
A matter of notation: several uses of the

Kronecker product in 3-D Computer Vision

Andrea Fusiello

Dipartimento di Informatica, University of Verona
Strada Le Grazie 15, 37134 Verona, Italy.

Abstract

This work presents a number of cases in Computer Vision where the introduction of
the Kronecker product allows more elegant and compact derivations. We hold that
a clear notation can enlighten properties and catalyze reasoning. In particular we
introduce the trifocal matrix that allows to express the trilinear constraints among
three views by using the familiar matrix algebra.

Key words: Kronecker product, trifocal matrix, camera calibration, exterior
orientation, trifocal geometry

1 Introduction

The interest in the Kronecker product has grown recently, as witnessed by
C. Van Loan [1]:

“The Kronecker product has a rich and very pleasing algebra that supports
a wide range of fast, elegant, and practical algorithms. Several trends in
scientific computing suggest that this important matrix operation will have
an increasingly greater role to play in the future”

In Computer Vision (CV), however, the Kronecker product appeared only
sporadically and has not been widely used. One of the first appearances is
in [2], where it is used mainly to compute derivatives of matrix functions [3].
For the same purpose it has been exploited later in [4]. In [5,6] the Kronecker
product arises in the study of the pre-conditioning of the eight-point-algorithm
[7]. In [8] it is used in the context of non-rigid structure from motion. Albeit
this sporadic appearances, the Kronecker product has not gained the attention
that it probably deserves.

Preprint submitted to Elsevier Science 16 May 2007

First we will describe the Kronecker product and some related matrix alge-
bra tools. Then we will apply these tools to the derivation of some classical
linear algorithm in CV, as the eight-point-algorithm and the Direct Linear
Transform (DLT). Then we will re-derive the Zhang’s calibration method and
the Fiore’s algorithm for exterior orientation. In all these cases the use of
Kronecker product and related tools yields a compact derivation, where the
matrices never need to be expanded in terms of their entries. This allows to
reason about global properties of matrices – such as the rank.

The alternative derivations that we provide eventually attain to the same
equations of the respective original algorithms. Hence, we refer the reader to
the relevant papers for the discussion of their numerical properties.

In the last part we will introduce the trifocal matrix that –thanks to the
Kronecker product – enables to express the trilinear constraints among three
views with matrix algebra. Avoiding the tensorial notation is a great benefit
in teaching, because in a typical CV course the exposition of tensor algebra
is functional to the trifocal geometry only, hence it constitutes a substantial
overhead. Moreover it is fairly unpalatable to the students, who, in our ex-
perience, are more proficient with the more familiar matrix algebra. All the
previous attempts to avoid the tensorial notation [9,10] sacrifices compact-
ness, meaning that there is not a single algebraic object that “represents” the
trilinearity, as our trifocal matrix does instead.

2 Some matrix tools

This section develops some matrix tools related to the Kronecker product that
will prove useful in the rest of the paper. Further readings on this topic are
[11,3].

2.1 Kronecker product

Let A be a m× n matrix and B a p× q matrix. The Kronecker product of A
and B is the mp× nq matrix defined by

A⊗B =

a11B . . . a1nB
...

...

am1B . . . amnB

. (1)

2

The Kronecker product is defined for any pair of matrices A and B. It is
associative and distributive with respect to matrix sum and product, but it
is not commutative. The transpose of a Kronecker product is (A ⊗ B)T =
AT ⊗BT .

A very important property concerns the eigenvalues of the Kronecker product.
Let A = SLS−1 and B = TMT−1 be the Shur’s decomposition of A and B
respectively, where L and M are upper triangular matrices whose diagonal
elements are the eigenvalues of A and B respectively, and S and T are unitary
matrices. Thus,

A⊗B = (SLS−1)⊗ (TMT−1) = (S ⊗ T)(L⊗M)(S−1 ⊗ T−1). (2)

Since A ⊗ B and L ⊗ M are similar and the latter is upper triangular, the
eigenvalues of A⊗B are the diagonal elements of L⊗M . This implies that

rank(A⊗B) = rank(A) rank(B). (3)

2.2 Vectorization

The vectorization of a matrix is a linear transformation which converts the
matrix into a column vector. Specifically, the vectorization of the matrix A,
denoted by vec(A), is the vector obtained by stacking the columns of A one
underneath the other.

The basic connection between the vec operator and the Kronecker product is

vec(abT) = b⊗ a (4)

for any column vectors a and b. The generalization of this is the following
important property:

vec(AXB) = (BT ⊗ A) vec(X) (5)

for matrices A, B, X of compatible dimensions. This will be useful for

• pulling the unknown X out of a matrix equation;
• expressing bilinear (and multilinear) forms.

Sometimes, when dealing with symmetric matrices, one wants to vectorize
only its unique elements. The half-vectorization, vech(A), of a symmetric n×n
matrix A is the n(n+1)/2×1 column vector obtained by vectorizing only the
lower triangular part of A. The duplication matrix Dn is the unique n2×n(n+
1)/2 matrix which, transforms vech(A) into vec(A): Dn vech(A) = vec(A).

3

2.3 Vector transposition

The vector transposition generalizes both vectorization and transposition [12,13].
The p-wise vector-transposition of a m× n matrix A, denoted by A(p), is ob-
tained by doing a block-transposition of A where blocks are column vectors
of p elements (p must divide m, the number of rows of A).

Basic properties are:

A(1) = AT (6)

A(m) = vec(A) (7)

A(p)(p)
= A (8)

Hence, vec(A)(m) = A(m)(m)
= A. The m-wise vector transposition reshapes

the column vector vec(A) back into the matrix A.

3 The eight-point algorithm

A number of 2D-2D point correspondences mi
` ↔ mi

r (in homogeneous coor-
dinates) is given, and we are required to find the fundamental matrix F that
links corresponding points in the bilinear form:

mT
r Fm` = 0. (9)

The eight-point algorithm [7] exploits Equation (9) to linearly compute F .
Using the Kronecker product and Eq. (5), the derivation of the linear system
of equations is particularly easy and elegant, given that one never needs to
explode matrices into components 1 .

mT
r Fm` = 0 ⇐⇒ vec(mT

r Fm`) = 0 ⇐⇒ (mT
` ⊗mT

r) vec(F) = 0. (10)

This is a linear equation in the unknown entries of F . From a set of n point
correspondences, we obtain a n × 9 coefficient matrix A by stacking up one
equation for each correspondence. The solution is the 1-dimensional right null-
space of A. Eight points at least are needed, hence the name.

1 This derivation first appeared in [2].

4

4 The Direct Linear Transform algorithm

The Direct Linear Transform (DLT) algorithm [10] solves – with small varia-
tions – two different problems:

• Camera calibration (or resection);
• Homography estimation.

In this section the reader will appreciate the use of the Kronecker notation
not only for its compactness, but also because of its rank property (Eq. (3)).

4.1 Camera calibration

A number of 2D-3D point correspondences mi ↔ Mi (in homogeneous coor-
dinates) is given, and we are required to find a camera matrix P such that

mi ' PMi for all i (11)

where the symbol ' means equality up to a scale. In order to get rid of this
unknown scale factor, the equation can be rewritten in terms of the cross
product as

mi × PMi = 0. (12)

Using the properties of the Kronecker product (namely Eq. (5)) we derive:

mi × PMi = 0 ⇐⇒ [mi]×PMi = 0 ⇐⇒
vec([mi]×PMi) = 0 ⇐⇒ (MT

i ⊗ [mi]×) vec(P) = 0
(13)

where [t]× is the skew-symmetric matrix such that t×x = [t]×x for any vector
x.

Although there are three equations, only two of them are linearly independent:
Indeed, the rank of (MT

i ⊗ [mi]×) is two because it is the Kronecker product of
a rank-1 matrix by a a rank-2 matrix. From a set of n point correspondences,
we obtain a 2n × 12 coefficient matrix A by stacking up two equations for
each correspondence. The solution is the 1-dimensional right null-space of A.
At least 11 equations are needed (51

2
points).

4.2 Homography estimation

A number of 2D-2D point correspondences mi
r ↔ mi

` (in homogeneous coor-
dinates) is given, and we are required to find the homography matrix H such

5

that
mi

r ' Hmi
` for all i (14)

The equation (we drop the index i for simplicity) can be rewritten in terms of
the cross product as

mr ×Hm` = 0 (15)

As we did before, we exploit the properties of the Kronecker product and the
vec operator to transform this into a null-space problem and then derive a
linear solution:

mr ×Hm` = 0 ⇐⇒ [mr]×Hm` = 0 ⇐⇒
vec([mr]×Hm`) = 0 ⇐⇒ (mT

` ⊗ [mr]×) vec(H) = 0

By the same token as before we conclude that the matrix (mT
` ⊗ [mr]×) has

rank two, hence only two equations out of three are linearly independent.
From a set of n point correspondences, we obtain a 2n× 9 coefficient matrix
A by stacking up two equations for each correspondence. The solution is the
1-dimensional right null-space of A. Four points at least are needed.

5 Zhang’s internal calibration

Here we will re-derive the core of Zhang’s calibration algorithm [14], i.e., the
procedure for computing the internal parameters of a camera starting from
world-image homographies.

Several images of a known planar pattern are available, and it is assumed that
correspondences between image points and 3-D points on the planar pattern
have been established in each view. We are required to find the camera’s
internal parameters matrix K.

It is easy to see that for a camera P = K[R|t] the homography between a
world plane at z = 0 and the image is

H ' K[r1, r2, t] (16)

where ri are the column of the rotation matrix R. The homography H is
computed from correspondences between four or more known world points
and their images. Writing H = [h1,h2,h3], from the previous equation we
derive:

r1 = λK−1h1 (17)

r2 = λK−1h2 (18)

where λ is an unknown scale factor. Thanks to the fact that the columns of R
are orthonormal, some constraints can be obtained on the intrinsic parameters.

6

The orthogonality rT
1 r2 = 0 gives hT

1 (KKT)−1h2 = 0 or, equivalently

hT
1 ωh2 = 0 (19)

where ω = (KKT)−1. Likewise, the condition on the norm rT
1 r1 = rT

2 r2 gives

hT
1 ωh1 = hT

2 ωh2 (20)

Introducing the Kronecker product as usual (Eq. (5)), the last two equations
can be rewritten as:

(hT
2 ⊗ hT

1) vec(ω) = 0 (21)(
(hT

1 ⊗ hT
1)− (hT

2 ⊗ hT
2)

)
vec(ω) = 0 (22)

As ω is a 3 × 3 symmetric matrix, its unique elements (the unknowns) are
only six. This fact can be neatly taken into account using the vech operator.
The above equations are equivalent to:

(hT
2 ⊗ hT

1)D3 vech(ω) = 0 (23)(
(hT

1 ⊗ hT
1)− (hT

2 ⊗ hT
2)

)
D3 vech(ω) = 0 (24)

From a set of n images, we obtain a 2n × 6 coefficient matrix A by stacking
up two equations for each image. The solution is the 1-dimensional right null-
space of A. At least five equations are needed (21

2
images).

6 Exterior orientation

Given a number of 2D-3D point correspondences mi ↔ Mi (in homogeneous
coordinates) and the intrinsic camera parameters K, we are required to find
a rotation matrix R and a translation vector t (which specify attitude and
position of the camera) such that:

K−1mi ' [R|t]Mi for all i. (25)

The problem can be cast as a camera resection and solved with the DLT
algorithm, but the resulting rotation matrix R is not guaranteed to be or-
thonormal. Hence, Fiore’s algorithm [15] is to be preferred, which is linear
and produces a rotation matrix that is inherently orthonormal. We will out-
line it here.

Let us rewrite Eq. (25) by explicitly introducing the depth 2 of Mi, denoted
by ζ i:

ζ iK−1mi = [R|t]Mi for all i. (26)

2 The depth of a point is its distance from the focal plane of the camera.

7

The core of Fiore’s algorithm is the recovery of the unknown depth ζ i. Let us
write Eq. (26) in matrix form:

K−1[ζ1m1, ζ2m2, . . . ζnmn]︸ ︷︷ ︸
W

= [R|t][M1,M2, . . .Mn]︸ ︷︷ ︸
M

.

Let r = rank(M). Take its singular value decomposition: M = UDV T and
let V2 be a matrix composed by the last n− r columns of V , which span the
null-space of M . Then, MV2 = 03×(n−r), and also

K−1WV2 = 03×(n−r) (27)

By vectorizing both sides we get:

(V T
2 ⊗K−1) vec(W) = 0. (28)

Let us observe that 3 :

vec(W) =

ζ1m1

ζ1m2

...

ζnmn

=

m1 0 . . . 0
. . .

0 0 . . . mn

︸ ︷︷ ︸
D

ζ1

...

ζn

︸ ︷︷ ︸
ζ

Hence (
(V T

2 ⊗K−1)D
)
ζ = 0. (29)

From the last equation the depths ζ can be recovered (up to a scale factor)
by solving a null-space problem.

The size of the coefficients matrix is 3(n− r)×n, and in order to determine a
one-parameter family of solutions, it must have rank n− 1, hence 3(n− r) ≥
n−1. Therefore, at least n ≥ (3r−1)/2 points are needed: six point in general
position, or four point on a plane, are sufficient.

Now that the left side of Eq. (26) is known, up to a scale factor, we are
left with an absolute orientation (with scale) problem. which can be solved
linearly with [16]. As a result, the estimated rotation matrix is orthonormal
by construction.

3 This observation is due to P. Fiore, personal communication.

8

7 The trifocal constraint

We have demonstrated how the Kronecker notation can yield compact and el-
egant derivations for some Computer Vision algorithm. We shall now demon-
strate how the trifocal constraint can be introduced without resorting to tri-
linear tensors, thanks to the Kronecker product. This is probably the greatest
merit of this notation.

Consider a point M in space projecting to m1, m2 and m3 in the three cameras

P1 = [I|0], P2 = [A2|e2,1], and P3 = [A3|e3,1]. (30)

Let us write the epipolar line of m1 in the other two views:

ζ2m2 = e2,1 + ζ1A2m1 (31)

ζ3m3 = e3,1 + ζ1A3m1. (32)

where ζi varies in R and correspond to the depth of the 3-D point with respect
to view i. Consider a line through m2, represented by s2; we have sT

2 m2 = 0,
that substituted in (31) gives:

0 = sT
2 e2,1 + ζ1s

T
2 A2m1 (33)

Likewise, for a line through m3 represented by s3 we can write:

0 = sT
3 e3,1 + ζ1s

T
3 A3m1 (34)

After eliminating ζ1 from Equation (33) and (34) we obtain:

0 = (sT
2 e2,1)(s

T
3 A3m1)− (sT

3 e3,1)(s
T
2 A2m1) (35)

and after some re-writing:

0 = sT
2

(
e2,1m

T
1 AT

3 − A2m1e
T
3,1

)
s3 (36)

This is the trifocal constraint, that links m1, s2 (any line through m2) and s3

(any line through m3). This is the same expression found in [9].

Geometrically, the trifocal constraint imposes that the optical ray of m1 in-
tersects the 3-D line L that projects onto s2 in the second image and s3 in the
third image (Fig. 1).

A better expression for the trifocal constraint should incorporate all the co-
efficients of the trilinear form in a single object. The tensor notation [17–19]
satisfies this requirement, but it is cumbersome and hardly palatable for non-
experts. The Kronecker notation offers an alternative that relies on matrix
algebra.

9

L

m

m

C

C

C
3

1

3

2

2

M

s 2

s

m

3

1

Fig. 1. Two arbitrary lines s2 and s3 through corresponding points m2 and m3 in
the second and third image respectively, define a 3-D line L that must intersect the
optical ray of m1.

Using the properties of the Kronecker product, the trifocal constraint (Eq. (36))
can be written as:

0 = (sT
3 ⊗ sT

2) vec
(
e2,1m

T
1 AT

3 − A2m1e
T
3,1

)

= (sT
3 ⊗ sT

2) ((A3 ⊗ e2,1) vec(m1)− (e3,1 ⊗ A2) vec(m1))

= (sT
3 ⊗ sT

2) ((A3 ⊗ e2,1)− (e3,1 ⊗ A2))m1)

= (sT
3 ⊗ sT

2)Tm1 (37)

where T is the 9× 3 trifocal matrix defined by

T = (A3 ⊗ e2,1)− (e3,1 ⊗ A2) (38)

The matrix T encodes the trifocal geometry. Its 27 entries are the coefficient
of the trilinear form.

An equivalent formulation of the trifocal constraint that generalizes the ex-
pression of a bilinear form (as in Eq. (10)) is obtained by applying Eq. (5) to
Eq. (37):

(mT
1 ⊗ sT

3 ⊗ sT
2) vec(T) = 0. (39)

A third equivalent formulation of the trifocal constraint is derived if we look
at the vector Tm1 in Eq. (37) as the vectorization of a suitable matrix. This
is easy to write thanks to the vector transposition:

0 = (sT
3 ⊗ sT

2)Tm1 (40)

= (sT
3 ⊗ sT

2) vec(Tm1)
(3) (41)

= sT
2 (Tm1)

(3)s3 (42)

10

7.0.1 Relationship with the trifocal tensor.

The Kronecker notation and the tensorial notation are deeply related, as both
represents multilinear forms. To draw this relationship in the case of the trifo-
cal geometry, let us expand the trifocal matrix into its columns T = [t1|t2|t3]
and m1 into its components m1 = [u, v, w]T . Then, thanks to the linearity of
the vector transposition:

(Tm1)
(3) = ([t1|t2|t3]m1)

(3) = (ut1 +vt2 +wt3)
(3) = ut

(3)
1 +vt

(3)
2 +wt

(3)
3 (43)

This implies that (Tm1)
(3) can be seen as the linear combination of the ma-

trices t
(3)
1 , t

(3)
2 , t

(3)
3 with the components of m1 as coefficients. Therefore, the

action of the trilinear form Eq. (42) is to first combine matrices t
(3)
1 , t

(3)
2 , t

(3)
3

according to m1, then combine the columns of the resulting matrix according
to s3 and finally to combine the elements of the resulting vector according to
s2, to obtain a scalar.

The 3×3×3 array T obtained by stacking the three 3×3 matrices t
(3)
1 , t

(3)
2 , t

(3)
3

is the trifocal tensor.

Comb.lin. with c

1−d array

scalar

Comb.lin. with a

Trilinear form: f(a,b,c)

2−d array

3−d array
Comb.lin. with b

Fig. 2. Action of a trilinear form f(a,b,c) represented by a tensor.

7.0.2 Trifocal constraint for lines.

Consider a line L in space projecting to s1, s2 and s3 in the three cameras.
The trifocal constraint must hold for any point m1 contained in the line s1:

(sT
3 ⊗ sT

2)Tm1 = 0 ∀m1 : sT
1 m1 = 0 (44)

hence

sT
1 = (sT

3 ⊗ sT
2)T (45)

11

This is the trifocal constraint for lines, which also allows direct line transfer:
if s3 and s2 are two lines in the third and second view respectively, the image
s1 in the first view of the line in space determined by s2 and s3 is obtained by
means of the trifocal matrix.

7.0.3 Trifocal constraints for points.

As we already pointed out, s2 is any line through m2, and s3 is any line
through m3. Each row of [m2]× (resp. [m3]×) represents a line through m2

(resp. m3), because [m2]×m2 = 0. Hence, we can rewrite Eq. (36) as:

[m2]×
(
e2,1m

T
1 AT

3 − A2m1e
T
3,1

)
[m3]× = 03×3. (46)

which is a compact way of writing nine constraints, only four of which are
independent, because a point is determined by two lines. Hence, the trifocal
constraints for three points writes:

([m3]× ⊗ [m2]×)Tm1 = 0. (47)

Or, equivalently

(mT
1 ⊗ [m3]× ⊗ [m2]×) vec(T) = 0 (48)

This equation can be used to recover T (likewise we did for F). The coefficient
matrix is a 9 × 27 matrix; its rank is four, being the Kronecker product of a
vector by a rank-2 matrix by a rank-2 matrix. Therefore, every triplet {m1, m2,
m3} of corresponding points gives four linear independent equations. Seven
triplets determine the 27 entries of T .

It is customary, with linear algorithms, to perform data normalization, con-
sisting of a suitable affine transformation of the points [20]. If points in image
i are transformed by the affine matrix Hi, taking into account that lines are
transformed by H−1

i , Eq. (39) re-writes:

0 = (sT
3 H−1

3 ⊗ sT
2 H−1

2)T̂H2m1 (49)

= (sT
3 ⊗ sT

2)(H−1
3 ⊗H−1

2)T̂H2m1 (50)

Hence T = (H−1
3 ⊗H−1

2)T̂H2.

7.0.4 Point transfer.

The point version of Eq. (42) is:

[m2]×(Tm1)
(3)[m3]× = 03×3. (51)

12

Let sT
2 be a row of [m2]×, then

(
sT
2 (Tm1)

(3)
)

[m3]× = 0 (52)

This implies that the transpose of the leftmost term in parentheses (which is
a 3-D vector) belongs to the kernel of [m3]×, which is equal to m3 (up to a
scale factor) by construction. Hence

m3 ' (Tm1)
(3)T s2 (53)

This is the point transfer equation: if m1 and m2 are conjugate points in the
first and second view respectively, the position of the conjugate point m3 in
the third view is computed by means of the trifocal matrix.

8 Conclusions

We have shown some applications of the Kronecker notation to 3-D Computer
Vision problems. We argued that this compact notation, especially in the case
of the trifocal constraint, can be a practical aid for teaching and a fruitful tool
for reasoning about the properties of the matrices that are involved.

Acknowledgments

Michela Farenzena read the draft and her comments helped to improve the
presentation.

References

[1] C. Van Loan, The ubiquitous Kronecker product, J. Comput. Appl. Math
123 (1-2) (2000) 85–100.

[2] P. R. S. Mendonça, Multiview geometry: Profiles and self-calibration, Ph.D.
thesis, University of Cambridge, Cambridge, UK (May 2001).

[3] J. R. Magnus, H. Neudecker, ”Matrix Differential Calculus with Applications
in Statistics and Econometrics”, revised Edition, John Wiley & Sons, 1999.

[4] A. Fusiello, A. Benedetti, M. Farenzena, A. Busti, Globally convergent
autocalibration using interval analysis, IEEE Transactions on Pattern Analysis
and Machine Intelligence 26 (12) (2004) 1633–1638.

13

[5] W. Chojnacki, M. Brooks, A. van den Hengel, D. Gawley, Revisiting Hartley’s
normalized eight-point algorithm, IEEE Transactions on Pattern Analysis and
Machine Intelligence 25 (9) (2003) 1172–1177.

[6] E. Izquierdo, V. Guerra, Estimating the essential matrix by efficient linear
techniques, IEEE Transactions on Circuits and Systems for Video Technology
13 (9) (2003) 925–935.

[7] R. I. Hartley, Estimation of relative camera position for uncalibrated cameras,
in: Proceedings of the European Conference on Computer Vision, Santa
Margherita L., 1992, pp. 579–587.

[8] M. Brand, A direct method for 3D factorization of nonrigid motion observed in
2D, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, IEEE Computer Society, Washington, DC, USA, 2005, pp. 122–
128.

[9] Y. Ma, S. Soatto, J. Kosecka, S. S. Sastry, An Invitation to 3-D Vision, Springer,
2003.

[10] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd
Edition, Cambridge University Press, 2003.

[11] R. Horn, C. Johnson, Topics in Matrix Analysis, Cambridge University Press,
1994.

[12] D. Marimont, B. Wandell, Linear models of surface and illuminant spectra, J.
Opt. Soc. Am. A 9 (11) (1992) 1905–1913.

[13] T. Minka, Old and new matrix algebra useful for statistics, MIT Media Lab
note, http://research.microsoft.com/ minka/papers/matrix/ (2000).

[14] Z. Zhang, A flexible new technique for camera calibration, IEEE Transactions
on Pattern Analysis and Machine Intelligence 22 (11) (2000) 1330–1334.

[15] P. D. Fiore, Efficient linear solution of exterior orientation., IEEE Transactions
on Pattern Analysis and Machine Intelligence 23 (2) (2001) 140–148.

[16] K. Kanatani, Geometric Computation for Machine Vision, Oxford University
Press, 1993.

[17] R. Hartley, Lines and Points in Three Views and the Trifocal Tensor,
International Journal of Computer Vision 22 (2) (1997) 125–140.

[18] A. Shashua, M. Werman, Trilinearity of three perspective views and its
associated tensor, in: Proceedings of the International Conference on Computer
Vision, 1995, pp. 920–925.

[19] A. Shashua., Trilinear tensor: The fundamental construct of multiple-view
geometry and its applications., in: International Workshop on Algebraic Frames
For The Perception Action Cycle (AFPAC), Kiel Germany, 1997.

[20] R. I. Hartley, In defence of the 8-point algorithm, in: Proceedings of the
International Conference on Computer Vision, 1995, pp. 1064–1071.

14

