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ABSTRACT

This paper describes a technique for fast three-dimensional re-
construction of underwater environments from multiple range
views acquired by an acoustic camera. The final target of the
work lies in improving the understanding of a human operator
guiding an underwater remotely operated vehicle (ROV) equipped
with an acoustic camera, which provides a sequence of 3D im-
ages. Since the field of view is narrow, we devise a technique for
the reconstruction of relevant information of the image sequence
up to build a mosaic of the surrounding scene in real time. Due
to speckle noise and low resolution a robust approach based on
statistics is proposed in order to increase the registration accu-
racy. In order to allow the real time registration we introduce a
method for speed up the Iterative Closest Point (ICP) basing on
a reverse calibration approach. Examples on real images have
been presented to show the performances of the proposed algo-
rithm in terms of both speed and accuracy.

1. INTRODUCTION

Underwater exploration is nowadays growing due to both
industrial and scientific needs. Fortunately, also technol-
ogy is improved with the advent of smart sensors able
to provide data with high visual quality, unlike only few
years ago. Recently, computer vision and computer graph-
ics scientists have also approached underwater scene un-
derstanding issues [1].

This work have been carried out in the context of a project
aimed at the three-dimensional (3D) scene reconstruction
from a sequence of range data acquired by an acoustic
camera. The final goal is to provide a 3D scene model to
the human operator(s) of an underwater remotely operated
vehicle (ROV), in order to facilitate the navigation and
the understanding of the surrounding environment, such
as offshore rigs, pipelines, wreckage, etc.

The underwater environment is undoubtedly a complex
scenario for both the implicit limited accessibility and the
difficulty to retrieve good quality data. Therefore, very
few systems are addressed to the reconstruction of under-
water environments and, for the best of our knowledge,
none of them are able to operate in real-time [2]. Kamgar-
Parsi [3] proposed an acoustic lens technique for 3D data

acquisition from which 3D models are recovered by using
standard volumetric approach. Negahdaripour [4] focused
on some computer visions techniques such as shape from
stereo and video, optical flow estimation, 2D mosaicing
by using optical camera(s).

In the present case, our data are obtained by a high fre-
quency acoustic camera, called Echoscope [5]. These data
are affected by speckle noise, due to the coherent nature
of the acoustic signals, which corrupts sensibly the visual
quality and decreases the reliability of the estimated 3D
measures. In order to build a 3D mosaic of the surround-
ing scene in real-time, we introduce a method for the reg-
istration between a pair of sequential frames by focusing
on the search of the best tradeoff between speed and ac-
curacy. This process occurs while new frames come from
the sensor as the vehicle moves. The proposed method
is based on a reverse calibration approach [6]. By using
information from the internal parameters of the acoustic
camera, we are able to re-project each 3D points onto the
range image and viceversa. In particular, each 3D point of
the source data is projected to the destination model, de-
scribed as a range image, by finding immediately its cor-
responding point. In this way a dramatic improvement of
the speed of corresponding points computation is obtained
that allows the registration of the views in real time. Fur-
thermore, in order to improve the accuracy of alignment,
a statistical method for avoiding the outliers conditioning
is implemented. The method has been introduced in [7]
and it is based on the so called X84 rule [8] from which
a threshold is automatically defined. The rest of the pa-
per is organized as follows. In Section 2, the acoustic
imaging process is described and in Section 3 fundamen-
tal concepts of the registration are briefly introduced. The
proposed method is detailed in Section 4, and Section 5
describes experimental results. Finally, in Section 6, con-
clusions are drawn.

2. IMAGE ACQUISITION

Three-dimensional acoustic data are obtained with a high
resolution acoustic camera, the Echoscope 1600 [5]. The
scene is insonified by a high-frequency acoustic pulse,
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and a two-dimensional array of transducers gathers the
backscattered signals. The whole set of raw signals is then
processed in order to form computed signals whose pro-
files depend on echoes coming from fixed steering direc-
tions (called beam signals), whereas those coming from
other directions are attenuated. Successively, the distance
of a 3D point can be measured by detecting the time in-
stant at which the maximum peak occurs in the beam sig-
nal [9]. In particular, acoustic image is formed by the use
of the Beamforming (BF) technique. It is a spatial filter
that linearly combines temporal signals spatially sampled
by a discrete antenna. In this way, if a scene is insonified
by a coherent pulse, the signals, representing the echoes
backscattered from possible objects in a specific direction,
contain attenuated and degraded replicas of the transmit-
ted pulse.

Let us denote by vy the position of the k-th sensor (trans-
ducer), by ¢ the sound velocity, and by z (t) the signal re-
ceived by the k-th sensor. Beamforming can form a beam
signal, bs, (%), steered in the direction of the vector u, de-
fined as:

M-1
bsu(t) = Z wi - Tr(t — Ok) 1)
k=0

where wy, are the weights assigned to each sensor, M is
the number of transducers, and 8 = (v - u)/c are the
delays applied to each signal.

A common method to detect the scattering objects dis-
tances is to look for the maximum peak of the beam signal
envelope [9]. Denoting by ¢* the time instant at which the
maximum peak occurs, the related distance, r* (i.e., range
value) is easily derivable (i.e., r* = ¢ - t*/2 if the pulse
source is placed in the coordinate origin).

According to the spherical scanning technology, range val-
ues are measured from each steering direction u(z, j) where
7 and j are indices related to the elevation (tilt) and az-

imuth (pan) angles respectively. Figure 1(a) shows a schema

of the scanning principle. Figure 1(b) shows a projection
of the acquiring volume to the ZX plane, on which the
sectors associated to each beam are marked. The mini-
mum and maximum distances are also depicted. Going
into the details, the Echoscope carries out 64 measures for
both tilt and pan by defining a 64 x 64 range image r; ;.
The conversion from spherical coordinates to usual Carte-
sian coordinates (both the coordinates system are centered
to the camera) is recovered by the use of the following
equations [10]:
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Figure 1: Spherical scanning principle (a) and subdivision
of the beams onto the acquiring volume (b). Each beam is
associated to a (¢, ) coordinate of the range image

where s, and sg are elevation and azimuth increments re-
spectively. Figure 2 shows a range image and the related
3D points cloud. Both of them are provided by the Echo-
scope. There is a tradeoff between range resolution and
field of view.

Resolution depends on the frequency of the acoustic sig-
nal (it is about 5 cm at 500KHz): roughly speaking, the
higher is the frequency, the higher is the resolution, and
the narrower is the field of view.

Unfortunately, due to secondary lobes and acquisition noise,
the acoustic image is affected by false reflections which is
modelled as speckle. Moreover, the intensity of the max-
imum peak can be used to generate another image, rep-
resenting the reliability of the associate 3D measures, so
that, in general, higher is the intensity, safer is the asso-
ciate distance. A dramatic improvement of the range im-
age quality can be obtained by discarding points whose
related intensity is lower than a threshold, depending on
the secondary lobes [11].

3. REGISTRATION

In order to build a 3D mosaic of the scene it is necessary
to focus on the registration between each pair of views.
Let us suppose that we have two sets of 3-D points which
correspond to a single shape but are expressed in different
reference frames. We will call one of these sets the model
set X, and the other the data set Y.

Assuming that for each point in the data set the corre-
sponding point in the model set is known, the point set
registration problem consists of finding a 3-D transforma-
tion (translation t and rotation R) which, when applied
to the data set Y, minimizes the distance between the two
point sets. The goal of this problem can be stated more
formally as follows:

N
. L . 2
min ; llx; — (Ry; +t)|1%, (5)
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(b)

Figure 2: Range images (a) and cloud of points (b). The
scene consists of a pipe in underwater

where R is a 3 x 3 rotation matrix, t isa 3 x 1 trans-
lation vector, and the subscript 7 refers to corresponding
elements of the sets X and Y. Efficient, non-iterative solu-
tions to this problem were compared in [12], and the one
based on Singular Value Decomposition (SVD) was found
to be the best, in terms of accuracy and stability.

3.1. Iterated Closest Point

In general, when point correspondences are unknown, the
Iterated Closest Point (ICP) algorithm may be used [13,
14]. For each point y; from the set Y, there exists at least
one point on the surface of X which is closer to y; than all
other points in X. This is the closest point, x;. The basic
idea behind the ICP algorithm is that, under certain condi-
tions, the point correspondence provided by sets of closest
points is a reasonable approximation to the true point cor-
respondence. The ICP algorithm can be summarized:

1. For each point in Y, compute the closest point in X;

2. With the correspondence from step 1, compute the
incremental transformation (R, t);

3. Apply the incremental transformation from step 2
to the data Y;

4. If the change in total mean square error is less than
a threshold, terminate. Else goto step 1.

Besl and McKay [13] proved that this algorithm is guar-
anteed to converge monotonically to a local minimum of
the Mean Square Error (MSE). Many variants to ICP have
been proposed to cope with partially overlapping views
and false matches in general, including the use of closest
points in the direction of the local surface normal [14], the
use of thresholds to limit the maximum distance between
points [15], disallowing matching on the surface bound-
aries [16], and the use of robust regression [17]. In [18]
a survey on the main ICP variations is presented focusing
both on the accuracy of results and speed.

4. PROPOSED METHOD

As we mentioned before, this work aim at finding the best
trade-off between speed and accuracy. In this section we
describe the main features of the proposed algorithm for
both the improvement of speed, in order to permit the per-
formance in real time, and the accuracy, in order to ma-
nipulate very noise data (i.e. acoustic data).

4.1. Acceleration techniques

In order to be able to work on-line, ICP needs to be modi-
fied. In general, the speed enhancement of ICP algorithm

147



Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-2 2005

can be achieved by: i) reducing the number of iterations
necessary to converge and ii) reducing the time spent in
each iteration (i.e., time spent for the calculation of the
correspondences)[18].

A number of classical approaches, such as k-D tree [19],
exist for speed up the calculation of the correspondences,
which has been reputed to account for the bulk of the
computational complexity of ICP algorithm. Another ap-
proach is based on the substitution of the point-to-point
distance metric with the point-to-surface distance, which
[18] reports to yield a faster convergence. The acceler-
ation of the extraction of corresponding points is still an
open issue to be addressed and different innovative tech-
niques [20, 21, 22, 23] have been proposed recently.

In this paper, we propose an acceleration method based on
a variation of the so-called reverse calibration technique
[6]. The method is based on the fact that from the sensor
we obtain data stored in both the structures of unorganized
cloud of point x; = (z,y, z) and range image (i, j) [10].
Given a 3D point y; € Y of data set and given the cam-
era parameters it is possible to project y; onto the range
image of the model set r,, (i, 7). The 3D point%; €X as-
sociated to 7., (i, ) will be the hypothetic corresponding
point of y;. In order to improve the accuracy of finding
correspondences it is possible to use the information of
the connectivity given by the range image. We define the
neighborhood N*i of x; as:

N ={x'eX | xX'=8»
k,h= —w,..+w}

+k, 54N

(6)
where w is the dimension of a window centered on r(3, j)
and B(-) is the operator that re-projects the range point
r(i,7) onto the Euclidean 3D space. It is worth noting
that the range image is not dense since after the filtering
(i.e., after thresholding on intensity signals) a lot of points
are discarded. For each range point r(i, j) there is a flag
that indicates if the associated point is survived or not.
More precisely, the operator B(r(i,j)) returns O if the
corresponding 3D point was discarded. Finally, the clos-
est point to y; in V% is taken as definitive corresponding
point of y;. If the projection of the point y; falls onto an
empty area, this point remains without correspondence.
As we pointed out above, the main important step is the
projection of the 3D point onto the range image. This pro-
cess can be carried out by the following equation:

. a—=1Ip . _B—=Jo
i= 9, j=rorr )
Sa S5

where s, and sg are introduced in Section 2 , Iorr and
Jorr are offsets and finally « and 3 are given by:

Yy

a=my L pomy = (®)

The parameters s,, s, Iorr and Jorr are fixed by the
acquisition sensor and they determine the aperture of the
acquisition (i.e., field of view and resolution)(Figure 1b).
By considering the high computational cost of the arctg
operator a variation of ¢ and j indices extraction is intro-
duced. From equation (8) we easily find that:

Y

T
tga == tgB = — 9)

z

Because the possible angles a; and 3; on the model image
are a priori known (i.e., according to the spherical scan-
ning principle) the values tga; and tg3; are stored into a
table. When a 3D point (z,y, z) from data set is coming,
the values 7 and Z are used to index the table and re-
trieve angles without calculating arc-tangent. In this way,
by avoiding the arc-tangent computation, a dramatic im-
provement of the speed is obtained.

In the proposed method, a further improvement of the
speed is obtained by reducing the number of points used
for registration. We tested two different subsampling meth-
ods: random and uniform. In both of them the size of the
sub-set is a priori fixed. The random method computes the
subset by generating different random number. The uni-
form method simply calculates the subsampling rate (Sn)
and select one point every Sn, according to the acquiring
order. Although the random method is more accurate the
uniform method is quite faster. For this reason we decide
to implement the uniform method.

4.2. Accuracy techniques

In order to reduce the influence of the outliers for the com-
putation of correspondences, we introduce a variation of
the ICP algorithm according to the so called X& rule [8].
We introduce a modified cost function based on robust
statistics to limit the maximum distance between closest
points. As pointed out by Zhang [15], the distribution
of the residuals for two fully overlapping sets approxi-
mates a Gaussian, when the registration is good. The non-
overlapped points skew the distribution of the residuals,
hence the threshold on the distance must be set using a
robust statistics. Following the X84 rule we discard those
points whose residual differ more than 5.2 MAD (Median
Absolute Deviations) from the median. The value 5.2 cor-
responds to about 3.5 standard deviations, which encloses
more than 99.9% of a Gaussian distribution. This is an
improvement over [15], because the X84 threshold is in-
dependent on fine tuned parameters by allowing the on-
line implementation. Moreover, experiments suggests that
X84 achieves a larger basin of attraction [7].

A further improvement of the accuracy is obtained by in-
troducing a pre-alignment before the application of the
fast registration. This is because we verified that the align-
ment based on the reverse projection could fail when the
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two views are not enough close. In order to increase the
robustness of the registration, we apply the classical ICP
method without reverse projection for a certain number of
iterations (a parameter NP is introduced for manually
fixing this number). This permits to obtain a good pre-
alignment from which the reverse-calibration alignment
converge fast and correctly to the optimal solution.

4.3. Parameters definition

In this section we summarize the parameters of the algo-
rithm that are crucial for the performance:

o Negligible Progress Threshold (NPT): this parame-
ter defines the stop criteria of the ICP iterations. If
the residual is less than this threshold the alignment
is stopped. By reducing the NPT the accuracy is im-
proved but more iteration must be carried out and,
consequently, more time is spent. Although this pa-
rameter could be tuned by a user, we have found
experimentally its best estimation [24].

e Automatic outliers rejection: This procedure makes
the algorithm robust to the outliers that rise when
the two views are poorly overlapped. Because this
computation is based on statistic a lot of time is
spent for it. Especially when the motion of the ROV
is very slow, it could be possible to disable this fea-
ture. Even if there is a flag in the algorithm for its
disable, for the most of the cases this procedure is
recommended.

e Subsampling level: As we mentioned before, the
number of points of the subsampled image influ-
ences the performance of the alignment. This pa-
rameter is tunable by the user that can adapt the
subsampling to the environment conditions. Also
for this parameter we have find a reasonable esti-
mation that can be used as a default value [24].

e Number of pre-aligning iterations (NPI): Some iter-
ations of the classic method for computing the clos-
est points (without re-projection) are needed when
the two images are not close enough even if this
phase is very computational expensive. By testing
different sequences of image pairs we verified that
two iterations are sufficient for a good pre-alignment
[24].

5. RESULTS

In this section some experiments are presented. We test
the algorithm on two sequences of real images. For those
sequences ine = PBine = 1.4 and Ippr = Jorr =
—44.8. Considering that the beams are 64 for both the

(b)

Figure 3: In (a) three range images before the registration
procedure is applied. In (b) the result of registration.

polar directions (tilt and pan) the aperture of this set-up
is about 90 x 90. After a deeper parameters estimation
process, the NPT value is fixed to 10~2 and the number
of points for sumbsamplig is 400. The number of pre-
aligning iterations (NPI) are 2 and the outliers rejection
procedure is enable [24].

The first sequence (30 frames) is composed of an under-
water wall and a pillar. Each frame has been registered
with respect to the previous one. Figure 3 shows the reg-
istration of three images. Figure 3(a) shows the images
before the registration and Figure 3(b) shows their align-
ment.

Figure 4 shows the points from all the range images rep-
resented in the same reference system after registration.
The transformations that bring each view on to the mo-
saic are computed just combining the sequential pairwise
matrices. It is worth noting that the visible part of the ob-
serving object is increased by highlighting both the pillar
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Figure 4: Input data from the whole system after registra-
tion.

and the wall.

In the second sequence (10 frames) the scene is composed
by a part of a wreck. Figure 5 shows some images of the
sequence. The images are very noise and it is very diffi-
cult to understand the scene. Furthermore the registration
process is more challenging with such data.

After pairwise registration a global mosaic is obtain and
the wreak is reconstructed. Figure 6 shows the goodness
of the global alignment. Table 1 and 2 show the perfor-
mances of registration in terms of accuracy and speed for
both the sequences. The proposed method has been also
compared with the classic ICP.

The speed of the proposed registration is about 4.5 frames
per second, for both the sequences, and it is sufficient
to observe a mosaic of the scene on-line (timings have
been computed on a laptop P3 1G H z, with 128Mb Ram).
Therefore, for the first sequence, the obtained accuracy is
reasonable since it is little higher than the image resolu-
tion. For the second sequence, the measured accuracy is
lower but it is still acceptable since the images are quite
degraded and also they are poorly overlapped so that the
registration is more likely to decrease the performance.
It is worth noting that the accuracy obtained with clas-
sic ICP is little better than the accuracy obtained with the
proposed method. Furthermore, the speed measured with
classic ICP is very slow and, as we expected, it is not ac-
ceptable for on-line applications.

6. CONCLUSIONS

In this paper we tackled the problem of automatically reg-
istering two clouds of points in real time. We introduce a
method to speed up the calculation of the closest point of
the well known ICP algorithm using reverse calibration.

Figure 5: Some acoustic images of the second sequence.
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Figure 6: Mosaic of the second sequence.

The proposed algorithm allows the realization of an ap-
plication that aims at improving the visual perception of
a pilot driving an underwater ROV. Due to the very noisy
nature of the images the mosaicing is made more challeng-
ing than for optical 3D images, and a robust approach is
necessary, aiming at extracting more reliable information
from the observed data.

Preliminary results are satisfactory, since the speed is enough

fast for the real time scene mosaicing. Furthermore, the
accuracy of the alignment guarantees to obtain a global
mosaic just combining the pairwise registration. Further
experiments are needed for a deeper testing of the sys-
tem. Future work will address the improvement of the
rendering phase by extracting a global mesh from the set
of aligned points.
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