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ABSTRACT
This paper deals with the problem of computing a semantic
segmentation of an image via label transfer from an already
labeled image set. In particular it proposes a method that
takes advantage of sparse 3D structure to infer the category
of superpixel in the novel image. The label assignment is
computed by a Markov random field that has the superpix-
els of the image as nodes. The data term combines labeling
proposals from the appearance of the superpixel and from
the 3D structure, while the pairwise term incorporates spa-
tial context, both in the image and in 3D space. Exploratory
results indicate that 3D structure, albeit sparse, improves
the process of label transfer.

Categories and Subject Descriptors
I.4.6 [Image Processing And Computer Vision]: Seg-
mentation—Pixel classification

Keywords
Image Parsing, Segmentation, Labeling, Image Understand-
ing, Markov Random Fields, Structure From Motion

1. INTRODUCTION
Semantic image segmentation, also known as image pars-

ing (labeling image regions with their categories)xs, has been
recently tackled as a label transfer approach, which reduces
the inference problem for a new image to the problem of
matching it to an existing set of labeled images. Whereas
this matching is usually accomplished by exploiting local
similarity between images [12, 18, 16], in this paper we in-
vestigate the leverage of sparse 3D information coming from
Structure from Motion to improve the transfer. What mo-
tivates our work is that we expect 3D structure to be a

∗Part of this work has been carried out while a.f. was with
the University of Verona

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mirage 2013 Berlin, Germany
Copyright 2013 ACM 978-1-4503-2023-8/13/06 ...$15.00.

powerful cue for matching, while its computation is becom-
ing a “commodity” thanks to the availability of efficient and
robust implementations [15, 8, 6]. In particular, in this work
we concentrate on urban environment application, that has
received much attention both in the segmentation [12, 16,
17] and in the Structure from Motion literature [2].

[2D approaches] Previous work on annotation transfer
come from the field of object recognition, where some ex-
isting techniques have been modified in order to deal specif-
ically with urban outdoor scenarios. To overcome the mas-
sive dataset dimension in [12] the authors present a method
that involves first a retrieval step on a large database of an-
notated images using a modified version of SIFT flow [11].
The subsequent steps are applied only on a small subset of
images presenting similar structures alignment. This system
integrates multiple cues in a Markov random field framework
to segment and recognize the query image. Even if the algo-
rithm gives accurate results, the matching time for a pair of
images with very small resolution (256 × 256) is around 30
seconds, which is still not suitable for real-time applications.

Zhang et al. in [18] proposed a similar procedure that
involves retrieving multiple image sets of similar annotated
images each of which can cover all semantic categories of the
query image. Then the dense correspondences between these
sets of images and the query are computed at superpixel
level to increase the computational efficiency. The matching
scheme, called KNN-MRF, does not rely only on the single
feature appearance of each superpixel but it considers also
the spatial relation between pairs of neighbor superpixels,
modeling it as a Markov random field. After establishing
the correspondences, a pruning procedure is applied in order
to remove the semantic incorrect matches using a trained
classification model.

Another interesting work has been proposed in [16]. The
authors present a non-parametric scalable approach to im-
age labeling at a superpixel level. For each superpixel of the
dataset images, a large number of disparate features have
been extracted describing its appearance. Unlike [18] it re-
quires no training, it also combines semantic (e.g. sky, road,
building) and geometric (e.g. vertical, horizontal) labeling
under the assumption that each semantic label is associated
with a unique geometric label.

Recently [7] proposed a solution that leverages on a graph
of dense overlapping patch correspondences across large datasets
of images avoiding the needs for exhaustive pairwise compar-
isons.



[3D approaches] An early attempt of label transfer involv-
ing 3D points coming from a Structure from Motion recon-
struction can be found in [14]. In that work a user’s anno-
tation in one image, in the form of a rectangle with text, is
transferred to the other images of the Structure from Motion
dataset simply by retrieving the 3D points whose 2D projec-
tions are inside the specified rectangle and then reprojecting
them on the other images. The authors apply an additional
check involving visibility and scale information that avoids
incorrect reprojections, but the label transfer is still rough,
penalized by tight visibility constraints and it is restricted
to the set of images processed by the Structure from Motion
algorithm.

We propose a method that falls in between these two dif-
ferent approaches exploiting the effectiveness given by the
additional 3D data to increase the precision of image ap-
proaches. To the best of our knowledge our work is the first
attempt to combine appearance-based label transfer with 3D
structure.

The rest of the paper is organized as follows. The next
section gives an overview of the algorithm; Section 2.2 de-
scribes the pre-computation step of superpixel and feature
extraction and Section 2.3 explains two different techniques
for retrieving a subset of images in order to limit the main
computation to a more specific and reliable dataset. In Sec-
tion 2.4 we will describe in detail how we map our problem
in a Markov random field framework; Section 3 describes the
experiments and conclusions are drawn in Section 4.

2. METHOD

2.1 Overview
Our method integrates information from the appearance

of an image, captured in a urban environment, with the
three-dimensional structure of the scene in order to perform
the label transfer. In a nutshell, the query image is first
segmented into superpixels, then both information sources
– namely, image appearance and 3D structure – propose a
labeling for each superpixel; these proposals are combined
and then relaxed with a Markov Random Field (MRF) to
include spatial context.

It is assumed that a set of images D is available, capturing
a specific urban environment, together with a sparse cloud
of 3D points S representing the structure of the scene de-
picted in D, as it is commonly produced by a Structure from
Motion pipeline. Moreover, a subset of these images A ⊂ D
is already labeled, i.e. , it has been segmented into small
regular and coherent regions, called superpixels, and each
superpixel has been assigned to a specific semantic class.
Additional available data, obtained by Structure from Mo-
tion, is the camera pose estimation (the orientation and the
3D position of the camera center) of each image belonging
to D.

The goal of our work is to label the images belonging
to the set D \ A or another external image not included
in D, captured in the same scene environment. In such
case, the procedure should rely on a localization system, as
described in [9, 5], that efficiently computes the external
camera parameters (orientation and camera center) of the
image with respect to the existing reconstruction. From
this point forward, let us call Iq, query image, the one that
is going to be labeled.

2.2 Superpixels extraction
As a pre-processing step, computed only once, the labeled

images in A are segmented into superpixels using the Sim-
ple Linear Iterative Clustering algorithm (SLIC) [1], which
starts with a regular grid of cluster centers and then locally
clusters pixels in the combined five-dimensional color and
image plane space. The extracted superpixels are character-
ized by a compact and nearly uniform shape, as shown in
Figure

1.

Figure 1: Example of superpixel extraction.

For each superpixel the algorithm extracts three features
related to its location on the image and its color and texture
appearance:

• the top height; linked to the relative “location” of the
superpixels in the image (e.g. in urban scenarios “sky”
superpixels will more likely appear on the top of the
image and “ground” superpixel on the bottom);

• the color histogram in the log-chromaticity space cor-
related to the color appearance of the superpixel;

• an histogram of occurrences of the set of SURF feature
descriptors already extracted from the images during
the Structure from Motion procedure that are related
to keypoints inside the superpixels.

The number of features is much smaller than in [16], in
which 4 global and 13 superpixel features have been ex-
tracted. The main reasons are that:

i) we do not need to compute global features, mainly re-
lated to the image retrieval step, because the algorithm
relies only on the 3D structure for the computation of
the “working reference subset” of most similar images.
Section 2.3 describes in detail the procedure.

ii) due to the superpixels’ property to have a uniform
shape there is no need to describe in detail both shape
and location properties, only one feature, in our case
the top height, can sufficiently characterize the super-
pixels.



2.3 Active set
Dealing with a potentially large input dataset of images

D taken in a huge urban environment like district areas or
entire cities [4], we need an efficient method to extract the
effective subset of images Aq ⊂ A that capture the same
scene portion as Iq (which we call the “active” set). We
describe now the two possible scenarios already mentioned
in Section 2.1.

If Iq ∈ D we can define Aq exploiting the 3D points visi-
bility, since Iq shares the visibility of a common portion of
the 3D points cloud. Let us call Sq ⊂ S the set of 3D points
visible from the query image Iq; we reproject the 3D points
in Sq onto the images belonging to A and we define Aq as
the subset of A in which the 3D projection gives valid val-
ues (i.e., at least a subset of Sq is inside the cameras’ view
frustum of Aq).

If Iq /∈ D the image should be initially localized as al-
ready mentioned in Section 2.1. The first stage of a typi-
cal localization system consists on a retrieval procedure of
most similar images Dq that is done using image information
applying a bag-of-word approach [13] and can be refined in-
volving also a 3D structure constraint [5]. Aq is then defined
as the intersection Dq ∩A.

2.4 Label assignment
The label assignment of Iq is computed by a MRF that has

the superpixels of Iq as nodes. An edge is set between two
nodes if the corresponding superpixels are adjacent. The set
of superpixels {si} is indicated with V while E represents the
set of edges between neighbor nodes {(si, sj)}

2.4.1 Unary Term
The unary term of the MRF encodes labeling proposals

coming from the actual data, both in terms of appearance
of superpixels and 3D structure.

Appearance based.
For each superpixel si of Iq we assign a score at each label

l based on on image appearance, as in [16].
The probability P

(
fki |l

)
of observing fki , the k-th feature

of superpixel si, given the label l can be estimated empiri-
cally from the frequency of features from the given label in
the neighborhood of fki (in feature space). Specifically, let
Nk
i denote the set of all superpixels in Aq whose k-th feature

distance from fki is below a fixed threshold. Then:

Pa
(
fki |l

)
=

1 + n
(
l, Nk

i

)
1 + n (l, Aq)

(1)

where n(l, Z) denotes the number of superpixels in set Z
associated to label l.

Making the custom assumption that the extracted fea-
tures are independent of each other given the label, the like-
lihood ratio for label l and superpixel si is:

Λa(l, si) =
P (si|l)
P (si|l)

=
∏
k

P
(
fki |l

)
P
(
fki |l

) (2)

where l is the set of all labels excluding l and Pa(fki |l) is
computed likewise.

Structure based.
In order to exploit the additional information given by

the 3D structure, we establish a relationship φ that maps

superpixels from of Iq to superpixels in Aq via the 3D struc-
ture (details in the following). Thanks to φ we can compute
Π(si), the set of points of Sq that are projected onto su-
perpixel si. Points in Π(si) carry forward the label of the
associated superpixel in Aq, so every point in Π(si) casts a
vote for the label of si; the probability of si having label l
(according to the structure) is estimated by count as:

Ps(l|si) =
1 + n(l,Π(si))

1 + n(∗,Π(si))
(3)

where n(∗,Π(si)) is simply the cardinality of Π(si).
We combine the two terms Λa(l, si) and Ps(l|si) after con-

verting to an energy to obtain the unary (data) term:

Ed(si) = − log Λa(si, l)− α logPs(si|l). (4)

The α coefficient modulates the relative influence of appear-
ance and geometry, and was set to α = 0.8 in our experi-
ments.

It remains to discuss the method by which we establish
a relationship between a superpixel in Aq and a superpixel
of Iq via the 3D structure. The first step (performed once
and for all) is to compute the visibility of 3D points with
respect to the superpixels in Aq. This is done with ray-
casting in a discretized volumetric space, where a cell (or
voxel) is deemed occupied if more than a given number of
points are inside. Marching along the ray from the 3D point
x to the center of the superpixel s (back-to-front), s is added
to the visibility set of x if all the cells on the path are free
(see Figure 2). Then for each superpixel s we compute Π(s),
the set of 3D points that projects onto s, according to the
visibility.

The same procedure is applied to the superpixel in Iq,
and in this way a map φ from a superpixel s ∈ Iq to a set
(possibly empty) of superpixels of Aq is established:

φ(s) = {si ∈ Aq | Π(si) ∩Π(s) 6= ∅} (5)

Figure 2: Illustration of the ray casting procedure.
The path from the corner of the church to the cam-
era position (cross) is obstructed by the statue, so
the ray tracing (light-blue squares) stops there.

This geometric way of handling occlusions fails if the oc-
clusor have not been reconstructed (no 3D points are at-
tached to it). In order to cope with this problem we also
perform a photoconsistency check between superpixels that
have been associated via φ. In other words, superpixel s



must be photoconsistent (i.e. , have similar appearance) with
the superpixels in φ(s).

The photoconsistency of two superpixels si ∈ Iq and sj ∈
φ(si) is evaluated as the chi-square distance between two-
dimensional histograms of the log-chromaticity representa-
tion of the superpixels. In formula:

χ2(hi, hj) =
1

2

∑
m

(hi(m)− hj(m))2

hi(m) + hj(m)
(6)

where hi is the color histogram of si transformed in the log-
chromaticity space and normalized. The log-chromaticity
[3] transformation of an RGB image is defined as:

{R,G,B} → {log(R/G), log(B/G)}. (7)

After transforming in log-chromaticity space, two patches
representing the same surface under different illumination
(in color and intensity) are related by a linear transform
that we factor out by subtracting the mean and dividing
by the standard deviation of the log-chromaticity values.
After such normalization, two patches representing the same
surface should have identical values.

2.4.2 Pairwise Term
The pairwise term of the MRF enforces the spatial contex-

tual constraint on the label assignment. It differs from the
classical constant Potts penalty because the cost is modu-
lated by a term which is inversely proportional to distance in
3D space, the rationale being that little or no cost is paid for
assigning different labels to superpixels that are associated
to 3D points that are far apart in space:

φ(la, lb) = βwdδ (la 6=lb) . (8)

The distance term wd is defined as:

wd(si, sj)=

{
e(−µ‖pi−pj‖) if Π(si) 6=∅ ∧Π(sj) 6=∅
1 otherwise

(9)

where pi is the centroid of Π(si), and µ is a rate of decay that
depends on the scale of the 3D structure. In our experiments
we set β and µ respectively to 10 and 4. The resulting
smoothness term is:

Es =
∑

(si,sj)∈E

φsi,sj (10)

2.4.3 Inference
The total energy cost function is the sum of the unary

terms (Eq. 4) and pairwise terms (Eq. 10):

E(s) =
∑
si∈V

(− log Λa(si, l)− α logPs(si|l).)︸ ︷︷ ︸
unary term

+

+
∑

(si,sj)∈E

φsi,sj︸ ︷︷ ︸
pairwise term

In order to minimize this submodular function we decide to
apply the tree-reweighted belief propagation algorithm [10],
as its implementation lends itself well to code paralleliza-
tion (in CUDA as well) in order to reach high efficiency
performance. However, this implementation requires a reg-
ular connectivity. While at the onset of SLIC every super-
pixel has exactly four neighbors, during the evolution of the

clusters in principle this connectivity may vary, although
in practice it is mainly preserved. Therefore we decided to
force the connectivity to remain unchanged.

3. EVALUATION
Since no existing benchmark database are available that

meet our requirements, we created a brand new labeled
dataset of 50 images with the related 3D points cloud re-
construction obtained with “Samantha”, a Structure from
Motion algorithm [6] whose implementation is available on-
line1.

Figure 3: Top: sample images of Piazza del Santo
from the labelled dataset. Bottom: a view of the
3D structure.

The depicted scene is a public square (Piazza del Santo,
Padova, IT) in front of a church (Basilica di S. Antonio),
with a horse statue occluding the background in some par-
ticular views2. This particular scenario has been chosen in
order to fully evaluate the 3D data potential.

The cardinality of S, the set of 3D points, in this dataset
is about 70k, a view of the 3D structure can be seen at the
bottom of Figure 3, while some sample images are shown on
the top. The original image resolution, used in the Struc-
ture from Motion algorithm, is 2592×1944 pixels but for the
labeling procedure the images have been scaled by a factor
of four in order to speed up the computation and to dampen

1samantha.3dflow.net
2Dataset available from www.diegm.uniud.it/fusiello/demo/3lt/.



the number of superpixels extracted. From each low resolu-
tion image (648 × 486) an average of 600 superpixels have
been computed.

The ground truth data have been obtained by manually
labeling each image of the dataset (in this case D = A), as-
signing to each superpixel one of the following labels: “base
statue”, “statue’s pedestal”, “statue’s horse”, “scaffolding co-
ver”, “woodboard”, “church”, “church’s cupola” , “ground”,
“building” and “sky”.

Figure 4 shows an example of ground truth labeling, the
portions of the image in grayscale are associated with no
label.

Figure 4: Example of hand-made labeling.

We tested our system with a leave-one-out approach. One
at a time each image has been removed from the dataset. As
Iq ∈ D the experiment falls in the first of the two retrieval
scenarios explained in Section 2.3, we reproject into A \ Iq
the 3D points visible from Iq in order to retrieve a subset
of at most 10 most similar images Aq that will be used for
the labeling procedure. In this way, in case of a dataset
of more considerable dimension, we do not have to employ
the feature data of the entire dataset during the nearest
neighbour extraction, preserving the system efficiency.

We compared our proposed method to a partial implemen-
tation that ignores the 3D data contributions and is similar
in spirit to [16]. The performance of our system is presented
in terms of per-pixel classification rate, our proposed method
achieves 82.6% whereas the restricted version exploiting only
2D data reaches 78.1%.

As shown in Figure 5, due to the lack of uniformity in the
dataset label distributions we report also the results in terms
of per-pixel classification rate for each label, see Figure 6.
The average per-class rate is 59.4% for the complete version
of the proposed method and 49.7% for the 2D restricted
version.

The addition of the 3D data in the MRF clearly improves
the labeling results, particularly in urban scenarios where
some labels could be difficult to discern, like different build-
ings with similar colors and textures appearance (e.g. “base
statue” and “church” ). This is clearly displayed also in Fig-
ure 7 that shows a qualitative example of two labeling results
related to the first two images of Figure 3.
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Figure 5: Superpixels label frequencies in the
dataset.
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Figure 6: Per-class classification rate.

On the other hand, there are other labels for which little
or no improvement is obtained, e.g. “ground” , “sky” and
“scaffolding cover”. These labels are associated to textureless
region that have not been reconstructed by the Structure
from Motion pipeline, because no SURF keypoints have been
detected there, as shown in Figure 3 (bottom).

The time cost of labeling a query image is summarized in
Table 1 focusing the attention to each steps of the proposed
system.

Table 1: Average execution time

Superpixel extraction 2 sec

Feature extraction 23 sec

Visibility check 25 sec

Label inference 1 sec

The current version of the proposed system is implemented
in MATLAB with no use of parallelization and optimized
data structure; the computational bottlenecks are the Fea-
ture Extraction and the Visibility check stages that could be
speed up exploiting the processing power of a graphic card.



Figure 7: Two examples of labeling results. The amelioration brought by 3D structure can be appreciated
by comparing the left and right images of the second and third rows.



4. DISCUSSION
This paper has investigated the leveraging of 3D structure

in the process of label transfer. The method that has been
presented takes advantage of i) already labeled images, and
ii) sparse 3D structure to infer the category of superpixel
in a novel image. Due to the laboriousness of creating an-
notated datasets with 3D structure, experiments that have
been reported are only exploratory, but they clearly indi-
cate that the 3D structure, even if sparse, can improve the
process of label transfer.

Future work will be aimed at probing the method on larger
and different datasets, keeping focused on scalability.
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