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Abstract. In this paper an application is described, where image registration to a model is used

in conjunction with registration of acoustic (3-D) data to the same model to perform calibration of

an optical/acoustic rig. This allows to register the video image with the depth map acquired by the

acoustic device, thereby obtaining a single multisensorial image. Experimental results on both synthetic

and real images are reported.
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1. Introduction

This paper presents a novel technique for calibrating a compound sensor consisting of a
video camera and an acoustic three-dimensional (3-D) camera, mounted side by side on a
rig. We use the scene itself as a calibration object: both acoustic and optical images are
registered to a known model of the observed object, thereby obtaining the relative pose
of optical and acoustic cameras. The final result is the registration of the low-resolution
depth map with the optical (high resolution) image. The integrated data can be thought
as a multisensorial image, which can be displayed as is or used to synthesize a 3-D virtual
environment [11].

This work is motivated by underwater applications where the integration of several
different sensors is crucial for typical tasks like navigation and inspection. Actually, in
underwater environments, an optical camera is often insufficient and an acoustic sensor
can make up for its shortcomings.

To the best of our knowledge, no previous work addresses this topic. In fact, previous
works in (underwater) acoustic 3-D data reconstruction are present in literature, and
optical calibration is a well known technique in computer vision. However, the integration
of acoustic and optical sensors via geometric calibration were never proposed before.
Our work differs from those addressing the joint processing of 3-D and gray-level images
[5, 9], since the latter operates on perfectly registered images having the same (lateral)
resolution1, whereas our method relies on very different sensors with different resolution,

∗This work is supported by the European Commission under the BRITE-EURAM III project no. BE-
2013 VENICE (Virtual Environment Interface by Sensor Integration for Inspection and Manipulation
Control in Multifunctional Underwater Vehicles)

1The resolution of an imaging device is the solid angle that projects to an image elements. In a range
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in which a point-to-point relation is not provided, but is indeed the outcome of our
algorithm.

In Sec. 2 the optical and acoustic cameras are described. Sec. 3 outlines the idea
of optical/acoustic calibration, and gives an overview of the whole method, which relies
on 3-D alignment (Sec. 4) and 2-D alignment (Sec. 5). Experimental results (Sec. 6) on
both synthetic and real images show the effectiveness of the proposed approach. More
details on this work can be found in [12].

2. Camera models

2.1. Optical camera

A pinhole camera is modeled by its optical center C and its retinal plane (or image plane)
R. A 3-D point W is projected into an image point M given by the intersection of R
with the line containing C and W. The line containing C and orthogonal to R is called
the optical axis and its intersection with R is the principal point. The distance between
C and R is the focal distance.

Let w = [x y z]> be the coordinates of W in the model reference frame and m = [u v]>

the coordinates of M in the image plane (pixels). The mapping from 3-D coordinates
to 2-D coordinates is the perspective projection, which is represented by a linear trans-
formation in homogeneous coordinates. Let m̃ = [u v 1]> and w̃ = [x y z 1]> be the
homogeneous coordinates of M and W respectively; then the perspective transformation
is given by the 3×4 matrix P̃:

κm̃ = P̃w̃, (1)

where κ is an arbitrary scale factor. The camera is therefore modeled by its perspective
projection matrix P̃, which can be decomposed, using the QR factorization, into

P̃ = A[I|0]Go. (2)

The matrix A depends on the intrinsic parameters only: focal length in pixel, aspect
ratio, principal point and skew factor. The camera position and orientation (extrinsic
parameters), are encoded by the 4× 4 matrix Go representing (in homogeneous coordi-
nates) the rigid transformation that brings the camera reference frame onto the model
reference frame.

Calibration consist in computing the intrinsic and extrinsic parameters of the camera.
Given a sufficient number of correspondences between model reference points and image
points, it is possible to solve the perspective projection equation (1) for the unknown
parameters. In our experiments we used a suitable object to accurately identify reference
points, and the calibration algorithm developed by L. Robert [8].

image we distinguish between lateral and range resolution. The latter is the resolution in the depth
measuring.
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2.2. Acoustic camera

The acoustic camera (called Echoscope [7]) is formed by a two-dimensional array of
transducers sensible to signals backscattered from the scene previously insonified by a
high-frequency acoustic pulse. The whole set of raw signals is then processed to estimate
signals coming from fixed steering directions (called beamsignals) while attenuating those
coming from other directions. Assuming that beamsignals represent the responses of a
scene from a 2D set of (steering) directions, a 3-D point set can be extracted detecting
the time instant (t∗) at which the maximum peak occurs in each beamsignal. Besides,
the intensity of the maximum peak can be used to generate another image, registered
with the former, representing the reliability of the associated 3-D measures. In other
words, the higher the intensity, the safer the 3-D measure associated. Images are formed
by 64 × 64 3-D points ordered such that adjacent points correspond to adjacent beam
signals. Their coordinates are expressed in a 3-D reference frame attached to the sensor.
The rigid transformation that brings this reference frame onto the model reference frame
is by a 4× 4 matrix Ga.

3. Optical/Acoustic calibration

Given a rig composed by an optical and an acoustic camera, calibration consists in recov-
ering the unknown rigid transformation that relates the two reference frames attached
to the cameras. In this way, given an acoustic image, composed by a set of target points,
each with a certain 3-D position, we can project it onto the optical image plane, ob-
taining a depth map with reference to the image plane. This can be resampled (e.g. by
bilinear interpolation) on the pixels grid to obtain a depth map referred to the optical
image.

In principle, to calibrate the cameras, a suitable object should be manufactured which
gives raise to distinct features both in the acoustic image and optical image. This is very
difficult to achieve, mainly because of the different resolution of the two devices. In our
approach, we use the scene itself as a calibration object. Knowing the CAD model of
the observed objects, we register both acoustic and optical data to the model, thereby
obtaining the relative pose of optical and acoustic cameras. The typical object we deal
with is an off-shore oil rig, consisting of connected cylindrical pipes.

Let Go be the extrinsic parameters matrix of the optical camera:
w̃camera = Gow̃, (3)

and let Ga be the rigid transformation that brings the acoustic camera reference frame
onto the model reference frame:

w̃sonar = Gaw̃. (4)
By composing the two transformations we get: w̃camera = GoG−1

a w̃sonar. Hence, the
perspective projection matrix that projects the 3-D points expressed in the acoustic
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Fig. 1. Optical/acoustic calibration

camera reference frame onto the image plane of the optical camera is given by
P̃oa = A[I|0]GoG−1

a . (5)
The aim of the optical/acoustic calibration is to obtain Go and Ga by registering the op-
tical image and the acoustic image to the CAD model. These are two distinct problems:
(i) the 3-D - 3-D alignment, also known as the 3-D motion problem or absolute orien-
tation problem [6]; (ii) the 3-D - 2-D alignment, also known as the exterior orientation
problem [6].

4. 3-D Alignment

In our approach, acoustic data points lying on the surface of cylinders are matched to
the underlying object surface model using an iterative least squares technique. Data
points are expressed in the acoustic reference frame, whereas the model cylinders are
placed in the model reference frame. The sought rigid transformation that links the two
reference frames is given by Ga.

4.1. The ICP algorithm

In their paper, Besl and McKay [3] introduce the Iterative Closest Point (ICP) algorithm,
a general purpose method for solving the 3-D registration problem.

Suppose that we are given two sets X and Y corresponding to a single shape, where Y
is a set of 3-D points and X is a surface (of a cylinder, in our case). The correspondence
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between Y and X is unknown. For each point yi from the set Y, there exists at least
one point on the surface of X which is closer to yi than all other points in X. This is
the closest point, xi. The basic idea behind the ICP algorithm is that, under certain
conditions, the point correspondences provided by sets of closest points are a reasonable
approximation to the true point correspondence. Besl and McKay [3] proved that if the
process of finding closest point sets and then solving the point set registration problem
[10] is iterated, the solution is guaranteed to converge to a local minimum. In our
case, pre-alignment based on the inertial tensor [11] produced a fairly good initial pose,
sufficient to achieve convergence to the correct solution. In cases where this fails, the
human operator is in charge of providing a rough initial pose estimate by specifying at
least three point correspondences.

5. Optical alignment

Optical alignment, that is solving for the camera’s pose that best fit a model to some
matching image features, is performed using Lowe’s algorithm [1].

5.1. Lowe’s algorithm

Let us begin by supposing that point correspondences are available and that the intrinsic
camera parameters are known. Let w1 . . .wN be N points of an object model expressed
in the model reference frame and m1 . . .mN be the image points, projections of the wi.
The relation between an object point and an image point, is given by the perspective
projection:

κA−1m̃i = [R|t]w̃i. (6)

derived from (2) by letting Go =
[
R t
0 1

]
. Let p̃i = [ui, vi, 1]> = A−1m̃i be the normalized

image coordinates. To explicitly enforce orthogonality, R is parameterized with the three
Eulerian angles φ, ψ, θ. Let’s think of (6) as a mapping Fi : R6 → R2 from the six
parameters space of the rigid transformations to the image coordinates (ui, vi). Then
(6) is equivalent to

pi = Fi(e). (7)

where e = [t, φ, ψ, θ]>. This non-linear equation can be solved with Newton’s method. Fi

is linear with respect to translation and scaling over the image plane, and approximately
linear over a wide range of values of the rotational parameters. Hence, the method is
likely to converge to the desired solution for a rather wide range of possible starting
positions. In our case the initial pose for the optical camera is assumed to be the same
of the acoustic one (Ga), already computed. Given the small displacement between the
two cameras, this is usually sufficient to ensure convergence. The method can be easily
extended to cope with line correspondences[1].
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The case of a smooth boundaries objects, as cylinders, is different. A rim generated
by a sharp edge is stable on the object as long as the edge is visible, whereas a rim
generated by a smooth surface changes continuously with the viewpoint. However, as
noted by Lowe [1], treating the rim as a fixed line in space does not prevent the algorithm
to converge, and does not affect the precision of the final alignment.

The matching between image features and model features is computed using an al-
gorithm introduced by Scott and Longuet-Higgins [2] for associating features of two
arbitrary patterns.

In our case, model features are segments belonging to the cylinder’s rim2, and image
features are lines containing the bounding contour of the cylinder, extracted automati-
cally from the image. Since the initial pose given by acoustic alignment is fairly close to
the true one, this simple matching procedure is sufficient.

6. Experiments and Discussion

In this section experimental results are shown with both synthetic and real images.
Synthetic images were generated using Rayshade, with an option that allows to save

the z-buffer, simulating an ideal acoustic 3-D image. The optical camera were displaced
with respect to the acoustic one by a lateral translation of 300 mm. Image lines were
extracted from the image with Canny filter followed by Hough transform (details in [11]).
Figure 2 shows the result of the optical/acoustic alignment.

More interesting are the experiments with real images, of which we show here only
one example in Figure 3. A video camera and an acoustic camera was mounted side
by side on an underwater remote operated vehicle. The distance between their centers
was approximately 300mm. Acoustic raw images are typically quite noisy. For this
reason, a low-level processing phase is mandatory. We used the reliability image to
discard 3-D points associated with a low intensity, followed by a size filter (more details
in [11]) The 3-D registration with ICP performed well, converging to a RMS distance of
about 70mm, on the average. As expected, the use of 3-D data provide a very precise
object pose estimate. The optical alignment also converged, but the estimated position
of the camera’s optical center was very uncertain along the direction of the optical axis
(the standard deviation was of the order of 600 mm). This points strongly to iterative
estimation with Kalman filtering of the unknown but fixed displacement between the
two cameras, as the vehicle moves.

Since the optical alignment seems to be the critical part of the process, we tested
its sensitivity to noise, by perturbing the intrinsic parameters in the synthetic case. It
turns out that the translation component of the displacement is very sensitive to intrinsic

2Given a viewpoint, the rim of an object is the set of points on the object’s surface where the line
containing the viewpoint (i.e., the optical ray) is tangent. The projection of the rim in the image is the
bounding contour of the object.
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Fig. 2. Synthetic image, with the projected
acoustic points (white dots) and the pro-
jected model (white lines) superimposed.

Fig. 3. Real image, with the projected acous-
tic points (white dots) and the projected
model (white lines) superimposed. Some
points falls outside the objects because of
the low spatial resolution of the acoustic
device.

parameters variation, especially along the direction of the optical axis. Even without
noise, there was an error of 173 mm in the translation between camera centers. This
is in agreement to [4], who noted that, while 2-D data is useful for estimating object
motion in planes normal to a camera’s optical axis, it is less sensitive to motions which
deviate from these planes.
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