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1. INTRODUCTION 

Acoustic imaging is an active research field that aims to study techniques for the 
formation and processing of images generated by raw signals acquired by an 
acoustic system [1]. Our purpose is to present a brief survey concerning the 
generation and processing of acoustic images for underwater applications [2,3], 
especially focusing on algorithms for three-dimensional (3-D) imaging. Like optical 
systems, acoustic systems can generate an image by processing the waves 
backscattered from the objects of a scene. The relative easiness of measuring the 
time-of-flight of an acoustic signal makes it possible to generate not only acoustic 2-
D images similar to optical ones but also range estimates that can be used to produce 
a real 3-D map.  

The main advantage of acoustic imaging systems over optical ones is that they 
properly work also beyond the optical visibility range. Underwater optical vision 
provides images with finer resolution, but its range is limited to a few tenths of 
meters in very good water conditions, and the situation is even worse when mud in 
suspension raised by underwater tasks sharply reduces visibility [2]. Although larger 
than the range of optical visibility, the range of applicability of a 3-D acoustic 
imaging system varies according to the specific sensor adopted and the signal 
frequency characterizing the sensor. Generally, high frequencies are utilized (from 
about a hundred kilohertz to few megahertz) over a range going from some 
centimeters to a hundred meters. 

In general, the scene under investigation is first insonified by an acoustic signal, 
then the backscattered echoes acquired by the system are processed to create an 
image of the scene. This process can be performed by two different approaches [3]: 



 
 
use of an acoustic lens followed by a retina of acoustic sensors, or acquisition of 
echoes by a two-dimensional (2-D) array of sensors and subsequent processing by 
adequate algorithms, thus avoiding the need for a physical lens. Such algorithms 
belong to the beamforming or the holography class.  

To date, unlike the applications of two-dimensional imaging, the practical 
utilization of 3-D acoustic imaging is limited because of several scientific and 
technological issues that make it difficult and expensive to produce imaging systems 
working in real time. However, some recent achievements, in both hardware and 
software areas, allowed the production of a few prototypes and commercially 
available systems.   

Once an acoustic image is generated, several image processing algorithms can be 
designed for the detection and reconstruction of the objects contained in the 
observed scene. Depending on the type of the generated image, i.e., whether it 
embeds three-dimensional (3-D) information together with intensity data or not, 
several approaches can be followed for the image segmentation. Actually, image 
filtering and segmentation are the first and fundamental phases after the generation 
of an image, and constitute the base for any subsequent processing and 
interpretation, and segmentation and reconstruction are natural subsequent steps. In 
the paper, such approaches will be surveyed, especially those devoted to 3-D image 
processing, leaving aside other methods specifically devoted to high-level image 
interpretation. Finally, a complete system for segmentation and reconstruction of 
underwater tubular structures is described, also showing the related high-level 
applications. 

In this chapter, a model of the interaction of the acoustic energy with the scene to 
be imaged is presented in Section 2. In Section 3, specific methods (i.e., 
beamforming, holographic, and lens-based techniques) are outlined, focusing 
attention on the 3-D beamforming approach. In Section 4, a real system that exploits 
a matrix approach based on the holographic method is detailed, and in Section 5, the 
arrangement and representation of a 3-D image are described. 

Section 6 deals with  the state of the art literature about the 3-D image 
processing, focusing especially on acoustic 3-D image segmentation and 
reconstruction. A specific method for the segmentation and reconstruction of 3-D 
acoustic images is detailed in Section 7. In this part, a complete image processing 
system is presented, focusing on several segmentation algorithms, and showing 
possible applications which inspired this work. Finally, conclusions are drawn in 
Section 8. 

 
 

2. DATA MODEL 
 
In underwater 3-D imaging, a typical scene is composed of several solid and 

continuous objects. One of the most powerful methods for computing the field 
returned by a complex and realistic underwater object is to represent its surface by a 
collection of densely packed point scatterers or small facets [4,5,6]. 

We assume that the imaged scene is made up of M point scatterers; the i-th 
scatterer is placed at the position ri = (xi, yi, zi) and its distance from the coordinate 
origin is equal to ri = |ri|, as shown in Fig. 1a. We can define the plane z = 0 as the 
plane that receives the backscattered field (see Fig. 1a). If an acoustic pulse q(t) is 
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emitted by an ideal point source placed in the coordinate origin, and if we assume 
that a spherical propagation occurs inside an isotropic, linear, absorbing medium, 
then the Fourier transform of the pressure measured at the position p = (x, y, 0) and 
due to the action of the M point scatterers [3] is equal to: 
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where Q(ω) is the Fourier transform of the emitted pulse q(t), α(ω) is the absorption 
coefficient of water, ω = 2πf is the angular frequency, f is the frequency, c is the 
sound velocity in the medium, and Di is a coefficient dependent on the radius of the 
i-th scatterer and on the densities and the compressibilities of the propagating 
medium and of the i-th scatterer [3,5]. 

For typical frequencies and distances involved in 3-D underwater imaging, it has 
been shown [3] that the factor ω2 in (1) is compensated for by water absorption. 
Therefore, we can introduce a constant factor σi (dependent on the distance ri) to 
replace the term ω2exp{-2α(ω)ri}, and we can rewrite equation (1) as: 
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Moreover, if the cone whose vertex is in the coordinate origin and that contains 
the scene volume to be imaged has an angular aperture that is not too wide, we can 
use the Fresnel approximation for the Green function [7], [8] to write the term |p – 
ri| in the phase of (2) as follows: 
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where p is the modulus of p, and ir̂  is a unitary vector equal to ri/ri. 
Finally, if we restrict our reasoning to the plane y = 0 (see Fig. 1b), then p = (x, 

0, 0), ri = ri(sinβi, 0, cosβi), βi being the angle between the vector ri and the z-axis, 
and (2) can be simplified as follows: 
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The angle βi refers to the arrival angle as it indicates the direction of the echo of 
the i-th scatterer. 

The approximation for the term |p – ri| that has been discussed is of great 
practical importance as dealing with all combinations of p and ri is sometimes very 
difficult (even in modern imaging systems exploiting digital technology). 

 
 



 
 

 
(a) 

 
(b) 

 
Figure 1. Notation and geometry of the data model. (a) 3-D representation. (b) 2-D projection 
on the plane y = 0. 

 
 
3. GATHERING 3-D INFORMATION 

 
In 3-D underwater imaging, a scene is typically illuminated by the emission of 

an acoustic pulse, and the backscattered echoes are collected over a 2-D aperture and 
processed to create an image of the scene. We can choose between two different 
approaches [3,1] to perform the operation of echo processing: use of acoustic lens 
followed by a retina of acoustic sensors, or acquisition of the echoes impinging on a 
planar array of sensors and processing of such echoes by appropriate algorithms. 
Beamforming and holographic methods are two processing approaches that can be 
successfully exploited in 3-D imaging systems. 

Acoustic lenses work like optical ones: backscattered echoes are focused on an 
image plane where a 2-D retina of sensors transforms the acoustic image into 
electrical signals. Thanks to the facility of measuring the time-of-flight of an 
acoustic pulse, one can generate range estimates that can be utilized to produce a 
real 3-D map. Each sensor of the retina placed behind a lens receives a signal that 
represents the scene response coming from a well-defined direction. By collecting 
the signals of all the retina sensors, one can obtain complete information about the 
3-D structure of the scene. 

Beamforming systems collect backscattered echoes by a 2-D array of sensors 
only once; then, they arrange the echoes in such a way as to amplify the signal 
coming from a fixed direction (steering direction) and to reduce all the signals 
coming from any other directions. As the output signal gives information about the 
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scene structure in the steering direction, it is possible to create a 3-D image by 
repeating the beamforming process after fixing many adjacent steering directions, as 
in a raster-scan operation. 

Also holographic systems start from the echoes acquired by a 2-D array of 
sensors, but they aim to reconstruct the 3-D structure of a scene by back-propagating 
the received signals. Acoustic holography is a special case of inverse diffraction and 
is performed through the inversion of the propagation and scattering equations. An 
image is not generated by a raster-scan operation, but the holographic algorithm 
produces the whole image at the same time. 

In the rest of this work, we focus on the beamforming approach and, in a less 
detailed way, on the holographic approach. 

 
3.1 Beamforming 

 
Beamforming is a spatial filter that linearly combines the temporal signals 

spatially sampled by a discrete antenna, i.e., an array of sensors placed according to 
a known geometry. 

Let us consider a set of N point-like and omnidirectional sensors that constitute a 
receiving 2-D array, numbered by the index l, from 0 to N-1. Denoting by pl the 
position of a given sensor of the set on the plane z = 0 and by sl(t) the signal 
received by the sensor and linearly proportional to the pressure field, one can 
compute the beam signal [9], b(t, û ), steered in the direction of the unitary vector û  
by using the following definition: 
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where ϕl are the weights assigned to each sensor and r0 is the focusing distance. The 
net result is the formation of a temporal signal in which the contributions coming 
from the direction û  and the distance r0 are amplified, whereas those coming from 
other directions and distances are attenuated. 

Now, let us restrict our reasoning to the plane y = 0 and assume all the weights 
ϕl to be unitary; then the steering direction can be indicated by the angle θ measured 
with respect to the z axis (see Fig. 1b). Beginning from equations (5) and (6), by 
applying the Fresnel approximation to the delay in (7)  and  by assuming the 
distance of all the scatterers making up the scene to be equal to r0, one can obtain 
[3] the following expression for the beam signal:  
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where BPBMF(ω, β, θ) is a reception diagram commonly called beam pattern, which 
depends on the arrival angle β, the steering angle θ, and the angular frequency ω. 
We have assumed the array to be equispaced and centred in the coordinate origin,  d 



 
 
to be  the inter-element spacing, and the beam pattern to have a constant profile over 
the signal bandwidth centred in the angular frequency ω . 

With reference to an array composed of 40 1.5 mm-spaced elements, Fig. 2 
shows some beam patterns as a function of the arrival angle (visualized on a 
logarithmic scale normalized to 0 dB, provided that the absolute values are 
considered) for different frequency values and steering angles. 

Equation (8) clearly shows that each scatterer contributes to the beam signal by 
adding a replica of the acoustic pulse q(t), delayed on the basis of its distance ri, 
weighted by its constant Ci (strictly related to the scatterer reflectivity) and by the 
beam pattern value that depends on the discrepancy between the arrival angle βi of 
the scatterer and the steering angle θ. Owing to the profile of the beam pattern, the 
contributions of the scatterers characterized by arrival angles very close to the 
steering angle have predominant magnitudes. 

The beam pattern of an imaging system is very useful to evaluate the system 
performances.  A conventional beam pattern presents a main lobe in the steering 
direction and sidelobes of minor magnitudes in other directions. The width of the 
main lobe is the measure of the angular resolution (also called lateral resolution) of 
the imaging system, whereas the generation of artefacts degrading useful 
information depends on the level of the sidelobes. When the weight coefficients are 
unitary, the following equation [9] provides the arrival angles at which the main lobe 
is reduced to –3 dB, thus giving a measure of the main lobe's width: 

NddB
λ±θ=β− 44.0sinsin 3 . (10) 

To improve the angular resolution, one can increase the number of elements, the 
frequency, or the inter-spacing. Nevertheless, if the frequency increases, a grating 
lobe appears in the beam pattern (see Fig. 2d). This aliasing effect is due to the 
spatial under-sampling that occurs when the array elements are equispaced and the 
inter-element spacing is larger than λ/2. To avoid ambiguity effects resulting from 
the presence of grating lobes in the beam pattern, it is necessary to limit both the 
insonification and steering operations inside a narrower angular sector [1]. In greater 
detail, the maximum steering angle to avoid ambiguities is the following: 

d2
arcsinmax

λ±=θ . (11) 

The beam patterns have been developed and discussed for a plane space and 
taking into consideration a linear array, although this configuration does not allow 
one to obtain 3-D images but only a section of a scene profile (see Fig. 1b). To steer 
the beam inside a 3-D space, two steering angles should be used and a planar array 
is mandatory. Figure 3a shows the geometry and the notation for a planar array, 
where βa and βe are the azimuth and elevation arrival angles, respectively, and θa 
and θe are the azimuth and elevation steering angles, respectively. Figure 3b shows 
the beam pattern for an array composed of 20×20 elements that are λ/2 apart, when 
the steering angles are θa = 40° and θe = 0°. 
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 (a) (b) 

 
 (c) (d) 
 

Figure 2. Beam power patterns of a 40-element array with 1.5 mm spacing and unitary 
weights. (a) Frequency = 500 kHz (i.e., inter-element spacing = λ/2), steering θ = 0°. (b) 
Frequency = 500 kHz (i.e., inter-element spacing = λ/2), steering θ = 30°. (c) Frequency = 
750 kHz (i.e., inter-element spacing = 3λ/4), steering θ = 0°. (d) Frequency = 750 kHz (i.e., 
inter-element spacing = 3λ/4), steering θ = 30°. 

 
3.2 Resolution cell 
 
At this point, it may be useful to clarify how beam signals can be exploited to 

generate a 3-D image. To this end, it is necessary to define the range resolution and 
to recall the angular resolution. Inside a wide interval called depth of field, centred 
at the focusing distance, the range resolution is defined as the minimum distance 
between two equal scatterers (placed in the same beam direction) that is needed to 
resolve their responses. The range resolution [6,10] is typically inversely 
proportional to the bandwidth of the emitted pulse q(t). Analogously, the angular 
resolution is the minimum angular spacing that allows two equal scatterers, placed at 



 
 
the same distance from the array centre, to be resolved. A resolution cell can be 
defined as a volume whose dimensions can be derived from the knowledge of the 
system’s angular and range resolutions and inside which it is not possible to separate 
scatterer contributions. To arrange a grid of resolution cells that covers the whole 
volume to be imaged without leaving free holes one should plan the number of beam 
signals to be computed and their angular spacing and choose the sampling frequency 
of each beam signal in agreement with the range resolution [9].  

The acoustic responses of the scatterers contained inside a cell are a function of 
the reflectivity and of the relative position of each scatterer; the reflectivity value to 
be assigned to each cell can be derived from the amplitude of the beam signal over 
the time interval related to such cell. 

Resolution cells span the whole volume to be imaged, whereas scatterers are 
mainly placed on object surfaces; then, starting from this collection of cells, one can 
organize the effective information in more compact ways, discarding useless cells or 
directly extracting object surfaces. 
 

 
(a) 

 
(b) 

 
Figure 3. (a) Notation and geometry of a 2-D array. (b) Beam power patterns of an array 
composed of 20×20 elements that are λ/2 far from one another, when the steering angles are 
θa = 40° and θe = 0° and the weights are unitary. 
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4. MATRIX APPROACH AND REAL SYSTEMS 
 

The holographic approach is characterized by many possible approximations that 
provide different practical algorithms. Here we present a holographic method able to 
avoid the Fresnel approximation (whose validity region is often too restricted) and to 
process wide-band signals (very important to obtain a good range resolution). This 
method is based on a matrix formulation that is used by a few real 3-D systems 
[11,12]. 

To this end, it is necessary to express the data model presented in (2) in a 
different manner. Let us denote by s(ω,p) the N×1 column vector of the field 
received by N sensors placed at pl (l being an integer ranging from 1 to N), and by 
c(ω,r) the M’×1 column vector of the reflectivity of each resolution cell contained in 
the scene volume to be imaged. The number of cells, M’, is different from the 
number of scatterers, M, used in the previous data model, and if the i-th cell placed 
at ri (i being an integer ranging from 1 to M’) does not contain any object, its 
reflectivity may be null. The data model presented in (2) can be rewritten as follows: 
( ) ( ) ( )rcrpUps , ,,, ωω=ω  (12) 

where U(ω,p,r) is an N×M’ transfer matrix whose element uli is defined as: 
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The imaging process lies in estimating the vector c starting from the knowledge 
of U and the experimental measure of s.  

As, in a 3-D imaging system, the total number of resolution cells is too large to 
be handled by a single matrix, one can rewrite (12) in the following way: 

( ) ( ) ( )rcrpUps , ,,, ωω=ω nnn  (14) 
where cn is a regular grid of cells on a spherical surface of radius rn, sn is the 
Fourier transform of the field received over a brief time interval starting at tn = 
2rn/c, and Un is the related transfer matrix. As a result, the resolution cells of the 3-
D volume are organized as a sequence of concentric spherical layers, and a specific 
transfer matrix is defined for each layer. The best estimate, nc~ , of the vector cn 
[11,12], assuming M’ > N, is given by the minimum-norm solution of (14), that is: 
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where H is the complex conjugate and transpose, + is the pseudoinverse, and the 
matrix arguments are neglected to simplify the notation.  

Among 3-D underwater imaging systems that exploit the above matrix approach 
the EchoScope 1600 designed and produced by OmniTech in Norway [12,13,14] is 
the only off-the-shelf 3-D acoustic camera available. 

The number of acoustic sensors is 1600, which make up a 40×40 array with a 
19.5-cm side, able to work at three different frequencies: 150, 300, and 600 kHz. 
The value of the angular frequency ω is fixed, thus the Fourier transform is not 
necessary as the amplitude and phase data on a received signal are obtained by a 



 
 
quadrature reception [9]. For each spherical surface of radius rn, a grid of 64×64 
partially overlapped resolution cells is determined, and the best estimate of the 
related vector cn is obtained by means of (15), where the spectral theorem is 
exploited to decompose the matrix (Un UnH), as described in [12]. As the inter-
sensor spacing is fixed, to avoid grating-lobe effects the viewing and insonification 
angles are bounded as follows: 90°×90° at 150 kHz, 50°×50° at 300 kHz, and 
25°×25° at 600 kHz, and the lateral resolutions (measured at –3 dB, with unitary 
weights) are 2.5°, 1.3°, and 0.6°, respectively. The allowed detection range spans 
from 1 to 100 m, and, thanks to the powerful computation architecture, it is possible 
to achieve on average five 3-D images per second with a range resolution of 5 cm. 
Owing to the above-mentioned features, the EchoScope 1600 represents a powerful 
way of obtaining real-time 3-D information over a very wide range of distances, thus 
allowing one to choose the best tradeoff among resolution, viewing angle, and side-
lobe level.  

 
 
5. 3-D  IMAGE REPRESENTATION 
 
Independently of the imaging system used, the obtained 3-D information is 

organized into a dense lattice of resolution cells of different dimensions to cover the 
whole volume of interest. Essential information about each cell lies in the 
coordinates of the cell centre and in the acoustic amplitude or intensity. Sometimes, 
to achieve an initial cleaning of the imaged volume, a first process discards all the 
resolution cells whose acoustic amplitudes do not exceed a given threshold. The aim 
is to remove the effects of electronic noise and, in particular, of the sidelobes in the 
beam pattern of the acoustic system. The resolution cells can be projected onto a 
regular 3-D grid of voxels (volume elements) of constant dimensions in a Cartesian 
coordinate system. This operation is called "scan conversion." To avoid loss of 
resolution, each voxel should be smaller than the smallest resolution cell to allow 
one or more voxels to be contained in a given resolution cell. To this end, there are 
two possible approaches: (1) searching for the voxel containing the centre of a given 
resolution cell, assigning the acoustic amplitude of the cell to such a voxel, repeating 
this procedure for all the cells, and, finally, interpolating in order to assign a value 
also to each voxel that does not contain a cell centre; (2) computing how many 
voxels are inside a given cell on the basis of the cell dimensions, assigning the 
acoustic amplitude of the cell to the voxels, repeating this operation for all the cells, 
and, finally, checking if some voxel is unassigned. The resulting regular grid of 
voxels may be a useful starting point for many post-processing purposes, and also 
facilitates the following operations: (1) extracting a sequence of 2-D images 
representing the acoustic responses of successive planar slices of a scene, (2) 
extracting several 2-D images cut with different orientations and projecting the 3-D 
volume by performing an orthogonal or perspective projection integrating the 
acoustic amplitudes of the cells met along the projection line.  

If we are interested in the first object surface that is met starting from the array 
centre and following the steering direction, a more compact method to exploit the 
information contained in the set of resolution cells is to use a couple of 2-D images, 
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one for the amplitude and the other for range information. In this case, we expect to 
extract only two values from each beam: the distance of the object surface and the 
amplitude of the acoustic response. The distance of a scattering object can be 
estimated by searching for the maximum peak (or the first peak that exceeds a given 
threshold) of the envelope of the beam signal and, starting from the time instant at 
which that peak occurs, by deriving the distance from simple geometrical 
considerations. Therefore, for each steering direction û , a triplet ( û , distance, 
amplitude) can be extracted, so  3-D data reduce to a set of triplets, the number of 
which is equal to the number of beam signals. Then, the collection of triplets can be 
projected onto the two images, according to the kind of information contained in 
each image. 
 
 

6. ACOUSTIC 3-D IMAGE PROCESSING 
 
A large literature is available concerning the segmentation of range images, but a 

few papers deal with acoustic range image processing. In general, looking at the 
state of the art of three-dimensional image processing, three possible research lines 
can be identified for range image segmentation: edge-based, region-based, and 
hybrid methods.  

Edge-based methods [15,16,17,18,19] aim at determining step and roof edge 
points using separate procedures, mainly based on the analysis of local depth 
discontinuity, and the discontinuity of first derivative, respectively. Due to the low 
resolution and high noise level typical of acoustic images, edge-based approaches 
are not pursued in this application field, and the most of the methods are devoted to 
the design of region-based algorithms. 

The goal of region-based methods is to determine image areas with similar 
differential geometrical properties. Typically, all these approaches follows the so-
called local-to-global scheme composed by two phases. A pre-processing filter is 
preliminary applied to reduce noise effects. In the first local phase, an over-
segmentation is first determined, labelling each point on the basis of the local 
differential features. The second global phase consists in a fusion stage, where 
regions detected in the 1st phase are merged if leading to a better segmentation. In 
practice, the first important step lies in the choice of the type of surfaces (i.e., 
models) one would like to classify. The models typically used are the six 
fundamental surfaces of differential geometry, i.e., plane, peak, pit, roof, valley, 
saddle. The 2nd phase is normally an iterative procedure aimed at refining the first 
segmentation. Although good results are typically obtained, they present 
convergency problems, so that computational complexity cannot be estimated a 
priori. This approach is the most common found in literature [20,21,22,23,24,25], 
and mostly used to 3-D acoustic image processing.  

Hybrid methods combine the search for edge points with the determination of 
actual regions to get a real true segmentation of an image [24,26,27].  

Actually, it can be noticed that region-based methods are more accurate, while 
presenting a higher complexity, also in computational terms, with respect to the 
other approaches. Among the region-based algorithms, surface fitting approaches 
have proved higher performances, but, to have a large representational accuracy, a 



 
 
high degree of the polynomial should be used, at the expense of the computational 
cost.  

Past work in acoustical imaging concerned mainly with restoration and 
segmentation of acoustic data, typically acquired by sidescan sonar. Speckle noise 
reduction from sidescan sonar images was addressed by using Simulated Annealing 
and Iterative Conditional Modes [28]. The image restoration is performed assuming 
speckle noise modelled as Rayleigh or Gaussian probability density function. The 
Graduated Non-Convexity [29] minimization method has been in used for the 
reconstruction of sea bed bathymetric data acquired by a multibeam sonar [30]. 
Specifically, evaluation of the error of the reconstruction process is performed using 
a weak membrane or a thin-plate model [31] together with a line process, included 
to remove the smoothness constraint at surface boundaries. MRF segmentation of 
images acquired by a multibeam echosounder is also addressed by Dugelay et al. 
[32]. By arranging the acoustical map on the basis of the acquisition parameters, 
they devise a classical MRF process modelling the prior energy as weighting 
coefficients depending on its geometrical location and the observation energy term 
as a χ2 distribution. The segmentation of simulated high frequency 3-D sonar images 
was presented by Subramaniam and Bahl [33]. This work is essentially a surface 
fitting procedure [25], used to recover 3-D surface structures from sparse data. 
Mignotte et al. [34] address the segmentation of sonar images by using an 
unsupervised hierarchical MRF algorithm. Sonar images of the sea bed are 
segmented in 2 classes, shadow and seabed reverberation, useful for detection and 
classification of entities lying on the seabed. Multiresolution MRF models are 
devised at each scale: the model is hierarchical as local neighbours are devised at 
each resolution level and between levels. Gaussian and Rayleigh laws are assumed 
for the two classes and used in the model parameters' estimation phase performed 
during the segmentation process without using prior knowledge. Calder et al. [35] 
present another MRF-based technique for the segmentation of sidescan sonar 
images. The approach here is to segment an image on the basis of its textural 
content. The adopted MRF models are the auto-binomial model and the multinomial 
model [36], also including a method for the estimation of the model parameters. 
Carmichael et al. [37] performs segmentation and classification of sidescan sonar 
images by using fractal measures of roughness of sediments. A multiresolution 
directional operator is proposed able to discriminate between several types of 
seafloor sediments having different acoustic scattering. Locally estimated fractal 
measures provide a set of discriminant features that can be easily separated by 
typical classification algorithms. A further work of Linnet et al. [38] presents 
another texture-based approach to segment sidescan images by using fractal and 
spatial-point approaches. The former method utilizes a maximum likelihood 
classificator trained with the fractal dimension of characteristic sample textures, 
which is directly linked to local grey-level distribution. The latter method analyses 
the spatial distributions of the grey levels to characterize each image pixel, still 
utilizing the same training samples' set. Since objects are regarded as a perturbation 
over the background texture, they are detected just as small unclassified image areas 
sunk in a larger classified zone, practically, building an associated probability map 
indicating the reliability of each pixel to belong to a certain texture. 
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Zerr and Stage presents a method to estimate the 3-D structure of an object from 
several sonar images [39]. The method assumes that a sector-scan sonar acquire a set 
of images around the object of interest. Then, a classification of the images in 3 
types of regions (echo, shadow, background) is performed by using a couple of 
thresholds fixed on the basis of the sonar performances a-priori known. Therefore, 
shadow information in an image is used to compute the cross section of the object 
from that direction, and then the whole 3-D structure is obtained by volumetric 
reconstruction exploiting occluding contours, by combining all the estimated cross 
sections. The reflectivity map is estimated by computerized tomography of the echo 
information by using the 2D Radon transform. Unfortunately, this approach assumes 
that the sonar images were taken at a constant distance from the object and a 
constant height from the seabed, so that it can be affected by positional uncertainties 
typical of underwater scenarios. Many works of Auran et al. [40] addressed the 
reconstruction problem from sonar data. These works utilizes the occupancy grid 
approach [41] to support several types of AUV tasks. More specifically, sector scan 
data are processed to build a dynamic 3-D occupancy map where some useful 
information is stored by using an adequate data structure representation. This map is 
actually a volumetric representation in polar coordinates where present cells denote 
the presence of an echo at that location and a set of associated information useful for 
subsequent processing. After the map formation, clusters are detected by the 
connected component analysis in order to identify the main objects present in the 
scene, and useful features (i.e., moments, radial and angular sizes, bounding box, 
area, volume, etc.) are extracted from the clusters. The subsequent steps aim at 
modelling and visualizing the detected objects by a surface fitting procedure and, if 
different views are available, a complete reconstruction can be performed after 
individual surface estimation by merging surface patches.  

From the above summary, one can notice that several works address the problem 
of segmentation or reconstruction of acoustic images using statistical or geometrical 
approaches, but only a few of them exploits different information sources directly 
provided by the sensor.  

The problem of reconstruction of acoustic data extracted by an acoustical 
multibeam system was already addressed by the authors in [42,43,44,45]. In [42], a 
first formulation of the energy function was devised, simply assuming reliable those 
3-D measures associated to high echo returns (high confidence) and discarding the 
low confidence range points. In [43], this mechanism is evolved in the definition of 
a complex functional which takes into account the physical significance of the 
coupling term between 3-D and confidence images. Another paper [45] presents a 
generalization of the latter work where theoretical justifications in probabilistic 
terms are provided for the functional form proposed in [43] as well as for the other 
novel energy formulations.  

A novel approach has been recently investigated in the field of acoustic image 
reconstruction. For example, in survey missions, autonomous or remotely operated 
vehicles (AUVs, ROVs) are typically equipped by acoustic devices sensing the 
environment. During vehicle navigation acoustic 3-D images are acquired but, due 
to the limited field of view and the implicit inaccuracy of its positioning, it is 
difficult to obtain a complete and accurate investigation of the surrounding 
environment. For these reasons, in [46] 3-D acoustic image mosaicing has been 
addressed. Image mosaicing is a recent technique used to align optical (2-D) images 



 
 
in order to reconstruct a panoramic view of the environment. In this context, the 
term has been used to name a 3-D reconstruction of the environment from multiple 
3-D acoustic images.  

This work should considered in the research line devoted to the registration of 
image pairs or the integration of a set of range images. Typically, the term 
registration is used for the geometric alignment of a couple or more 3-D data point 
sets, while the term fusion is utilized when one would like to get a single surface 
representation from registered 3-D data sets. Most of the work present in the 
literature assume range images from a laser range finder looking at a single, even 
complex, object. 

Among these ones, works related to registration, the Iterative Closest Point (ICP) 
procedure [47,48] and its variants [49] are seminal papers worth to be mentioned.  
They are all based on the original iterative algorithm based on the search of pairs of 
nearest points in the two sets, and estimating the rigid transformation which align 
them. Then, the rigid transformation is applied to the points of one set, and the 
procedure is iterated until convergence. Variants include the use of closest points in 
the direction of the local surface normal [48], and the use of a robust statistics 
technique [49] to limit the maximum distance between points. Originally, these 
works assumes that one point set is a subset of the other and in not too distant 
positions. In this line, several approaches have been investigated, and extended to 
register multiple 3-D images [50,51,52,53,54,55]. The underwater environment 
implies to deal with uncertain low resolution data, in which problems of filtering, 
segmentation and reconstruction should be all considered in order to get a reliable 
reconstruction of the scene. The work in [46] is the only dealing with acoustic data 
and aims at reconstructing a 3-D environment from a sequence of clutter, noisy, and 
low resolution data, in order to produce a 3-D panoramic mosaic of the scene.  
 
 

7. SEGMENTATION AND RECONSTRUCTION OF 
UNDERWATER TUBULAR STRUCTURES 

 
In this section, we address the use of the acoustic image processing to design a 

complete system for segmentation, reconstruction, and final augmented rendering, of 
underwater tubular structures. 

The acoustic camera utilized [56] is formed by a two-dimensional array of 
transducers sensible to signals backscattered from the scene previously insonified by 
a high-frequency acoustic pulse. The whole set of raw signals is then processed to 
estimate signals coming from fixed steering directions (beamsignals) while 
attenuating those coming from other directions. Assuming that beamsignals 
represent the responses of a scene from a 2D set of (steering) directions, a 3-D point 
set can be extracted detecting the time instant t* at which the maximum peak occurs 
in each beamsignal. Besides, the intensity of the maximum peak can be used to 
generate another image, registered with the former, representing the reliability of the 
associated 3-D measures. In other words, the higher the intensity, the safer the 3-D 
measure associated.  Images are formed by 64×64 3-D points ordered according to 
an angular relation, as adjacent points correspond to adjacent beam signals.  Their 
coordinates are expressed in a 3-D reference frame attached to the sensor.  
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7.1   3-D data processing 
 
A preliminary low level processing phase is performed on the raw data obtained 

by the acoustic camera, both to clean the images from noise and to extract the 3-D 
edges of the objects observed. 
 

Noise Filtering 
 
Since acoustic raw images are typically quite noisy, due to both the environment 

conditions and the physical limitations of the camera, it is mandatory a pre-
processing phase to reduce spurious information from such images. The used 
acoustic camera directly performs a preliminary low level stage: it provides together 
with the 3-D measures, the related intensity and other useful information associated 
to each point as well, like a connection matrix and normals. More specifically, data 
are arranged in a 64×64 array Cij of 3-D coordinates, estimated from the time 
instants at which the main peak of the beamsignals are detected. An intensity value 
is also associated to each 3-D point, representing the reliability of the peak of the 
detected responses. Consequently, adjacent points in the image correspond to 
neighboring beamsignals, and connected components are formed by neighbouring 
points whose Euclidean distance is below a certain threshold Tr, set on the basis of 
sensor resolution and a-priori knowledge of the scene. 

Using this procedure, we define two points as connected if it is possible to find a 
chain of neighbouring points connecting them. In such a way, it is possible to 
subdivide the image in a certain number of connected components, while discarding 
those components formed by a small number of points, likely not representing 
interesting physical objects.  

This technique is usually called “size” filtering in the two-dimensional image 
processing literature. Finally, “reliable” connected components are formed by the 
points whose associated intensity is above a certain threshold, still depending on the 
camera properties.   

 
Smoothing by line fitting 

 
Smoothing of range data can typically be performed by locally fitting a 

parametric surface to range data. However, many methods based on such technique 
produce inaccurate results when surface or derivative discontinuities are present, and 
even on smooth surfaces, whenever the image contains scattered impulse values, 
called outliers. Thus, robust methods are needed, that are powerful enough to handle 
data coming from discontinuous (piecewise-smooth) surfaces and affected by 
different kinds of noise.  When two-dimensional windows are used, points within a 
window close to surface discontinuities come from at least two different 
populations: “drawing the line” between the two populations is in general a difficult 
problem. When more than two populations are considered (e.g., close to object 
corners) or non-straight edges cross the window, the problem is even harder. In 
order to overcome this problem, following [46,57], we use one-dimensional (linear) 
windows swept along several directions on the image plane, and integrate the results 
obtained through this first directional processing step for obtaining a solution to the 



 
 
two-dimensional problem. This algorithm solves the surface fitting problem on 
range data in a fast, highly-parallel, efficient yet simple and robust way. Although it 
is suited for the special case of piecewise-linear surfaces, the method can be 
generalized to polynomial surfaces of higher degree. 

The method consists of two distinct and independent steps.  First, an isotropic set 
of directions is taken, and slices are extracted from the original image, in such a way 
that every pixel belongs to exactly one slice per direction. Each slice is then viewed 
as the discrete, noisy version of a piecewise-smooth function of one variable. A one-
dimensional fitting algorithm is applied to each slice; the one-dimensional 
processing for every direction gives an estimate for the z value at each point.  In the 
second step, all estimates obtained through the one-dimensional algorithm are 
considered.  Different estimates of the position of one pixel are averaged in order to 
obtain a final estimate. 

As for the first step, the method locally solves the problem by allowing the 
neighbourhood of each pixel to “float around”, looking for a homogeneous set of 
data, i.e. a set which does not contain any discontinuity. The method is based on the 
assumption that at least one partial neighbourhood per pixel always exists whose 
data are homogeneous.  For every point P, the algorithm fits one line per window on 
all windows containing P, basing on Haralick's facet model. A goodness-of-fit 
measure is computed for each window, then the “best” result is chosen to give 
estimates for the value of the underlying function at point P.  We have experimented 
with various algorithms and goodness-of-fit measures.  Under mild assumptions on 
the nature of the noise, a least-square algorithm and a χ2 measure can be 
successfully applied, provided that data are pre-processed. This solution achieves a 
good compromise between accuracy and computational complexity.  
 

Experiments and results 
 

Several experiments have been performed to test pre-processing phase of the 
acoustic images, and we obtained good results both in the cleaning of the images 
and the general understandability of them. 

In Fig. 4, a typical raw image acquired by the acoustic camera and related the 
filtered data are shown. Such images have been obtained using with Tr = 20 cm and 
the threshold on the intensity equal to 5000 (set on the basis of the histogram 
distribution). We can see that the procedure is quite good and the cleaned images 
have been used in all the subsequent step of the recognition module.  

  
Figure 4. Raw 3-D data (left) and filtered 3-D data (right). 
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7.2  Image segmentation and reconstruction 
 
After the pre-processing of the acoustic images, we obtain an ensemble of 3-D 

points representing, with a high confidence, physical points derived from objects in 
the scene.  The main problem is now to segment such ensemble in well 
distinguished regions corresponding to different entities present in the observed 
scene. Since the underwater scene is composed by a structure of tubular elements, 
we consider mainly two kind of objects, i.e., pipe-like and not pipe-like ones. 

If we are interested in the construction of an augmented representation of the 
underwater structure the segmentation phase to identify the pipes may suffice. 
Conversely, if we would like to build a virtual representation, a recognition of the 
joints formed by pipes intersection is necessary in order to identify them by applying 
a matching phase using a model reference structure. Moreover, such a matching 
phase is necessary for the pose and position determination of the ROV from the 
acoustic data interpretation. 
 

Segmentation 
 

Three possible techniques have been investigated to segment the acoustic 
images. The first one is based on a region growing algorithm guided by the fitting of 
the 3-D points with a set of quadrics. The second one is a morphological approach 
useful in find out rectangular shapes in the range images. The third one is based on 
the skeleton extraction from the distribution of points and a subsequent analysis of 
its branches. We briefly describe these methods with emphasis on the skeleton 
method that is the one used for the final tests. 
 

Geometrical method 
The geometrical method, that has been extensively discussed in [58], have been 

tested both on real and synthetic acoustic images. It consists in the following steps: 
− Points Labelling (fitting with expansion) 

1. A point with its 25 neighbours points is randomly selected Ri set 
2. Points of Ri are fitted with a quadric, if fit error is too large choose another 

point (go to 1) 
3. Add to Ri all of the points (expansions) with error less than a threshold and 

go to 2, else if there are no points to be added, start with a new region 
(i=i+1 and go to 1) 

4. Repeat until all points are labelled 
− Refinement 

1. Points not labelled are assigned to the closest region  
2. Elimination (fusion) of smaller regions  
3. Fit repeated in all regions 

− Merging of regions 
1. All pairs of regions are considered 
2. Surface of fit of the union region is computed 
3. We merge regions comparing the error of such a fit with the mean error of 

the fit of the separate regions; if it is less the two regions are merged. 
− Labelling of isolated points 

1. Detecting isolated points using a compactness measure 



 
 

2. Reassignment of these points to the nearest region that contains them. 
This method is very reliable for synthetic images and, in general, for clean 

images where the curvature of the objects (pipes) is evident; unfortunately this is not 
the case for real images captured with the acoustic camera. The geometrical 
algorithm, in these cases, tends to under-segment the image and to fit pipes with 
planes. Nevertheless it remains a valid method for sharp images and an interesting 
one to be studied for further development. 

In Fig. 5, two examples of 3-D data as obtained from the filtering stage, and 
segmented data are displayed. One can notice a certain degree of error in the 
resulting segmentation. 
 

  

 
 
Figure 5. Two examples of filtered 3-D data (left column), and segmentation results using the 
geometric method (right column). 
 

Morphological method 
The second method starts from the idea that the projection of pipes on a plane 

gives mostly rectangular shapes. The search of pipe-like structures in the observed 
scene is then reduced to the search for rectangular shapes in the angular range 
images. The decomposition of an image in elementary shapes is a well known 
problem of the mathematical morphology [59]. Using standard morphological 
techniques we have studied the possibility to decompose the range images in 
elemental rectangular shapes and the subsequent back projection of these shapes in 
the 3-D space. Although the results are very good in some cases, this method is not 
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robust to noise and tends to over-segment the real images; furthermore, 
morphological operators, in general, tends to be very CPU intensive procedures and 
so are not very suitable for a real time application. 

In Fig. 6, a couple of examples of 3-D data as obtained from the filtering stage, 
and segmented data are displayed. A certain degree of over-segmentation is evident, 
resulting in decomposing single pipes in more regions. 
 

  

  
 
Figure 6. Two examples of filtered 3-D data (left column), and segmentation results using the 
morphological method (right column). 
 

Skeleton-based method 
The third algorithm is very simple and customized to deal with the extraction of 

tubular structures, even if it is not prevented its application to different kind of 
objects. A 3-D skeleton is first extracted and then used to subdivide the image in 
different convex components. Since this method is quite robust to noise and gives a 
good segmentation with respect to the other two methods, although it is possible to 
improve it in many ways, it has been chosen as the one utilized for the final tests and 
experiments [60]. 



 
 

To extract the skeleton, we apply to the image the following procedure: for every 
point A in the image we consider all the points that are in a sphere of radius R 
centred on A. We then shift A from its actual position to the centre of mass of such 
distribution of points. We apply this procedure in a parallel way on all the points of 
the image.  

In short, the skeleton extraction is performed along the following lines. Let us 
define the 3-D image as I, i.e., the ensemble of points in R3. 
I = {xi} = {xi,yi, zi},   i = 1,…,N (16) 

We also define for each point i and each R in R+ (ray of a sphere about the point 
i) the subset Oi

R of I and the 3-D point bi
R defined in the following way: 
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Let us define the interior λi
R for the point i in the following way: 
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One can easily verify that: 
iR

i ∀≤≤ 1λ0  (20) 
The interior is a measure of how much a point is “inside” the object specified by 

I. If λi
R ≈ 1, the point is inside a homogeneous zone of radius at least equal to R; on 

the contrary, for λi
R ≈ 0, the point is very near to a border of the three-dimensional 

distribution of points. Defining the following image transformation: 
{ }R

i
RII b=→  (21) 

and indicating with the symbol IR,n the iterative application of it for n times, our 
skeleton extraction is simply the construction of the image IR,n for a suitable choice 
of R and n. The overall effect of this transformation is to shift points on the border, 
i.e., points with a low λR, toward the centre while leaving points well inside an 
object, i.e., points with a almost unitary value of λR, unaltered. The iterative 
application of such a procedure tends to shift all the points of the distribution 
towards the skeleton.  Such an algorithm may be seen from a physical point of view 
like a short range interaction between physical points. 

The choice of the free parameter R is very important. If it is too small, with 
respect to the average mutual distances of the points, the distribution would likely 
collapse in a certain number of disconnected punctual regions, preventing the 
extraction of the skeleton. If it is too large the value of λ may be small also for 
points well inside the object and again the skeleton will not be properly extracted.  
The parameter R plays a similar role played by the dimension of the structuring 
element in the classical mathematical morphology. It is straightforward to verify that 
the skeleton so extracted is invariant for three dimensional rotation (condition that is 
never exactly satisfied for skeletons of a 2D bitmap image. Preliminary experimental 
results show also that the homotopy group is preserved by the algorithm. Using a 
priori knowledge of the structure represented by the 3-D image and of the sensor 
resolution, it is possible to estimate proper values for R and n aimed at improving 
the extraction of a good skeleton. In the results, R = 70 and n = 2 are used.  
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A possible improvement for this algorithm is to find a procedure that is 
automatically able to set the free parameter R depending on 3-D distribution 
characteristics (like points density, moments, etc.). Actually, such selection should 
be local, so that the skeleton will be extracted in different ways in different image 
regions, so that the method could be applied to any kind of data without prior 
knowledge of the scene investigated.  Moreover, we are also planning the 
implementation of an estimator to evaluate the “quality” of the skeleton obtained, in 
order to have an automatic criterion of stop of the algorithm. Several ideas are 
currently investigated to solve these two problems. We suppose now that every 
branches of the skeleton correspond to a component object in the scene. Therefore, 
the segmentation is obtained classifying every point of the skeleton in either branch 
point or joint point.  Such a classification depends on the neighbourhood around the 
point: if all the neighbours (e.g., the ones contained in a small sphere) belong to a 
quite straight segment, it is classified as a branch point, otherwise it is a joint point.  
If we now consider only the branch points, we obtain well separated connected 
components of the skeleton; we can segment them with a percolation techniques and 
associate to each of them an object of the scene. In other words we can search for 
the connected components of the skeleton minus its joints in the same way we 
obtained the connected components for the 3-D distribution of points in the pre-
processing phase; these regions forms the branches of the skeleton and are the 
candidates to be classified as pipes. 

 

 

 
Figure 7. Skeleton extraction and branches’ classification (top), and segmentation results 
using the skeleton-based method (bottom). 

 



 
 

In Fig. 7, the results of the skeleton extraction algorithm are presented related to 
two 3-D images of a tubular structure (top), and the resulting segmented images are 
shown in the bottom part of the same figure. This method, although not perfect, 
appears more accurate and robust with respect to the above-mentioned approaches. 

 
Classification 

 
The segmentation procedure does not yet classify the regions in pipe-like and 

not-pipe-like elements. To perform this last step, we need to analyse the 3-D 
geometric shape of these regions. To obtain information on the shape of a 3-D 
distribution of points, it is possible to use a particular tensor associated to such 
distribution, the Inertial Tensor; such technique is deeply related, as we will show, to 
the so called Principal Component Analysis.  

If ρ is a continuous distribution in R3, we define the Inertial Tensor I of ρ as a 
3x3 matrix given by the following formulas: 
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where the coordinates are set so that the centre of mass of the distribution is in the 
origin. The eigenvalues of this tensor corresponds to the rotation inertia of the 
distribution around the principal axis defined by the directions of the corresponding 
eigenvectors of I.  

For a discrete distribution we indicate with o the centre of mass of the 
distribution: 

k
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N

b
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where bi are the position vectors of the distribution (the apex R is omitted for 
simplicity), and Ck is the k-th connected component. For the inertial tensor we have:  
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where we use the symbol Θ for the following operator:  
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In the case of a symmetric distribution, the eigenvectors of such a matrix, being 
the principal inertial axes, are symmetry axes too. For example, for a pipe-like 
distribution, one of the eigenvector, the one corresponding to the lowest eigenvalue, 
lies along the pipe axis. In this way, we can use eigenvalues and eigenvectors of I to 
extract useful information on the shape of the discrete distribution.  
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The Principal Component Matrix [60] is essentially defined as:  
( ) ( )∑ −⊗−=

i
obob iiPCM  (26) 

where the symbol ⊗ stands for the following operation:  

















=⊗

zzyzxz

zyyyxy

zxyxxx

bababa
bababa
bababa

ba  (27) 

One can see that from the preceding definitions we have: 
( ) ( )[ ] 11 ⋅α=⋅−⋅−=+ ∑i

obob iiITPCM  (28) 

where 1 is the identity matrix. From this relation it follows that every eigenvector v 
of PCM with eigenvalue λ is also an eigenvector of I with eigenvalue (λ-α). In fact:  

vv ⋅λ=⋅PCM . (29) 
Hence: 

( ) vvvv ⋅α=⋅+⋅λ=⋅+ ITITPCM  (30) 
from which: 

( ) v⋅λ−α=⋅ vIT . (31) 
Consequently, it is clear that one can use both methods to obtain the same 

results. We have chosen to use the Inertial Tensor: we calculate I for every 
segmented region in the scene and obtain three eigenvalues. If one is smaller with 
respect to the others, and these are of the same magnitude, we classify the region as 
a tubular one. Obviously, we have also to introduce a threshold: if it is too small, it 
is probable to classify as a pipe something that is only elongated, whereas, if it is too 
high, it is probable to lose some pipes from the scene.  
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From the value of the minimum eigenvalue it is possible to extract also the order 
of magnitude of the radius of the tubular region. In fact, in the case of a complete 
cylindrical distribution the following relation holds:  

2rM0.5 ⋅⋅=me  (33) 
where em is the minimum eigenvalue, M is the total number of points in the 
distribution and r is the radius. As in the range images of underwater pipes, data are 
not distributed on the surface of a cylinder, but only on a little portion of it (the 
portion “visible” from the camera), this relation is only approximately true, but it is 
sufficient to give the right order of magnitude for the radius, as we will see in the 
following. For a more precise extrapolation of this parameter, it is necessary a more 
sophisticated algorithm that is based on a robust fitting procedure. Another problem 
that is actually addressed in our research work is a fast and reliable refinement of the 
segmentation. Because of noise and the particular skeleton reconstruction procedure, 
it is quite probable to have an oversegmentation of the image, i.e. a single object 
may be segmented in more than one region. This problem is partially solved 
considering every pair of regions and calculating the inertia tensor of their union: if 
it is “more” pipe-shaped (by using the previous criterion), the two regions are 
merged.  



 
 

We have applied our classification algorithm to the segmented images previously 
obtained and we have extracted the pipes as shown in Fig. 8. From these examples, 
it is clear the necessity, at least for Joint 1 (Fig. 7, bottom-left), of the merging phase 
sketched above; in fact some of the pipes in this scene have not been recognized 
because they were oversegmented in the classification step. This problem will be 
solved after the merging phase will be completed. It should be noted, however, that 
the Joint 1 is quite an extreme case that we present here only for completeness; in 
most of the underwater images we have analysed the results are good and similar to 
the ones obtained for Joint 2 (Fig. 7, bottom-right). 

 

 
 

Figure 8. Augmented reality examples. 
 
It is possible now to proceed in two different, but not excluding, ways: an 

augmented reality or a complete virtual reality representation [61]. The first one is 
simply obtained by projecting the virtual pipes, corresponding to the 3-D segmented 
regions, on the image plane. The resulting image is much more readable by a human 
operator, and hence, useful for navigation tasks or simply to realize what the camera 
is looking at. This procedure does not require any prior knowledge of the structure 
investigated (apart the generic knowledge on the objects' shape). As an example, we 
have rendered a scene with the data (raw and filtered) of the underwater acoustic 
images together with the pipes extracted with our algorithm (see Fig. 8); it is 
interesting to note that the radius of the pipes are quite good although obtained with 
the approximated formula.  

The complete virtual environment requires a preliminary recognition phase. The 
idea is to build, from a database, a virtual scene of the structure investigated (e.g., an 
off-shore platform) and to use the segmented images to recognize the position and 
the pose of the acoustic camera in the scene by a suitable matching with the database 
information. Therefore, a human operator could not observe the real image, but the 
virtual one, possibly navigating in the virtual scenario reconstructed from real data.  

 
 

8. CONCLUSIONS 
 

In this work, we have presented a general overview of the approaches and 
methods aimed at the generation and processing of acoustic images. In particular, in 
the first part, methods for the generation of acoustic images are presented, 
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describing holographic, and lens-based methods, and, in detail, the 3-D 
beamforming technique. In the second part, the emphasis was on 3-D image 
processing techniques. After a general survey about the methods devoted to range 
image processing, a specific overview of the methods for acoustic image analysis 
and segmentation is reported, and finally, a technique for 3-D acoustic image 
segmentation and interpretation is presented, aimed at obtaining a synthetic 
representation of the observed scene, useful for augmented reality and virtual reality 
applications.  
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