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Abstract. In this paper we propose a novel framework for 3D object
categorization. The object is modeled it in terms of its sub-parts as
an histogram of 3D visual word occurrences. We introduce an effective
method for hierarchical 3D object segmentation driven by the minima
rule that combines spectral clustering – for the selection of seed-regions –
with region growing based on fast marching. The front propagation is
driven by local geometry features, namely the Shape Index. Finally, after
the coding of each object according to the Bag-of-Words paradigm, a
Support Vector Machine is learnt to classify different objects categories.
Several examples on two different datasets are shown which evidence the
effectiveness of the proposed framework.

1 Introduction

The availability of large collections of 3D models has increased the interest in
content-based 3D search and retrieval [1–3]. Typical object retrieval systems
require the user to define a query-model which output is a set of its most similar
objects in the database. In general, such approach requires the comparison of the
query-model with all the objects in the dataset according with a given matching
criterion, after the coding of the object with respect to some indexing technique.
Shape signatures [4] are commonly utilized as a fast indexing mechanism for
shape retrieval.

In this paper we present a 3D object categorization method based on a
learning-by-example approach [5]. Geometric features representing the query-
model are fed into a Support Vector Machine (SVM) which, after a learning
stage, is able to assign a category (or a class) to the query-model without an ex-
plicit comparison with all the models of the dataset. Our approach is inspired to
the Bag-of-Words framework for textual document classification and retrieval.
In this approach, a text is represented as an unordered collection of words, dis-
regarding grammar and even word order.

The extension of such approach to non-textual data requires the building of a
visual vocabulary, i.e., the set of all the visual analog of words. For example, in
[6] images are encoded by collecting interest points which represent local salient
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regions. This approach has been extended in [7] by introducing the concept
of pyramid kernel matching. Instead of building a fixed vocabulary, the visual
words are organized in a hierarchical fashion in order to reduce the conditioning
of the free parameter definition (i.e., the number of bins of the histogram). Re-
cently, in [8] the Bag-of-Words paradigm has been introduced for human actions
categorization from real movies. In this case, the visual words are the vector
quantization of spatiotemporal local features. The extension to 3D objects have
been proposed in few work [9, 10], to the best of our knowledge. In [9] range
images are synthetically generated from the full 3D model, then salient points
are extracted as for the 2D (intensity) images. In [10] Spin Images are chosen as
local shape descriptors after a random samples of the mesh vertices.

In our approach a 3D visual vocabulary is defined by extracting and grouping
the geometric features of the object sub-parts from the dataset, after a hierarchi-
cal 3D object segmentation. Thank to this part-based representation of the object
we achieve pose invariance, i.e., insensitivity to transformation which change the
skeletal articulations of the 3D object [11]. Moreover, our approach is able to
discriminate objects with similar skeletons, a feature that is shared by very few
other works [12]. Its main steps are:

Object segmentation (Sec. 2). Spectral clustering is used for the selection of
seed-regions. Being inspired by the minima-rule [13], the adjacency matrix
is defined purposely in order to allow convex regions to belong to the same
segment. Furthermore, a multiple-region growing approach is introduced to
expand the selected seed-regions. In particular, a weighted fast marching is
proposed by guiding the front propagation according to local geometry prop-
erties. In practice, the main idea consist on reducing the speed of the front
for concave areas which are more likely to belong to the region boundaries.
Then, the hierarchical segmentation is recovered by combining recursively
the seeds selection and the region-growing steps.

Object sub-parts description (Sec. 3). Local region signature are introduced
to define a compact representation of each sub-part. Working at the part
level, as opposed to the whole object level, enables a more flexible class
representation and allows scenarios in which the query model is significantly
transformed (e.g., deformed) to be classified. We focus on region signatures
easy to compute and partially available from the previous step (see [4] for
an exhaustive overview of shape descriptors).

3D visual vocabulary construction (Sec. 4). The set of region descriptors
are properly clustered in order to obtain a fixed number of 3D visual words
(i.e., the set of clusters centroids). In practice, the clustering defines a vector
quantization of the whole region descriptor space. Note that the vocabulary
should be large enough to distinguish relevant changes in image parts, but
not so large as to distinguish irrelevant variations such as noise.

Object categorization by SVM (Sec. 5). Each 3D object is encoded by as-
signing to each object sub-part the corresponding visual word. Indeed, a
Bag-of-Words representation is defined by counting the number of object
sub-parts assigned to each word. In practice, a histogram of visual words
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(a) Seed regions after spectral clus-
tering.

(b) Segmentation at depth 2 (left) and
depth 3 (right) of the hierarchy, with cor-
responding seed regions.

Fig. 1. Segmentation

occurrences is build for each 3D object which represent its global signature
[6]. Then, a SVM is trained by adopting a learning by example approach. In
particular, a suitable kernel function is defined in order to implicitly imple-
ment the sub-part matching.

2 Objects Segmentation

Due to its wide ranging applications, 3D object segmentation has received a great
attention lately. The recent survey by [14] and the comparative study by [15]
have thoroughly covered the several different approaches developed in literature.

In the following we present a novel mesh segmentation technique that provides
a consistent segmentation of similar meshes complying with the cognitive min-
ima rule [13]. In addition, the final segmentation is extracted in a hierarchical
structure in order to improve the flexibility in modeling the object sub-parts.

The segmentation proceeds top-down: starting with a root node correspond-
ing to the whole mesh, the segmentation is recursively created by partitioning
the current leaf nodes into two or more child nodes. The minima rule states
that human perception usually divides a surface into parts along the concave
discontinuity of the tangent plane [13]. Therefore this suggest to cluster in the
same set convex regions and to detect boundary parts as concave ones. A concise
way to express the type of shape in terms of principal curvatures is given by the
Shape Index (SI) [16].

SI = − 2
π

arctan
(

k1 + k2

k1 − k2

)
k1 > k2 (1)
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where k1, k2 are the principal curvatures of a generic vertex x ∈ V . The SI varies
in [−1, 1]: a negative value corresponds to concavities, whereas a positive value
represents a convex surface.

The key idea behind our algorithm is the synergy between two main phases:
(i) the detection of similar connected convex regions as seed -region, and (ii)
the expansion of these seed-regions using a multiple region growing approach.
According to the minima-rule the SI is employed for both the phases.

2.1 Seed-Regions Detection by Spectral Clustering

The extraction of the seed-regions is accomplished with Normalized Graph Cuts
[17]. It has been firstly applied to image segmentation although it is stated as a
general clustering method on weighted graphs. In our case, the weight matrix is
built using the SI at each vertex:

W (xi, xj) = e−|SI(xi)−SI(xj)| (2)

where the vertices with negative SI – i.e., those corresponding to concave re-
gions – have been previously discarded. In this way we cluster together vertices
representing the same convex shape.

Final clusters are not guaranteed to be connected. This happens because we
don’t take into account any (geodesic) distance information at this stage. Hence,
we impose connection as a post-processing step: the final seed regions are found
as connected components in the mesh graph, with vertices belonging to the same
cluster. An example of seed regions found by the algorithm is shown in Fig. 1(a).

2.2 Multiple Region Growing by Weighted Fast Marching

Once the overall seed regions are found we must establish a criteria to select
the starting seed regions of each node of the hierarchical segmentation tree. For
each tree node we consider only the seed regions that are contained in the parent
segmentation. We firstly find the two farthest seed regions. We then add more
regions until the distance from the regions already added is less than half the two
farthest seed regions. As explained next, the distance between two regions can
be efficiently calculated with the Fast Marching algorithm [18, 19]. In particular,
when the seed regions of the current tree node are found, we expand them using
a weighted geodesic distance. In formulae, given two vertices x0, x1 ∈ V , we
define the weighted geodesic distance d(x0, x1) as

d(x0, x1) = minγ

{∫ 1

0
‖γ′‖w(γ(t))dt

}
(3)

where w(·) = is a weight function (if w(·) = 1 this is the classic geodesic distance)
and γ is a piecewise regular curve with γ(0) = x0 and γ(1) = x1. Our weight
function is based on the Shape Index SI:

w(x) = eαSI(x) (4)
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Fig. 2. Examples of segmentation extracted on several meshes of the Aim@Shape
Dataset

where α is an arbitrary constant. An high α value heavily slow down the front
propagation where the concavity are more prominent. In our categorization
paradigm we used a fixed α = 5 to obtain consistent segmentations.

An example segmentation along with starting seed regions is shown in Fig. 1(b).
Several other examples of segmentation on different objects are shown in Fig. 2.

The overall hierarchical algorithm is summarized below:

Algorithm 1. Hierarchical clustering

1. Find all seed-regions S.
2. Initialize C as the entire mesh and place in the priority queue Q.
3. Get the current top cluster C ∈ Q and remove it from Q.
4. Find starting regions SC ∈ S

⋂
C.

If the starting regions are more than one go to next step else go to step 6.
5. Find final cluster starting from SC trough weighted geodesic distance and

add them to Q.
These are child cluster of C in the hierarchical tree.

6. If Q is empty stop, else go to step 3.

3 Segment Descriptors

We chose four type of descriptors to represent each extracted region. The first
two are based on SI and Curvedness [16]. Both encode local surface geometry
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properties for each vertex. In particular, the SI allows the classification of the
surface among peek, valley, saddle, and so on. The Curvedness CU instead, is a
concise way to measure the size of a local patch:

CU =
2
π

ln

√
k2
1 + k2

2

2
(5)

The two descriptors SIH and CUH are defined as the normalized histograms
of the observed SI and CU values in the region vertices, respectively.

The other two descriptors are normalized region histograms of vertex-distances
derived directly from our segmentation algorithm. The idea is to describe the
shape of a region in relationship with its starting seed. In practice, we compute
the geodesic distance and the weighted geodesic distance of each vertex of a
segment to its seed region. The point-to-seed-region distance is defined as the
geodesic distance between the point itself and its closest point belonging to the
seed region. The two descriptors GD and GDW are the normalized histograms
of such distances (respectively) over the vertices of the segment.

Note that GD can be interpreted as an approximation of the eccentricity [20],
and GDW , implicitly encodes also the local surface geometry information since
the weight function depends on the SI, according to Eq. (4).

Note further, that the number of bins chosen for each histogram is a critical
choice. A small number reduce the capability of the region descriptor in discrim-
inating among different segments. On the other hand, a high number increases
the noise conditioning. Hence we introduce, for each descriptor, histograms with
different number of bins in order to obtain a coarse-to-fine regions representation.

4 3D Visual Vocabulary Construction

The different sets of region descriptors must be clustered in order to obtain sev-
eral visual words. Since we start with a hierarchical segmentation and different
types of descriptors, we adopted a multi-clustering approach rather than merg-
ing descriptors in a bigger set. Before the clusterization, the sets of descriptors
are thus split in different subsets as illustrated in Fig. 3. The final clusters are
obtained with a k-means algorithm. Again, instead of setting a fixed free param-
eter k, namely the number of cluster, we carry out different clusterizations while
varying its value.

Once the different clusters are found we retain only their centroids, which
are our visual words. In Fig. 4 an example of descriptors subset clusterization
with relative distance from centroid is shown. Note that object sub-parts from
different categories may fall in the same cluster since they share similar shape.

More in details, at the end of this phase we obtain the set of visual vocabularies
V d,b,c

l,s , where:

– l identifies the region level of the hierarchical 3D segmentation (l ∈ {2, 3}),
– s identifies the index of the multiple 3D segmentation (variable segmentation

parameter s ∈ {4, 8, 12}),
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Fig. 3. The Vocabulary construction is performed in a multilevel way. At the beginning
we have all region extracted for different numbers of seed regions (variable segmentation
parameter). The regions are divided by the different segmentations and by the different
depth of the segmentation tree. For every region, different descriptors are attached. The
different region descriptors are divided by the type of descriptor and its number of bins.
The final clusterizations are obtained with varying number of clusters. At the end of
the process we obtain different Bag-of-Words histograms for each mesh.

Fig. 4. Example of a Bag-of-Words cluster for SI descriptors. The centroid is high-
lighted with red and others region in the same cluster are sorted by distance from
centroid. Note that sub-parts of meshes from different categories may fall in the same
cluster since they share similar shape.
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– d identifies the region descriptor types (d ∈ {SIH, CUH, GD, GDW}),
– b identifies the refined level of the region descriptor (number of histogram

bins b ∈ {10, 25, 50, 100, 200}),
– c identifies the refined level of the vocabulary construction (number of clus-

ters c ∈ {20, 40, 60, 80}).

In order to construct a Bag-of-Words histogram of a new 3D object, we
compare its regions descriptors with the visual words of the associated visual
vocabularies.

5 Object Categorization by SVM

One of the most powerful classifier for object categorization is the Support Vec-
tor Machine (SVM) (see [21] for a tutorial). The SVM works in a vector space,
hence the Bag-of-Words approach fits very well, since it provides a vector repre-
sentation for objects. In our case, since we work with multiple vocabularies, we
define the following positive-semi-definite kernel function:

K(A, B) =
∑

l,s,d,b,c

k(φd,b,c
l,s (A), φd,b,c

l,s (B)), (6)

where (A, B) is a pair of 3D models, and φd,b,c
l,s (·) is a function which returns the

Bag-of-Words histogram with respect to the visual vocabulary V d,b,c
l,s . The func-

tion k(·, ·) is in turn a kernel which measures the similarity between histograms
hA, hB:

k(hA, hB) =
c∑

i=1

min(hA
i , hB

i ), (7)

where hA
i denotes the count of the ith bin of the histogram hA with c bins. Such

kernel is called histogram intersection function and it is shown to be a valid
kernel [7]. Histograms are assumed to be normalized such that

∑n
i=1 hi = 1.

Note that, as observed in [7] the proposed kernel implicitly encodes the sub-
parts matching since corresponding segments are likely to belong to the same
histogram bin. Indeed, the histogram intersection function counts the number of
sub-parts matching being intermediated by the visual vocabulary.

Finally, since the SVM is a binary classifier, in order to obtain an extension
to a multi-class framework, a one-against-all approach [5] is followed.

6 Results

We tested our categorization paradigm with two different datasets. For each
dataset we performed a Leave-One-Out cross validation [5].
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6.1 TOSCA Non Rigid Shape Dataset

The TOSCA dataset [22–24], publicly available1, contains various non-rigid shapes
in a variety of poses divided by category. The dataset is composed by: 9 cats,
8 men, 9 dogs, 21 gorillas, 17 horses and 9 women. The meshes used are shown
in Fig. 5. Please note that each category is composed by the same model with
different pose. Furthermore, some classes are very similar, e.g. men and women,
and contains a number of elements very variable.

In this case, our categorization algorithm works perfectly in each category
with a rate of success of 100%. This experiment shows that our system copes
finely with the categorization of objects that present high inter-class similarity.
Nevertheless, the methods is robust with objects that appear with different poses,
by varying strongly their skeletal articulations (e.g., the gorillas).

Fig. 5. TOSCA Non rigid Shape Dataset models, divided by category. Overall success
rate of categorization is 100%.

6.2 Aim@Shape Watertight

The Aim@Shape Watertight dataset has been used for various retrieval contests
[25]. This dataset contains 20 categories each composed of 20 meshes. The en-
tire dataset is shown in Fig. 6 together with the categorization results. In this
case the algorithm fails with some meshes, but the overall rate of success is still
fairly good. The dataset is tough since there are many categories and objects
inside the same category can be very different. We can notice that the system is
less accurate when the shapes are CAD-like (e.g. mechanics, bearings and tables).

1 http://tosca.cs.technion.ac.il/data_3d.html

http://tosca.cs.technion.ac.il/data_3d.html
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Category % of success
Human 80

Cup 85
Glasses 95
Airplane 90

Ant 100
Chair 95

Octopus 95
Table 80
Teddy 100
Hand 80
Plier 100
Fish 85
Bird 80

Spring 95
Armadillo 100

Buste 95
Mechanic 75
Bearing 60

Vase 75
Four Legs 80

Fig. 6. Aim@Shape Watertight Dataset objects, divided by category and success rate
of categorization. Overall the rate is 87.25%.

This suggests that the descriptors based on curvature may not discriminate
enough these kind of regions. Future improvements of the system can be obtained
by adding more descriptors.

6.3 Timing

The categorization pipeline is computationally efficient in each sub-part. We
used an entry level laptop at 1.66Ghz to perform tests. The code is written in
Matlab with some parts in C. An entire mesh segmentation of 3500 vertices,
with a maximum hierarchical depth of four is computed in less than a minute.
Precisely, ∼ 8s are necessary to extract all the seed regions, while ∼ 50s are
needed to compute the entire hierarchical segmentation. Region descriptors are
computed efficiently. On the average it only takes ∼ 0.2s to extract all the
four descriptors of a single region. Also the k-means clusterizations are not time
consuming. For example 10 clusters for 300 points each composed of 200 feature
are extracted in less than one second. Finally, the time needed to train a SVM
with 400 elements is ∼ 80s, while the time needed to validate a single element
is about ∼ 2s.
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7 Conclusions

In this paper a new approach for 3D object categorization is introduced basing
on the Bag-of-Words paradigm. The main steps of the involved categorization
pipeline have been carefully designed by focusing on both the effectiveness and
efficiency.

The Bag-of-Words approach allows naturally the object sub-parts encoding
by combining effectively sub-part descriptors into several visual vocabularies.
Moreover, we have proposed a Learning-by-Example approach by introducing a
local kernel which implicitly performs the object sub-parts matching. In particu-
lar, the object categories are inferred without an exhaustive pairwise comparison
between all the models.

The experimental results are encouraging. In particular, our framework is able
to categorize objects which heavily deform their shape and change significantly
their pose. Nevertheless, the method is able to distinguish also categories with
the same skeletal structure (e.g., a man from a woman).
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