achieves
the best overall results. In this case the advantage of
solving the Maximum Coverage problem with a global
approach is afoot, since the greedy strategy of Greedy-
RansaCov, sampling being equal, fails in recovering ac-
curate segmentations.

Please note that FLoSS [35] has been evaluated on
the Hopkins 155 dataset, therefore an indirect compar-
ison with our method can be derived. Even if FLoSS
handles a variety of models that can describe the dy-
namic scenes more accurately, ILP-RansaCov enjoys
comparable performance and still achieves the best over-
all results.

7.3 Two-views segmentation.

In this experiment we additionally compare ILP-Ransa-
Cov against RCMSA [18] on the Adelaide Robust Model
Fitting Data Set, or AdalaideRMF in short, which con-
sists of 38 image pairs, 19 related by multiple homogra-
phies (H) and 19 by multiple fundamental matrices (F),
with outliers. The task involves segmenting different
planes/moving objects by fitting homographies/funda-
mental matrices to subsets of corresponding points.

All the methods are given the inlier threshold com-
puted from the available ground truth.

Some failure examples are reported in Figure 10.
The left image is an example of under-segmentation,
where a unique fundamental matrix explains both the
cube and the toy (red points). In the middle image ILP-
RansaCov fails in detecting one planar structure (sec-
ond wall of the building from the left). In the right im-
age the campanile (on the very right) is over-segmented,
and this “consumes" one of the available k models, there-
by preventing the nearby wall to be detected.

From the data reported in Figure 11 and Table 4,
the reader can appreciate that the ME achieved by ILP-
RansaCov is consistently lower than RCMSA and in the
same range of RPA.

In order to evaluate the relative importance of mul-
tiple membership with respect to the optimization me-
thod we have rephrased Multi-Ransac in the framework
of maximal coverage: the strategy is similar to Greedy-
RansaCov, the difference is that, after a set is picked,
the subsequent ones are searched among those having
maximal Jaccard distance with the currently covered
elements, thereby maximizing disjointedness. Even if a
point can be assigned to multiple model, experiments
demonstrated that the performances are inferior to ILP
solutions (ME is: 2.97 for VP, 4.58 for video sequences,
26.85 for homographies and 17.01 for fundamental ma-
trices), confirming the crucial role of adopting a global
optimization technique.

To complete the picture Table 5 reports the time
spent by ILP-RansaCov in each experiment on real data.
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Fig. 10: A sample of the worst ILP-RansaCov results on AdelaideRMF (two-views segmentation). Point mem-
bership is color-coded, black crosses are points classified as outliers.
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Fig. 11: Results on AdelaideRMF. (a) is the cumulative
distributions of the errors per sequence; (b) shows the
area above the curve (the smaller the better).

J-Lnkg T-Lnkg RPA RCMSA Grdy-RansaCov ILP-RansaCov

F Mean 16.43 9.37 5.49 12.37 17.08 6.04
Med 14.29 7.80 4.57 9.87 21.65 4.27

H Mean 25.50 24.66 17.20 28.30 26.85 12.91
Med 24.48 24.53 17.78 29.40 28.77 12.34

Table 4: Misclassification error (ME %) for motion seg-
mentation (F) and plane segmentation (H) on Adelai-
deRMF.

A comparison with other methods would have been
meaningless for they are not fully coded in Matlab
as ours.

While it is understood that ILP is a NP-hard prob-
lem, execution time can be improved by fine tuned
heuristics (e.g . [47]) and careful implementation in com-
piled language.

YorkUrbanDB Hopkins155 Adelaide (F) Adelaide (H)

mean 8.09 41.19 52.24 146.34
median 1.14 11.56 48.79 51.12

Table 5: Execution time [s] of ILP-RansaCov on real
data.

8 Qualitative experiments on plane fitting.

Multiple structure recovery can be fruitfully employed
in the contest of automatic architectural and urban
modelling from images. In this scenario usually a re-
construction technique produces arbitrarily dense but
unstructured points clouds. Fitting multiple geometric
primitives to these point clouds is a first step in orga-
nizing it in a higher informative semantic level. In this
section we asses the performance of ILP-RansaCov on
this application, in particular we consider the problem
of fitting plane to 3D-point clouds produced by struc-
ture from motion. The data are the same used in [38]
and they have been retrieved from the Oxford Colleges
building reconstruction dataset [48] (Merton College
3) and from [49] (Pozzoveggiani and Piazza Dante).
Since ground truth is not available, the assessment can
be only qualitative; however the reader will appreciate
in Figure 12 that the main constituting planes are cor-
rectly recovered.

9 Conclusions

We formulated multi-model fitting in terms of Set Cover

and Maximum Coverage problems, yielding a simple and
easy to implement method that generalizes Ransac to
the case of multiple structures in a neat and principled
manner.

The multi-model fitting problem is formulated in
terms of optimization of a global cost function, thereby
eluding the greediness of techniques such as Sequential/-
Multi-Ransac and J-linkage, but at the same time avoid-
ing the difficult trade-off between data and complexity
terms of other formulations, by resorting to consensus
maximization. In both cases, we tackle the problem of
intersecting models at the root, by replacing partitions
with coverages.

ILP-RansaCov is modular with respect to the ILP
solver and to the sampling strategy. There are few pa-
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(a) Pozzoveggiani (b) Piazza Dante (c) Merton College 3

(d) Pozzoveggiani (e) Piazza Dante (f) Merton College 3

Fig. 12: Qualitative assessment of ILP-RansaCov for fitting planes to 3D point clouds. The first row show a plan
view of the fitting results of ILP-RansaCov, whereas the second row shows the same cloud of points from a casual
viewpoint. Plane membership is colour-coded.

rameters that require tuning – namely the inlier thresh-
old and the number of desired model – and these have
the added virtue of being intuitive in their meaning and
function.

In summary, we expect that this paper will offer
practitioners a manageable tool for addressing a diffi-
cult and ubiquitous problem, and will provide the com-
munity a reference baseline for further advancements.
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