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Abstract This paper deals with the problem of epipolar rec-
tification in the uncalibrated case. First the calibrated (Eu-
clidean) case is recognized as the ideal one, then we observe
that in that case images are transformed with a collineation
induced by the plane at infinity, which has a special struc-
ture. Hence, that structure is imposed to the sought transfor-
mation while minimizing a rectification error. Experiments
show that this method yields images that are close to the
ones produced by Euclidean rectification.

1 Introduction

Epipolar rectification is an important stage in dense stereo
matching, as almost any stereo algorithm requires rectified
images, i.e., images where epipolar lines are parallel and
horizontal and corresponding points have the same verti-
cal coordinates. Whereas in 3D reconstruction the cameras
are usually calibrated, in other applications such as view-
synthesis [12] and parallax-based mosaics [10] the internal
parameters are unknown.

In the case of calibrated cameras the Euclidean epipolar
rectification is unique up to trivial transformations [2]. On
the contrary, in the case of uncalibrated cameras, there are
more degrees of freedom in choosing the rectifying trans-
formation [7] and a few competing methods are present in
the literature [11,13]. Each aims at producing a “good” rec-
tification by minimizing a measure of distortion, but none
is clearly superior to the others, not to mention the fact that
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there is no agreement on what the distortion criterion should
be.

Above all, none of them achieves results comparable
to the Euclidean epipolar rectification, which can be indis-
putably taken as the target result. This paper aims at achiev-
ing a good approximation of the Euclidean epipolar rectifi-
cation, which we refer to as quasi-Euclidean epipolar recti-
fication.

Geometrically, in the Euclidean frame, rectification is
achieved by a suitable rotation of both image planes. The
corresponding image transformation is the collineation in-
duced by the plane at infinity. As a result, the plane at infinity
is the locus of zero-disparity in the rectified stereo pair. This
is signified by saying that Euclidean rectification is done
with respect to the plane at infinity. Rectification is always
referred to a plane, but in the uncalibrated case the reference
plane is generic, for any plane can play the role of the infin-
ity plane in the projective space. Our quasi-Euclidean recti-
fication can be seen as referred to a plane that approximates
the plane at infinity.

1.1 Previous work

The first work on uncalibrated rectification (called “matched-
epipolar projection”) is [4], followed by [7], where the au-
thor tidies up the theory. He uses the condition that one of
the two collineations should be close to a rigid transforma-
tion in the neighborhood of a selected point, while the re-
maining degrees of freedom are fixed by minimizing the dis-
tance between corresponding points (disparity). Along the
same line, [17] also proposes a distortion criterion based on
simple geometric heuristics.

The state-of-the-art papers in uncalibrated rectification
[13,11] dates back to 1999. Loop and Zhang [13] decom-
pose each collineation into similarity, shearing and projec-
tive factors and attempt to make the projective component
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“as affine as possible”. Isgrò and Trucco [11] build upon [7]
and propose a method that avoids computation of the fun-
damental matrix, using the same distortion criterion as in
[7]. The practice has shown that the rectification produced
by these methods is not always satisfactory, if compared to
results obtained in the calibrated case. Wu and Yu [9] ar-
gue that minimizing the disparity might be the cause of the
problem, and propose a technique which is similar to [11]
but uses a different distortion criterion derived from [13].
Rectification ends up in a non-linear minimization with six
degrees of freedom. In [3] the transformation that best pre-
serve the sampling of the original images is selected, by
penalizing minification and magnification effects. A similar
approach, described in [16], consist in favoring transforma-
tions close to orthogonal, which translates in evaluating the
singular values of the Jacobian.

A different approach is followed in [1]: they design the
collineations so as to minimize the relative distortion be-
tween the rectified images (instead of the distortion of each
rectified image with respect to the original one), and the re-
maining degrees of freedom are fixed by choosing the refer-
ence plane in the scene, that will have zero disparity in the
rectified pair. This choice, which affects sensibly the quality
of rectification, is left to the user. The merit of this approach,
however, is to make the role of the reference plane explicit.

2 Background

In this section we shall briefly recapitulate the theory of cal-
ibrated (or Euclidean) epipolar rectification; the reader is re-
ferred to [2] for more details.

Given two camera matrices Por and Po`, the idea behind
rectification is to define two new virtual cameras Pnr and
Pn` obtained by rotating the actual ones around their optical
centres until focal planes become coplanar. The rectification
method describes how to compute the new cameras. Then
(we concentrate on the right camera, but the same reasoning
applies to the left one), the rectifying transformation that is
to be applied to the image is given by the 3×3 matrix:

Hr = Pnr1:3
P−1

or1:3
(1)

where the subscript denotes a range of columns.
It is easy to see that Hr is the collineation induced by the

plane at infinity between the old and the new cameras, hence
it can be written as:

Hr = KnrRrK−1
or (2)

where Kor and Knr are the intrinsic parameters of the old
and new camera respectively, and Rr is the rotation that is
applied to the old camera in order to rectify it.

The rectified images are as if they were taken by a pair of
cameras related by a translation along the baseline. Hence,
the zero-disparity plane is at infinity.

3 Method

We shall henceforth concentrate on the uncalibrated case.
We assume that intrinsic parameters are unknown and that
a number of corresponding points m j

` ↔ m j
r are available.

The method follows the same line as in [11]: it seek the
collineations that make the original points satisfy the epipo-
lar geometry of a rectified image pair.

The fundamental matrix of a rectified pair has a very
specific form, namely it is the skew-symmetric matrix asso-
ciated with the cross-product by the vector u1 = (1,0,0):

[u1]× =

0 0 0
0 0 −1
0 1 0

 (3)

Let Hr and H` be the unknown rectifying collineations. When
they are applied to the corresponding tie-points m j

`,m
j
r re-

spectively, the transformed points must satisfy the epipolar
geometry of a rectified pair, namely:

(Hrm j
r)

T[u1]×(H`m
j
`) = 0, (4)

The left-hand side of (4) is an algebraic error, i.e., it has no
geometrical meaning, so we used instead the Sampson error
[15,5], that is a first order approximation of the geometric
error. The matrix F = HT

r [u1]×Hl can be considered as the
fundamental matrix between the original images, therefore,
in our case, the squared Sampson error for the j-th corre-
spondence is defined as:

E2
j =

(m j
r
T

Fm j
`)

2

(Fm j
`)

2
1 +(Fm j

`)
2
2 +(m j

r
T

F)2
1 +(m j

r
T

F)2
2

(5)

where (·)i is the ith component of the normalized vector.
As this equation must hold for any j, one obtains a sys-

tem of non-linear equations {E j = 0} in the unknown Hr
and H`. A least-squares solution can be obtained with the
Levenberg-Marquardt algorithm, but the way in which Hr
and H` are parameterized is crucial, and characterizes our
approach with respect to the previous ones. We force the
rectifying collineations to have the same structure as in the
calibrated (Euclidean) case, i.e., to be collineations induced
by the plane at infinity, namely

Hr = KnrRrK−1
or H` = Kn`R`K−1

o` . (6)

The old intrinsic parameters (Ko`,Kor) and the rotation ma-
trices (R`,Rr) are unknown, whereas the new intrinsic pa-
rameters (Kn`,Knr) can be set arbitrarily, provided that verti-
cal focal length and vertical coordinate of the principal point
are the same. Indeed, it is easy to verify that the matrix
KT

nr[u1]×Kn` is equal (up to scale) to [u1]×, provided that
the second and third row of Knr and Kn` are the same. Hence
it is not necessary to include the matrices Knr and Kn` in the
parameterization.
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Each collineation depends in principle on five (intrinsic)
plus three (rotation) unknown parameters. The rotation of
one camera along its X-axis, however, can be eliminated.
Consider the matrix

F = K−T
or RT

r [u1]×R`K−1
o` . (7)

Let R′r and R′` be the same matrices as Rr and R` after pre-
multiplying with an arbitrary (but the same for both) rotation
matrix about the X-axis. It is easy to verify that RT

r [u1]×R` =
R′Tr [u1]×R′`. Geometrically, this coincide with rotating a rec-
tified pair around the baseline, which do not alter the recti-
fication, but, in a real camera, it affects the portion of the
scene that is imaged. Accordingly, we set to zero the rota-
tion around the X-axis of the left camera.

We further reduce the number of parameters by making
an educated guess on the old intrinsic parameters: no skew,
principal point in the centre of the image, aspect ratio equal
to one. The only remaining unknowns are the focal lengths
of both cameras. Assuming that they are identical1 and equal
to α , we get:

Kor = Ko` =

α 0 w/2
0 α h/2
0 0 1

 (8)

where w and h are width and height (in pixel) of the image.
In summary, the two collineations are parameterized by

six unknowns: five angles and the focal length α . As sug-
gested in [8], the focal length is expected to vary in the
interval [1/3(w + h),3(w + h)], so we consider instead the
variable α ′ = log3(α/(w+h)) which varies in [−1,1].

The minimization of the cost function (Program 1) is
carried out using Levenberg-Marquardt, starting with all the
unknown variables set to zero. When α ′ converges outside
the boundaries of the interval [−1,1] a random restart is at-
tempted. If the problem persist the minimization is carried
out with fixed α ′ = 0.

Finally, the new intrinsic parameters (Knr and Kn`) are
set equal to the old ones: Knr = Kn` = Ko`, modulo a shift of
the principal point, that might be necessary to centre the rec-
tified images in the customary image coordinate frame. Hor-
izontal translation has no effect on the rectification, whereas
vertical translation must be the same for both images.

4 Results

In order to allow for comparison, we first tested our quasi-
Euclidean rectification on the SYNTIM images, that have
been widely used in the rectification literature. Then we eval-
uated the quasi-Euclidean rectification on the VSG images,

1 The method could simply cope with two different focal length, at
the cost of increasing by one the unknown parameters. However, we
preferred to focus on the more common situation of having a stereo
pair taken with two identical cameras.

Program 1 The quasi-Euclidean rectification cost function.
function err = costRectif(a,w,h,ml,mr) ;

%costRectif Compute rectification cost

%

% a is a vector of six elements containing the

% independent variables of the cost function,

% i.e, five rotation angles (Y-left, Z-left,

% X-right, Y-right, Z-right) and the focal length.

% w,h are the image width and height, respectively.

% ml,mr contain the corresponding image points.

yl=a(1); zl=a(2); xr=a(3);

yr=a(4); zr=a(5); f=3^a(6)*(w+h);

% estimate of the intrinsic parameters

% of the old cameras

Kol = [f, 0, w/2; 0, f, h/2; 0, 0, 1];

Kor = Kol;

% eulR applies rotations in the order Y-Z-X

Rl = eulR([0,yl,zl]); Rr = eulR([xr,yr,zr]);

% fundamental matrix btw original points

F = inv(Kor)’*Rr’*hat([1 0 0])*Rl*inv(Kol);

% compute Sampson error

err = sqrt(sampson(F,ml,mr));

that have been recently used in [16] and made publicly avail-
able by the authors. Eventually we tested our algorithm also
on casual images taken by the authors, where a fully auto-
matic procedure has been deployed.

SYNTIM images. Few (10-20) corresponding points had been
manually selected in each image pair, and fed to the quasi-
Euclidean rectification algorithm that automatically produced
the rectified pairs shown in Fig. 1 and 2.

Calibration data (provided with the images) were used
for computing the ground truth Euclidean rectification with
the algorithm described in [2]. As the reader can appreciate
in Fig. 1 and 2, our results are remarkably close to the Eu-
clidean rectification. Unfortunately, a quantitative measure
of distortion that captures the desired behaviour of rectifica-
tion in every respect does not exist. Therefore, we are forced
to resort to qualitative assessment.

In [11] the rectified images (reported in Fig:3) are in
some cases very distorted and distinctly dissimilar from the
Euclidean case (Rubick, BalMire, BalMousse). In the results
shown in [9] the amount of distortion is qualitatively compa-
rable to ours, but our results are still closer to the Euclidean
rectification.

Table 1 reports the rectification error, computed as the
average vertical distance between corresponding points:

erec =
1
N ∑

j

√(
(Hrm j

r)2− (H`m
j
`)2

)
(9)
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Fig. 1 Euclidean (left) and quasi-Euclidean rectification (right) of the SYNTIM pairs.

where N is the number of corresponding pairs. The figures,
beside confirming that the pairs are indeed rectified, reveal
that the error achieved by the quasi-Euclidean rectification
are consistently smaller than in the Euclidean rectification.
This makes sense, because the former explicitly minimizes
a rectification error (although not exactly erec), whereas the
latter derives the rectifying collineations directly from cam-
era matrices in closed form. Therefore small calibration er-
rors propagates to the rectification results without feedback.

This observation precludes the possibility of achieving
uncalibrated rectification by performing autocalibration fol-
lowed by Euclidean rectification, for autocalibration from
only two images have been reported to be unstable [6,18],
hence parameters are far less accurate than those obtained
from calibration. This implies that the rectification error would
be macroscopic.

Table 1 Rectification errors for the SYNTIM pairs.

Images quasi-Euc. Euc.

erec erec

Aout 0.717 2.629
BalMire 0.932 0.985
BalMouss 0.547 6.237
BatInria 0.571 1.429
Color 0.583 0.782
Rubik 0.330 1.705
Sport 0.777 0.940
Tot 0.540 0.768

We noted experimentally that, considering in turn only
the angle parameters and the focal length as the independent
variables, the location of the minimum of the cost function
is fairly insensitive to the value of the focal length (i.e., the
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Fig. 2 SYNTIM pairs. Euclidean (left) and quasi-Euclidean (right) rectification.

correct angles can be obtained even when α is far away from
the ground truth), whereas, in certain cases, small perturba-
tions of the angles can drift the minimum away from the
ground truth for the focal length (without affecting the qual-
ity of rectification, though). This seems to be related to the
fact that computing the focal length from two uncalibrated
views [6,18] is ill conditioned when the cameras are verg-
ing, which is often the case in this stereoscopic pairs.

VSG images. In this experiments we compared our quasi-
Euclidean rectification with the method proposed in [16],
using the same metrics and the same images. Results are
shown in Fig. 4. As can be noted by comparing the figures
reported in Tab.2 with those reported in [16](Tab. 1) our al-
gorithm consistently performs better than [16], which in turn
have been shown to yield less distortion than [13] and [7].

Orthogonality and aspect ratio factors are defined in [16]:
they attempt to measure the skewedness and relative scale

Table 2 Rectication error and distortion metrics (Orthogonality and
Aspect ratio) for the VSG pairs. The values of the distortion metrics
are the average of the left and right images.

Images erec Ortho. Asp. rt.

Lab 0.104 90.077 1.003
Slate 0.119 90.019 1.001
Roof 0.669 90.093 1.002
Arch 0.211 90.116 1.004
Yard 0.359 90.046 1.002
Drive 0.487 90.037 1.002

change introduced by rectification. The ideal values are 90
and 1, respectively. The reader might appreciate that none
of the metrics above have been explicitely optimized in our
algorithm.

Casual images. A few other examples of quasi-Euclidean
rectification of uncalibrated pictures taken by the authors
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Fig. 3 SYNTIM rectified pairs from [11] (reproduced with permission from the authors).

Table 3 Rectication error and distortion metrics for the casual images.

Images erec Ortho. Asp. rt.

Piazza Grande 0.288 89.790 0.995
Pozzoveggiani 0.351 90.205 1.005
Tribuna 0.563 90.496 1.012

are reported in (Fig. 5). The good quality of these images
allowed to completely automate the process: first SIFT are
extracted in both images and descriptors are matched as re-
ported in [14]; then outliers are discarded by fitting a funda-
mental matrix to the matching points with RANSAC. This
matching, however, is not part of the rectification method,
which indeed starts from a set of correct matches, however
they have been obtained.

The reader might notice that these pairs present notable
change of the point of view and, consequently, a significant
verging angle. Table 3 reports rectication error and distortion
metrics for these images.

The running time is mostly spent inside the Levenberg-
Marquardt routine computing the cost function. It depends
largely on the number of points being used: for example it

took 3s to rectify the “Sport” pair with 40 matches, and it
took 15s to rectify “Piazza Grande” with 292 matches. The
warping time (to be added), which instead depends on the
rectified image size, is about 5s for “Sport” (768x576) and
3.5s for “Piazza Grande” (512x384). These figures refers to
an unoptimized MATLAB implementation on a MacBook
Pro, 2.4 GHz Intel Core 2 Duo.

5 Discussion

We presented a new method for the epipolar rectification of
uncalibrated stereo pairs which approximates the Euclidean
(calibrated) case by enforcing the rectifying transformation
to be a collineation induced by the plane at infinity. The
method is based on the minimization of a cost function that
has only six degrees of freedom and does not need any spe-
cific initialization. The results are close to the target Eu-
clidean rectification and compares favorably with state-of-
the-art uncalibrated methods, in terms of distortion applied
to the rectified images. Given the general utility of rectifica-
tion, a Matlab toolkit is available on the web2.

2 http://profs.sci.univr.it/˜fusiello/demo/rect
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Fig. 4 VSG images [16]. Original pair (left) and quasi-Euclidean rectification (right).
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11. F. Isgrò and E. Trucco. Projective rectification without epipolar
geometry. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages I:94–99, Fort Collins, CO,
June 23-25 1999.

12. S. Laveau and O. Faugeras. 3-D scene representation as a collec-
tion of images. In Proceedings of the International Conference on
Pattern Recognition, volume 1, pages 689–691, 1994.

13. C. Loop and Z. Zhang. Computing rectifying homographies
for stereo vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages I:125–131, Fort
Collins, CO, June 23-25 1999.

14. David G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2):91–
110, 2004.

15. Q.-T. Luong and O. D. Faugeras. The fundamental matrix: The-
ory, algorithms, and stability analysis. International Journal of
Computer Vision, 17:43–75, 1996.

16. John Mallon and Paul F. Whelan. Projective rectification from the
fundamental matrix. Image and Vision Computing, 23(7):643 –
650, 2005.

17. L. Robert, M. Buffa, and M. Hebert. Weakly-calibrated stereo
perception for rover navigation. In ICCV, pages 46–51, 1995.

4 http://elm.eeng.dcu.ie/∼vsl/vsgcode.html

18. P. Sturm. On focal length calibration from two views. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, volume II, pages 145–150, Kauai, USA, 2001.



9

P
ia

zz
a

G
ra

nd
e

Po
zz

ov
eg

gi
an

i
Tr

ib
un

a

Fig. 5 Original uncalibrated pairs (left) and Quasi-Euclidean rectification (right) obtained without manual intervention.


