
Image and Vision Computing
Unalibrated Eulidean Reonstrution: A ReviewAndrea FusielloDipartimento Sienti�o e Tenologio, Universit�a di VeronaCa' Vignal 2, Strada Le Grazie, I-37134 Verona, ITTel: +39 045 809 8088 Fax: +39 045 809 8928E-mail: fusiello�si.univr.itAbstratThis paper provides a review on tehniques for omputing a three-dimensional modelof a sene from a single moving amera, with unonstrained motion and unknown pa-rameters. In the lassial approah, alled autoalibration or self-alibration, ameramotion and parameters are reovered �rst, using rigidity; then struture is easily om-puted. Reently, new methods based on the idea of strati�ation have been proposed.They upgrade the projetive struture, ahievable from orrespondenes only, to theEulidean struture, by exploiting all the available onstraints.Key words: 3D vision, Autoalibration, Eulidean reonstrution, Self-alibration, Unal-ibrated ameras.1 IntrodutionThe goal of Computer Vision (see [1℄ for an introdution) is to ompute properties (mainlygeometri) of the three-dimensional world from images. One of the hallenging problemsof Computer Vision is to reonstrut a three-dimensional model of the sene from a movingamera. Possible appliations inlude: navigation of autonomous vehiles, objet reogni-tion, reverse engineering and synthesis of virtual environments.Most of the earlier studies in the �eld assume that the intrinsi parameters of the amera(foal length, image enter and aspet ratio) are known. Computing amera motion inthis ase is a well known problem in photogrammetry, alled relative orientation [2, 3℄, forwhih several methods are available (see [4℄ for a review). Given all the parameters of theamera, reonstrution is straightforward. 1



However, there are situations wherein the intrinsi parameters are unknown or o�-line al-ibration is impratiable. In these ases the only information one an exploit is ontainedin the video sequene itself.Yet, some assumptions are neessary to make the problem tratable. We will fous onthe lassial ase of a single amera with onstant but unknown intrinsi parameters andunknown motion. Other approahes restrit the motion [5, 6, 7, 8℄ or assume a rigidlymoving stereo rig [9℄.The ontribution of this paper is to give a ritial, uni�ed view of some of the mostpromising tehniques. Suh a omparative aount sheds light on the relations betweendi�erent methods, presented in di�erent ways and formalisms in the original researhartiles.In the next setion some neessary notation and onepts will be introdued. Then (Se. 3)the reonstrution problem will be formulated. In Se. 4 the lassial autoalibrationapproah will be briey outlined. Strati�ation methods will be desribed in some detailsin Se. 5. Appliability of the methods will be disussed in Se. 6. Finally (Se. 7),onlusions will be drawn.2 Notation and basisThis setion introdues the mathematial bakground on perspetive projetions neessaryfor our purposes. Our notation follows [10℄.Figure 1 near hereA pinhole amera is modeled by its optial enter C and its retinal plane (or image plane)R. A 3-D point W is projeted into an image point m given by the intersetion of R withthe line ontaining C and W.Let w = (x; y; z) be the oordinates of W in the world referene frame (�xed arbitrarily)
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and m the pixel oordinates of m. In homogeneous (or projetive) oordinates
~m = 26664 uv1 37775 ~w = 26666664 xyz1

37777775 (1)
the transformation from ~w to ~m is given by the matrix ~P:� ~m = ~P ~w; (2)where � is a sale fator alled projetive depth. If ~P is suitably normalized, � beomesthe true orthogonal distane of the point from the foal plane of the amera.The amera is therefore modeled by its perspetive projetion matrix (heneforth simplyamera matrix) ~P, whih an be deomposed, using the QR fatorization, into the produt~P = A[R j t℄: (3)The matrix A depends on the intrinsi parameters only, and has the following form:A = 26664 �u  u00 �v v00 0 1 37775 ; (4)where �u = �fku, �v = �fkv are the foal lengths in horizontal and vertial pixels,respetively (f is the foal length in millimeters, ku and kv are the e�etive number ofpixels per millimeter along the u and v axes), (u0; v0) are the oordinates of the prinipalpoint, given by the intersetion of the optial axis with the retinal plane (Fig. 1), and is the skew fator.The amera position and orientation (extrinsi parameters), are enoded by the 3 � 3rotation matrix R and the translation t, representing the rigid transformation that alignsthe amera referene frame (Fig. 1) and the world referene frame.
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2.1 Epipolar geometryLet us onsider the ase of two ameras (see Fig. 2).Figure 2 near hereIf we take the �rst amera referene frame as the world referene frame, we an write thetwo following general amera matries:~P = A[Ij0℄ = [Aj0℄ (5)~P0 = A0[Rjt℄: (6)A three-dimensional point w is projeted onto both image planes, to points ~m = ~P ~w and~m0 = ~P0 ~w, whih onstitute a onjugate pair. From the left amera we obtain:
�0 ~m0 = A0[Rjt℄ ~w = A0[Rjt℄0BBBBBB�26666664xyz0

37777775+ 266666640001
377777751CCCCCCA = A0R26664xyz37775+A0t: (7)

From the right amera we obtain: �A�1 ~m = [Ij0℄ ~w = [x y z℄>: Substituting the latterin (7) yields: �0 ~m0 = �A0RA�1 ~m+A0t = �H1 ~m+ ~e0 (8)where H1 = A0RA�1 and ~e0 = A0t (the reason for this notation will be manifest in thefollowing).Equation (8) means that ~m0 lies on the line going trough ~e0 and the point H1 ~m. Inprojetive oordinates the ollinearity of these three points an be expressed with theexternal produt: ~m0>(~e0 ^H1 ~m) = 0; or~m0>F ~m = 0; (9)where F = [~e0℄^H1 is the fundamental matrix, relating onjugate points, and [~e0℄^ is a4



matrix suh that ~e0 ^ x = [~e0℄^x: From (9) we an see that ~m0 belongs to the line F ~m inthe seond image, whih is alled the epipolar line of ~m. It's easy to see that ~e0>F = 0,meaning that all the epipolar lines ontain the point ~e0, whih is alled the epipole (Fig. 2).Sine F~e = F>~e0 = 0 the rank of F is in general two and, being de�ned up to a salefator, it depends upon seven parameters. In the most general ase, the only geometri-al information that an be omputed from pairs of images is the fundamental matrix.Its omputation requires a minimum of eight point orrespondenes to obtain a uniquesolution [11, 12℄.It an be seen that (9) is equivalent to(A0�1 ~m0)>[t℄^R(A�1 ~m) = 0: (10)Changing to normalized oordinates, ~n = A�1 ~m; one obtain the original formulation ofthe Longuet-Higgins [13℄ equation, ~n0>E~n = 0 (11)involving the essential matrix E = [t℄^R; (12)whih an be obtained when intrinsi parameters are known. E depends upon �ve inde-pendent parameters (rotation and translation up to a sale fator). From (10) it is easyto see that F = A0�>EA�1: (13)2.2 Homography of a planeGiven two views of a sene, there is a linear projetive transformation (an homography)relating the projetion m of the point of a plane � in the �rst view to its projetion inthe seond view, m0. This appliation is given by a 3� 3 invertible matrix H� suh that:~m0 = H� ~m: (14)5



It an be seen that, given the two projetion matries,~P = A[I j 0℄; ~P0 = A0[R j t℄ (15)(the world referene frame is �xed on the �rst amera) and a plane � of equation n>x = d,the following holds [14℄: H� = A0(R+ tn>d )A�1: (16)H� is the homography matrix for the plane �. If d!1,H1 = A0RA�1: (17)This is the homography matrix for the in�nity plane, whih maps vanishing points tovanishing points and depends only on the rotational omponent of the rigid displaement.It an be easily seen that: H� = H1 + ~e0n>d A�1 (18)where ~e0 = A0t:3 The reonstrution problemConsider a set of three-dimensional points viewed by N ameras with matries f~Pigi=1:::N .Let ~mij ' ~Pi ~wj be the (homogeneous) oordinates of the projetion of the j-th point ontothe i-th amera. The reonstrution problem an be ast in the following way: given theset of pixel oordinates f ~mijg, �nd the set of amera matries f~Pig and the sene struturef ~wjg suh that ~mij ' ~Pi ~wj: (19)Without further restritions we will, in general, obtain a projetive reonstrution [15, 16,17℄ de�ned up to an arbitrary projetive transformation. Indeed, if f~Pig and f ~wjg satisfy(19), also f~Pi ~Tg and f ~T�1 ~wjg satisfy (19) for any 4� 4 nonsingular matrix ~T.6



A projetive reonstrution an be omputed starting from points orrespondenes only,without any a-priori knowledge [18, 19, 20, 21, 22, 23, 24, 25℄. Despite it onveys someuseful in formations [26, 27℄, we would like to obtain a Eulidean reonstrution, a veryspeial one that di�ers from the true reonstrution by an unknown similarity transforma-tion. This is omposed by a rigid displaement (due to the arbitrary hoie of the worldreferene frame) plus a a uniform hange of sale (due to the well-known depth-speed am-biguity: it is impossible to determine whether a given image motion is aused by a nearbyobjet with slow relative motion or a distant objet with fast relative motion).Maybank and Faugeras [28, 29℄ proved that, if intrinsi parameters are onstant, Eulideanreonstrution is ahievable. The proedure is known as autoalibration.In this approah, the internal unhanging parameters of the amera are omputed fromat least three views. One the intrinsi parameters are known, the problem of omputingthe extrinsi parameters (motion) from point orrespondenes is the well-known relativeorientation problem, for whih a variety of methods have been developed [4, 30, 31℄. Inpriniple, from the set of orrespondenes f ~mig one an ompute the fundamental matrix,from whih the essential matrix is immediately obtained with (13). Motion parameters Rand the diretion of translation t are obtained diretly from the fatorization (12) of E.In [32℄ diret and iterative methods are ompared.Reently, new approahes based on the idea of strati�ation [14, 33℄ have been introdued.Starting from a projetive reonstrution, whih an be omputed from the set of or-respondenes f ~mijg only, the problem is omputing the proper ~T that upgrades it to aEulidean reonstrution, by exploiting all the available onstraints. To this purpose theproblem is strati�ed into di�erent representations: depending on the amount of informa-tion and the onstraints available, it an be analyzed at a projetive, aÆne1, or Eulideanlevel.4 AutoalibrationIn the ase of two di�erent ameras, the fat that for any fundamental matrix F thereexist two intrinsi parameters matrix A and A0 and a rigid motion represented by t andR suh that F = A0�>([t℄^R)A�1 is alled the rigidity onstraint.1An aÆne reonstrution di�ers from the true one by an aÆne transformation.7



The seven parameters of the fundamental matrix are available to desribe the geometrirelationship between the two views; the �ve parameters of the essential matrix are neededto desribe the rigid displaement, thus at most two independent onstraint are availablefor the omputation of the intrinsi parameters from the fundamental matrix. Indeed,Hartley [30℄ proposed an algorithm to fator the fundamental matrix that yields the �vemotion parameters and the two di�erent foal lengths. He also notied that no moreinformation ould be extrated from the fundamental matrix without making additionalassumptions.In the ase of a moving amera with onstant intrinsi parameters, it is possible to ob-tain a Eulidean reonstrution by umulating onstraints over di�erent displaements.There are �ve unknown (the intrinsi parameters), eah displaement yields two indepen-dent onstraints, hene three views are suÆient (between three views there are threeindependent displaements: 1-2, 1-3 and 2-3).4.1 Kruppa equationsWith a minimum of three displaements, we an obtain the internal parameters of theamera using a system of polynomial equations due to Kruppa [34℄, whih are derivedfrom a geometri interpretation of the rigidity onstraint [28, 35℄.The unknown in the Kruppa equations is the matrix K = AA>, alled the Kruppa o-eÆients matrix, that represents the dual of the image of the absolute oni (see [10℄ fordetails). From K one an easily obtain the intrinsi parameters by means of Choleskyfatorization (K is symmetri and positive de�nite ), or in losed form:if K = 26664k1 k2 k3k2 k4 k5k3 k5 1 37775 then A = 266664rk1 � k32 � (k2�k3k5℄2k4�k52 k2�k3k5pk4�k52 k30 pk4 � k52 k50 0 1 377775 : (20)Kruppa equations were redisovered and derived by Maybank and Faugeras [28℄. ReentlyHartley [36℄ provided a simpler form, based on the Singular Value Deomposition of the
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fundamental matrix. Let F be written as F = UDV> (with SVD), andU = 26664 u>1u>2u>3 37775 V = 26664 v>1v>2v>3 37775 D = diag(r; s; 0):Then the Kruppa equations write (the derivation an be found in [36℄)v>2 Kv2r2u>1 Ku1 = �v>2 Kv1rsu>1 Ku2 = v>1 Kv1s2u>2 Ku2 : (21)From (21) one obtains two independent quadrati equations in the �ve parameters ofK for eah fundamental matrix (i.e., for eah displaement). Moreover, assuming that = 0, whih is a good approximation for usual ameras, one has the additional onstraintk3k5 = k2 [32℄. There are basially two lasses of methods for solving the resulting systemof equations (assuming that more than three views are available) [32, 37℄:� Partition the equations set in groups of �ve and solve eah group with a global on-vergent tehnique for systems of polynomial equations, like homotopy ontinuationmethods [38, 39℄. Eah system will give a set of solutions and the solution ommonto all of them is hosen. This method { presented in [32℄ { has the great advantageof global onvergene, but is omputationally expensive. Moreover, the number ofsystems to be solved rapidly inreases with the number of displaements.� The over-onstrained system of equation is solved with a non-linear least-squarestehnique (Levenberg-Marquardt [40℄, or Iterated Extended Kalman Filter [41℄).The problem with non-linear least-squares is that a starting point lose to the so-lution is needed. This an be obtained by applying globally onvergent methodsto subsets of equations (like in the previous ase), or by making the additional as-sumption that (u0; v0) is in the enter of the image, thereby obtaining (from justone fundamental matrix) two quadrati equations in two variables k1; k4, whih anbe solved analytially [36℄. This tehnique is used in [37℄.
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5 Strati�ationLet us assume that a projetive reonstrution is available, that is a sequene f~Piprojg ofamera matries suh that:~P0proj = [I j 0℄; ~Piproj = [Qi j qi℄: (22)We are looking for a Eulidean reonstrution, that is a 4� 4 nonsingular matrix ~T thatupgrades the projetive reonstrution to Eulidean. If f ~wjg is the sought Eulideanstruture, ~T must be suh that: ~mij = ~Piproj ~T~T�1 ~wj; hene~Pieul ' ~Piproj ~T ; (23)where the symbol ' means \equal up to a sale fator."5.1 Using additional informationProjetive reonstrution di�ers from Eulidean by an unknown projetive transformationin the 3-D projetive spae, whih an be seen as a suitable hange of basis. Thanks tothe fundamental theorem of projetive geometry [42℄, a ollineation in spae is determinedby �ve points, hene the knowledge of the true (Eulidean) position of �ve points allowsto ompute the unknown 4�4 matrix ~T that transform the Eulidean frame into the pro-jetive frame. An appliation of this is reported in [43℄. Moreover, if intrinsi parametersA are known, then ~T an be omputed by solving a linear system of equations (see (52)in Se. 5.2.5).5.2 Eulidean reonstrution from onstant intrinsi parametersThe hallenging problem is to reover ~T without additional information, using only thehypothesis of onstant intrinsi parameters. The works by Hartley [18℄, Pollefeys and VanGool [44℄, Heyden and �Astr�om [45℄, Triggs [46℄ and Bougnoux [47℄ will be reviewed, but�rst we will make some remarks that are ommon to most of the methods.We an hoose the �rst Eulidean-alibrated amera to be ~P0eul = A[I j 0℄, thereby �xing
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arbitrarily the rigid transformation:~P0eul = A[I j 0℄ ~Pieul = A[Ri j ti℄: (24)With this hoie, it is easy to see that ~P0eul = ~P0proj ~T implies~T = 24A 0r> s35 (25)where r> is an arbitrary vetor of three elements [r1 r2 r3℄. Under this parameterization~T is learly non singular, and being de�ned up to a sale fator, it depends on eightparameters (let s = 1).Substituting (22) in (23) one obtains~Pieul ' ~Piproj ~T = [QiA+ qir> j qi℄; (26)and from (24) ~Pieul = A[Ri j ti℄ = [ARi j Ati℄; (27)hene QiA+ qir> ' ARi: (28)This is the basi equation, relating the unknowns A (�ve parameters) and r (three pa-rameters) to the available data Qi and qi. R is unknown, but must be a rotation matrix.AÆne reonstrution. Equation (28) an be rewritten asQi + qir>A�1 ' ARiA�1 = Hi1; (29)
11



relating the unknown vetor a> = r>A�1 to the homography of the in�nity plane (ompare(29) with (18)). It an be seen that ~T fatorizes as follows~T = 24 I 0a> 13524A 00> 135 : (30)The right-hand matrix is an aÆne transformation, not moving the in�nity plane, whereasthe left-hand one is a transformation moving the in�nity plane.Substituting the latter into (23) we obtain:~Pieul 24A�1 00> 135 = ~PiaÆ ' ~Piproj 24 I 0a> 135 = [Hi1jqi℄ (31)Therefore, the knowledge of the homography of the in�nity plane (given by a) allows toompute the Eulidean struture up to an aÆne transformation, that is an aÆne reon-strution.From aÆne to Eulidean. Another useful observation is, if H1 is known and the in-trinsi parameters are onstant, the intrinsi parameters matrix A an easily be omputed[8, 18, 14, 48℄.Let us onsider the ase of two ameras. If A0 = A, then H1 is exatly known (with theright sale), sine det(H1)= det(ARA�1) = 1: (32)From (17) we obtain R = A0�1H1A; and, sine RR> = I, it is easy to obtain:H1KH>1 = K (33)where K = AA> is the Kruppa oeÆients matrix. As (33) is an equality between 3 � 3symmetri matries, we obtain a linear system of six equations in the �ve unknown k1; k2;k3; k4; k5 . In fat, only four equations are independent [14, 48℄, hene at least three views(with onstant intrinsi parameters) are required to obtain an over-onstrained linearsystem, whih an be easily solved with a linear least-squares tehnique.12



Note that two views would be suÆient under the usual assumption that the image refer-ene frame is orthogonal ( = 0), whih gives the additional onstraint k3k5 = k2.If points at in�nity (in pratie, suÆiently far from the amera) are in the sene, H1 anbe omputed from point orrespondenes, like any ordinary plane homography [48℄. More-over, with additional knowledge, it an be estimated from vanishing points or parallelism[33, 49℄, or onstrained motion [8℄.In the rest of the setion, some of the most promising strati�ation tehniques will bereviewed.5.2.1 HartleyHartley [18℄ pioneered this kind of approah. Starting from (28), we an write(Qi + qia>)A ' ARi: (34)By taking the QR deomposition of the left-hand side we obtain an upper triangularmatrix Bi suh that (Qi + qia>)A = BiRi; so (34) rewrites BiRi = �iARi or1�iA�1Bi = I: (35)The sale fator 1=�i an be hosen so that the sum of the squares of the diagonal entriesof (1=�i)A�1Bi equals three. We seek A and a that minimizesXi>0  1�iA�1Bi � I2 : (36)Eah amera exluding the �rst, gives six onstraints in eight unknowns, so three amerasare suÆient. In pratie there are more than three ameras, and the non-linear leastsquares problem an be solved with Levenberg-Marquardt minimization algorithm [40℄.As notied in the ase of Kruppa equations, a good initial guess for the unknowns A anda is needed in order for the algorithm to onverge to the solution.Given that from Hi1 the omputation of A is straightforward, a guess for a (that deter-minesHi1) is suÆient. The heirality onstraints [50℄ are exploited by Hartley to estimatethe in�nity plane homography, thereby obtaining an approximate aÆne (or quasi-aÆne)13



reonstrution.5.2.2 Pollefeys and Van GoolIn this approah [44℄, a projetive reonstrution is �rst updated to aÆne reonstrutionby the use of the modulus onstraint [14, 51℄: sine the left-hand part of (29) is onjugatedto a (saled) rotation matrix, all eigenvalues must have equal moduli. Note that this holdsif and only if intrinsi parameters are onstant. To make the onstraint expliit we writethe harateristi polynomial:det(Qi + qia> � �I) = l3�3 + l2�2 + l1�+ l0: (37)The equality of the roots of the harateristi polynomial is not easy to impose, but asimple neessary ondition holds: l3l31 = l32l0: (38)This yields a fourth order polynomial equation in the unknown a for eah amera exeptthe �rst, so a �nite number of solutions an be found for four ameras. Some solutionswill be disarded using the modulus onstraint, that is more stringent than (38).As disussed previously, autoalibration is ahievable with only three views. It is suÆientto note that, given three ameras, for every plane homography, the following holds [14℄:H1;3 = H2;3H1;2: (39)In partiular it holds for the in�nity plane homography, soHi;j1 = Hj1Hi1�1 ' (Qj + qja>)(Qi + qia>)�1: (40)In this way we obtain a onstraint on the plane at in�nity for eah pair of views. Let uswrite the harateristi polynomial:det((Qj + qja>)(Qi + qia>)�1 � �I) = 0 () (41)det((Qj + qja>)� �(Qi + qia>)) = 0 (42)14



Writing the onstraint (38) for the three views, a system of three polynomial of degree fourin three unknowns is obtained. Here, like in the solution of Kruppa equations, homotopyontinuation methods ould be applied to ompute all the 43 = 64 solutions.In pratie more than three views are available, and we must solve a non-linear least-squares problem: Levenberg-Marquardt minimization is used by the author.5.2.3 Heyden and �Astr�omThe method proposed by Heyden and �Astr�om [45℄ is again based on (28), whih an berewritten as ~Piproj 24 Ar> 35 ' ARi: (43)Sine RiRi> = I it follows that:~Piproj 24 Ar> 3524 Ar> 35> ~Pi>proj = ~Piproj 24 AA> Arr>A> r>r 35 ~Pi>proj ' ARiRi>A> = AA>:(44)The onstraints expressed by (44) are alled the Kruppa onstraints [45℄. Note that (44)ontains �ve equations, beause the matries of both members are symmetri, and thehomogeneity redues the number of equations with one. Hene, eah amera matrix, apartfrom the �rst one, gives �ve equations in the eight unknowns �u; �v; ; u0; v0; r1; r2; r3: Aunique solution is obtained when three ameras are available. If the unknown sale fatoris introdued expliitly, (44) rewrites:0 = fi(A; r; �i) = �2iAA> � ~Piproj 24 AA> Arr>A> r>r 35 ~Pi>proj: (45)Therefore, 3 ameras yield 10 equations in 8 unknowns.5.2.4 TriggsTriggs [46℄ proposed a method based on the absolute quadri and, independently fromHeyden and �Astr�om, he derived an equation losely related to (44). The absolute quadri15






 onsists of planes tangent to the absolute oni [10℄, and in a Eulidean frame, isrepresented by the matrix 


eu = 24I 00 035 : (46)If ~T is a projetive transformation ating as in (23), then it an be veri�ed [46℄ that ittransforms 


eu into 


 = ~T


eu ~T>: Sine the projetion of the absolute quadri yieldsthe dual image of the absolute oni [46℄, one obtain~Piproj


 ~Pi>proj ' K (47)from whih, using (25), (44) follows immediately. Triggs, however, does not assume anypartiular form for ~T, hene the unknown are K and 


. Note that both these matrix aresymmetri and de�ned up to a sale fator.Let k be the matrix omposed by the the six elements of the lower triangle of K, and !!!be the matrix omposed by the six elements of the lower triangle of ~Piproj


 ~Pi>proj, then(47) is tantamount to saying that the two vetors are equal up to a sale, henek ^!!! = 0 (48)in whih the unknown sale fator is eliminated. For eah amera this amounts to 15bilinear equations in 9 + 5 unknowns, sine both k and !!! are de�ned up to a sale fator.Sine only �ve of them are linearly independent, at least three images are required for aunique solution.Triggs uses two methods for solving the non-linear least-squares problem: sequentialquadrati programming [40℄ on N � 3 ameras, and a quasi-linear method with SVDfatorization on N � 4 ameras. He reommend to use data standardization [52℄ andto enfore det(


) = 3. The sought transformation ~T is omputed by taking the eigen-deomposition of 


.
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5.2.5 BougnouxThis methods [47℄ is di�erent from the previous ones, beause it does not require onstantintrinsi parameters and beause it ahieves only an approximate Eulidean reonstrution,without obtaining meaningful amera parameters as a by-produt.Let us write (23) in the following form:~Pieul = 26664 qi>1qi>2 qiqi>3 37775 ' ~Piproj ~T (49)where qi>1 ;qi>2 ;qi>3 are the rows of ~Pieul: The usual assumptions  = 0 and �u = �v, areused to onstraint the Eulidean amera matries: = 0 () (qi1 ^ qi3)>(qi2 ^ qi3) = 0 (50)�u = �v () jjqi1 ^ qi3jj = jjqi2 ^ qi3jj: (51)Thus eah amera, exluding the �rst, gives two onstraints of degree four. Sine we havesix unknown, at least four ameras are required to ompute ~T. If the prinipal point(u0; v0) is fored to the image enter, the unknowns redue to four and only three amerasare needed.The non-linear minimization required to solve the resulting system is rather unstable andmust be started lose to the solution: an estimate of the foal length and r is needed.Assuming known prinipal point, no skew, and unit aspet ratio, the foal length �u anbe omputed from the Kruppa equations in losed form [47℄. Then, given the intrinsiparametersA, an estimate of r an be omputed by solving a linear least-squares problem.From (44) the following is obtained:QiAA>Qi> +QiArqi> + (QiArqi>)> + jjrjj2qiqi> = �2AA>: (52)Sine [AA>℄3;3 = K3;3 = 1; then � is �xed. After some algebrai manipulation [47℄, oneends up with four linear equations in Ar. This method works also with varying intrinsiparameters, although, in pratie, only the foal length is allowed to vary, sine prinipal17



point is fored to the image enter and no skew and unit aspet ratio are assumed. Theestimation of the amera parameters is inaurate, nevertheless Bougnoux proves that thereonstrution is orret up to an anisotropi homotethy, whih he laims to be enoughfor the reonstruted model to be usable.6 DisussionThe appliability of autoalibration tehniques in the real world depends on two issues:sensitivity to noise and initialization. The hallenge is to devise a method that exhibitsgraeful degradation as noise inreases and needs only an approximate initialization. Sev-eral attempt have been made, as reported in this survey, but the problem is is far frombeing solved yet.As for the Kruppa equations, in [32℄ the authors ompare three solving methods: the ho-motopy ontinuation method, Levenberg-Marquardt and the Iterated Extended KalmanFilter. From the simulations reported, it appears that all the methods give omparable re-sults. However, the homotopy ontinuation method is suitable for the ase of few displae-ments, as it would be diÆult to use all the onstraints provided by a long sequene, andits omputational ost would be too high. Iterative approahes (Levenberg-Marquardt andIterated Extended Kalman Filter) are well suited to the ase where more displaementsare available. The main limitation of all these methods is the sensitivity to the noise inthe loalization of points.Methods based on strati�ation have appeared only reently, and only preliminary andpartial results are available. In many ases they show a graeful degradation as noiseinreases, but the issue of initialization is not always addressed.Hartley's algorithm leads to a minimization problem that requires a good initial guess;this is omputed using a quite ompliated method, involving the heirality onstraints.Pollefeys-VanGool's algorithm leads to an easier minimization, and this justify the laimthat onvergene toward a global minimum is relatively easily obtained. It is unlear,however, how the initial guess has to be hosen. The method proposed by Heyden and�Astr�om was evaluated only on one example, and was initialized lose to the ground-truth. Experiments on syntheti data reported by Triggs, suggest that his non-linearalgorithm is stable and requires only approximate initialization (the author reports that18



initial alibration may be wrong up to 50%).Bougnoux's algorithm is quite di�erent form the others, sine its goal is not to obtain anaurate Eulidean reonstrution. Assessment of reonstrution quality is only visual.7 ConlusionsThis paper presented a review of reent tehniques for Eulidean reonstrution from asingle moving amera, with unonstrained motion and unknown onstant parameters. Suhuni�ed, omparative disussion, whih has not yet been presented in the literature, shedslight on the relations between di�erent methods. Indeed, even though formulations maybe di�erent, to all the methods reviewed, muh of the underlying mathematis is ommon.However, sine problems are inherently non-linear, proper formulation is very importantto avoid diÆulties reated by the numerial omputation of the solutions.Despite this problem is far from being ompletely solved, the more general one in whihintrinsi parameters are varying is gaining the attention of researhers. In fat, Bougnoux'smethod already opes with varying parameters. Heyden and �Astr�om [53℄ proposed amethod that works with varying and unknown foal length and prinipal point. Later,they proved [54℄ that it is suÆient to know any of the �ve intrinsi parameters to makeEulidean reonstrution, even if all other parameters are unknown and varying. A similarmethod that an work with di�erent types of of onstraints has been reently presentedin [55℄.AknowledgmentsThe help of Arrigo Benedetti and Emanuele Truo who read preliminary drafts of thispaper is gratefully aknowledged.
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Image and Vision Computing - A. Fusiello - Captions to illustrations
Figure 1: The pinhole amera model, with the amera referene frame (X,Y,Z) depited.Z is also alled the optial axis.Figure 2: Epipolar geometry. The epipole of the �rst amera e is the projetion of theoptial enter C0 of the seond amera (and vie versa).
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Image and Vision Computing - A. Fusiello - Figure 2
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