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tThis paper provides a review on te
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omputing a three-dimensional modelof a s
ene from a single moving 
amera, with un
onstrained motion and unknown pa-rameters. In the 
lassi
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h, 
alled auto
alibration or self-
alibration, 
ameramotion and parameters are re
overed �rst, using rigidity; then stru
ture is easily 
om-puted. Re
ently, new methods based on the idea of strati�
ation have been proposed.They upgrade the proje
tive stru
ture, a
hievable from 
orresponden
es only, to theEu
lidean stru
ture, by exploiting all the available 
onstraints.Key words: 3D vision, Auto
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tion, Self-
alibration, Un
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ameras.1 Introdu
tionThe goal of Computer Vision (see [1℄ for an introdu
tion) is to 
ompute properties (mainlygeometri
) of the three-dimensional world from images. One of the 
hallenging problemsof Computer Vision is to re
onstru
t a three-dimensional model of the s
ene from a moving
amera. Possible appli
ations in
lude: navigation of autonomous vehi
les, obje
t re
ogni-tion, reverse engineering and synthesis of virtual environments.Most of the earlier studies in the �eld assume that the intrinsi
 parameters of the 
amera(fo
al length, image 
enter and aspe
t ratio) are known. Computing 
amera motion inthis 
ase is a well known problem in photogrammetry, 
alled relative orientation [2, 3℄, forwhi
h several methods are available (see [4℄ for a review). Given all the parameters of the
amera, re
onstru
tion is straightforward. 1



However, there are situations wherein the intrinsi
 parameters are unknown or o�-line 
al-ibration is impra
ti
able. In these 
ases the only information one 
an exploit is 
ontainedin the video sequen
e itself.Yet, some assumptions are ne
essary to make the problem tra
table. We will fo
us onthe 
lassi
al 
ase of a single 
amera with 
onstant but unknown intrinsi
 parameters andunknown motion. Other approa
hes restri
t the motion [5, 6, 7, 8℄ or assume a rigidlymoving stereo rig [9℄.The 
ontribution of this paper is to give a 
riti
al, uni�ed view of some of the mostpromising te
hniques. Su
h a 
omparative a

ount sheds light on the relations betweendi�erent methods, presented in di�erent ways and formalisms in the original resear
harti
les.In the next se
tion some ne
essary notation and 
on
epts will be introdu
ed. Then (Se
. 3)the re
onstru
tion problem will be formulated. In Se
. 4 the 
lassi
al auto
alibrationapproa
h will be brie
y outlined. Strati�
ation methods will be des
ribed in some detailsin Se
. 5. Appli
ability of the methods will be dis
ussed in Se
. 6. Finally (Se
. 7),
on
lusions will be drawn.2 Notation and basi
sThis se
tion introdu
es the mathemati
al ba
kground on perspe
tive proje
tions ne
essaryfor our purposes. Our notation follows [10℄.Figure 1 near hereA pinhole 
amera is modeled by its opti
al 
enter C and its retinal plane (or image plane)R. A 3-D point W is proje
ted into an image point m given by the interse
tion of R withthe line 
ontaining C and W.Let w = (x; y; z) be the 
oordinates of W in the world referen
e frame (�xed arbitrarily)
2



and m the pixel 
oordinates of m. In homogeneous (or proje
tive) 
oordinates
~m = 26664 uv1 37775 ~w = 26666664 xyz1

37777775 (1)
the transformation from ~w to ~m is given by the matrix ~P:� ~m = ~P ~w; (2)where � is a s
ale fa
tor 
alled proje
tive depth. If ~P is suitably normalized, � be
omesthe true orthogonal distan
e of the point from the fo
al plane of the 
amera.The 
amera is therefore modeled by its perspe
tive proje
tion matrix (hen
eforth simply
amera matrix) ~P, whi
h 
an be de
omposed, using the QR fa
torization, into the produ
t~P = A[R j t℄: (3)The matrix A depends on the intrinsi
 parameters only, and has the following form:A = 26664 �u 
 u00 �v v00 0 1 37775 ; (4)where �u = �fku, �v = �fkv are the fo
al lengths in horizontal and verti
al pixels,respe
tively (f is the fo
al length in millimeters, ku and kv are the e�e
tive number ofpixels per millimeter along the u and v axes), (u0; v0) are the 
oordinates of the prin
ipalpoint, given by the interse
tion of the opti
al axis with the retinal plane (Fig. 1), and 
is the skew fa
tor.The 
amera position and orientation (extrinsi
 parameters), are en
oded by the 3 � 3rotation matrix R and the translation t, representing the rigid transformation that alignsthe 
amera referen
e frame (Fig. 1) and the world referen
e frame.

3



2.1 Epipolar geometryLet us 
onsider the 
ase of two 
ameras (see Fig. 2).Figure 2 near hereIf we take the �rst 
amera referen
e frame as the world referen
e frame, we 
an write thetwo following general 
amera matri
es:~P = A[Ij0℄ = [Aj0℄ (5)~P0 = A0[Rjt℄: (6)A three-dimensional point w is proje
ted onto both image planes, to points ~m = ~P ~w and~m0 = ~P0 ~w, whi
h 
onstitute a 
onjugate pair. From the left 
amera we obtain:
�0 ~m0 = A0[Rjt℄ ~w = A0[Rjt℄0BBBBBB�26666664xyz0

37777775+ 266666640001
377777751CCCCCCA = A0R26664xyz37775+A0t: (7)

From the right 
amera we obtain: �A�1 ~m = [Ij0℄ ~w = [x y z℄>: Substituting the latterin (7) yields: �0 ~m0 = �A0RA�1 ~m+A0t = �H1 ~m+ ~e0 (8)where H1 = A0RA�1 and ~e0 = A0t (the reason for this notation will be manifest in thefollowing).Equation (8) means that ~m0 lies on the line going trough ~e0 and the point H1 ~m. Inproje
tive 
oordinates the 
ollinearity of these three points 
an be expressed with theexternal produ
t: ~m0>(~e0 ^H1 ~m) = 0; or~m0>F ~m = 0; (9)where F = [~e0℄^H1 is the fundamental matrix, relating 
onjugate points, and [~e0℄^ is a4



matrix su
h that ~e0 ^ x = [~e0℄^x: From (9) we 
an see that ~m0 belongs to the line F ~m inthe se
ond image, whi
h is 
alled the epipolar line of ~m. It's easy to see that ~e0>F = 0,meaning that all the epipolar lines 
ontain the point ~e0, whi
h is 
alled the epipole (Fig. 2).Sin
e F~e = F>~e0 = 0 the rank of F is in general two and, being de�ned up to a s
alefa
tor, it depends upon seven parameters. In the most general 
ase, the only geometri-
al information that 
an be 
omputed from pairs of images is the fundamental matrix.Its 
omputation requires a minimum of eight point 
orresponden
es to obtain a uniquesolution [11, 12℄.It 
an be seen that (9) is equivalent to(A0�1 ~m0)>[t℄^R(A�1 ~m) = 0: (10)Changing to normalized 
oordinates, ~n = A�1 ~m; one obtain the original formulation ofthe Longuet-Higgins [13℄ equation, ~n0>E~n = 0 (11)involving the essential matrix E = [t℄^R; (12)whi
h 
an be obtained when intrinsi
 parameters are known. E depends upon �ve inde-pendent parameters (rotation and translation up to a s
ale fa
tor). From (10) it is easyto see that F = A0�>EA�1: (13)2.2 Homography of a planeGiven two views of a s
ene, there is a linear proje
tive transformation (an homography)relating the proje
tion m of the point of a plane � in the �rst view to its proje
tion inthe se
ond view, m0. This appli
ation is given by a 3� 3 invertible matrix H� su
h that:~m0 = H� ~m: (14)5



It 
an be seen that, given the two proje
tion matri
es,~P = A[I j 0℄; ~P0 = A0[R j t℄ (15)(the world referen
e frame is �xed on the �rst 
amera) and a plane � of equation n>x = d,the following holds [14℄: H� = A0(R+ tn>d )A�1: (16)H� is the homography matrix for the plane �. If d!1,H1 = A0RA�1: (17)This is the homography matrix for the in�nity plane, whi
h maps vanishing points tovanishing points and depends only on the rotational 
omponent of the rigid displa
ement.It 
an be easily seen that: H� = H1 + ~e0n>d A�1 (18)where ~e0 = A0t:3 The re
onstru
tion problemConsider a set of three-dimensional points viewed by N 
ameras with matri
es f~Pigi=1:::N .Let ~mij ' ~Pi ~wj be the (homogeneous) 
oordinates of the proje
tion of the j-th point ontothe i-th 
amera. The re
onstru
tion problem 
an be 
ast in the following way: given theset of pixel 
oordinates f ~mijg, �nd the set of 
amera matri
es f~Pig and the s
ene stru
turef ~wjg su
h that ~mij ' ~Pi ~wj: (19)Without further restri
tions we will, in general, obtain a proje
tive re
onstru
tion [15, 16,17℄ de�ned up to an arbitrary proje
tive transformation. Indeed, if f~Pig and f ~wjg satisfy(19), also f~Pi ~Tg and f ~T�1 ~wjg satisfy (19) for any 4� 4 nonsingular matrix ~T.6



A proje
tive re
onstru
tion 
an be 
omputed starting from points 
orresponden
es only,without any a-priori knowledge [18, 19, 20, 21, 22, 23, 24, 25℄. Despite it 
onveys someuseful in formations [26, 27℄, we would like to obtain a Eu
lidean re
onstru
tion, a veryspe
ial one that di�ers from the true re
onstru
tion by an unknown similarity transforma-tion. This is 
omposed by a rigid displa
ement (due to the arbitrary 
hoi
e of the worldreferen
e frame) plus a a uniform 
hange of s
ale (due to the well-known depth-speed am-biguity: it is impossible to determine whether a given image motion is 
aused by a nearbyobje
t with slow relative motion or a distant obje
t with fast relative motion).Maybank and Faugeras [28, 29℄ proved that, if intrinsi
 parameters are 
onstant, Eu
lideanre
onstru
tion is a
hievable. The pro
edure is known as auto
alibration.In this approa
h, the internal un
hanging parameters of the 
amera are 
omputed fromat least three views. On
e the intrinsi
 parameters are known, the problem of 
omputingthe extrinsi
 parameters (motion) from point 
orresponden
es is the well-known relativeorientation problem, for whi
h a variety of methods have been developed [4, 30, 31℄. Inprin
iple, from the set of 
orresponden
es f ~mig one 
an 
ompute the fundamental matrix,from whi
h the essential matrix is immediately obtained with (13). Motion parameters Rand the dire
tion of translation t are obtained dire
tly from the fa
torization (12) of E.In [32℄ dire
t and iterative methods are 
ompared.Re
ently, new approa
hes based on the idea of strati�
ation [14, 33℄ have been introdu
ed.Starting from a proje
tive re
onstru
tion, whi
h 
an be 
omputed from the set of 
or-responden
es f ~mijg only, the problem is 
omputing the proper ~T that upgrades it to aEu
lidean re
onstru
tion, by exploiting all the available 
onstraints. To this purpose theproblem is strati�ed into di�erent representations: depending on the amount of informa-tion and the 
onstraints available, it 
an be analyzed at a proje
tive, aÆne1, or Eu
lideanlevel.4 Auto
alibrationIn the 
ase of two di�erent 
ameras, the fa
t that for any fundamental matrix F thereexist two intrinsi
 parameters matrix A and A0 and a rigid motion represented by t andR su
h that F = A0�>([t℄^R)A�1 is 
alled the rigidity 
onstraint.1An aÆne re
onstru
tion di�ers from the true one by an aÆne transformation.7



The seven parameters of the fundamental matrix are available to des
ribe the geometri
relationship between the two views; the �ve parameters of the essential matrix are neededto des
ribe the rigid displa
ement, thus at most two independent 
onstraint are availablefor the 
omputation of the intrinsi
 parameters from the fundamental matrix. Indeed,Hartley [30℄ proposed an algorithm to fa
tor the fundamental matrix that yields the �vemotion parameters and the two di�erent fo
al lengths. He also noti
ed that no moreinformation 
ould be extra
ted from the fundamental matrix without making additionalassumptions.In the 
ase of a moving 
amera with 
onstant intrinsi
 parameters, it is possible to ob-tain a Eu
lidean re
onstru
tion by 
umulating 
onstraints over di�erent displa
ements.There are �ve unknown (the intrinsi
 parameters), ea
h displa
ement yields two indepen-dent 
onstraints, hen
e three views are suÆ
ient (between three views there are threeindependent displa
ements: 1-2, 1-3 and 2-3).4.1 Kruppa equationsWith a minimum of three displa
ements, we 
an obtain the internal parameters of the
amera using a system of polynomial equations due to Kruppa [34℄, whi
h are derivedfrom a geometri
 interpretation of the rigidity 
onstraint [28, 35℄.The unknown in the Kruppa equations is the matrix K = AA>, 
alled the Kruppa 
o-eÆ
ients matrix, that represents the dual of the image of the absolute 
oni
 (see [10℄ fordetails). From K one 
an easily obtain the intrinsi
 parameters by means of Choleskyfa
torization (K is symmetri
 and positive de�nite ), or in 
losed form:if K = 26664k1 k2 k3k2 k4 k5k3 k5 1 37775 then A = 266664rk1 � k32 � (k2�k3k5℄2k4�k52 k2�k3k5pk4�k52 k30 pk4 � k52 k50 0 1 377775 : (20)Kruppa equations were redis
overed and derived by Maybank and Faugeras [28℄. Re
entlyHartley [36℄ provided a simpler form, based on the Singular Value De
omposition of the
8



fundamental matrix. Let F be written as F = UDV> (with SVD), andU = 26664 u>1u>2u>3 37775 V = 26664 v>1v>2v>3 37775 D = diag(r; s; 0):Then the Kruppa equations write (the derivation 
an be found in [36℄)v>2 Kv2r2u>1 Ku1 = �v>2 Kv1rsu>1 Ku2 = v>1 Kv1s2u>2 Ku2 : (21)From (21) one obtains two independent quadrati
 equations in the �ve parameters ofK for ea
h fundamental matrix (i.e., for ea
h displa
ement). Moreover, assuming that
 = 0, whi
h is a good approximation for usual 
ameras, one has the additional 
onstraintk3k5 = k2 [32℄. There are basi
ally two 
lasses of methods for solving the resulting systemof equations (assuming that more than three views are available) [32, 37℄:� Partition the equations set in groups of �ve and solve ea
h group with a global 
on-vergent te
hnique for systems of polynomial equations, like homotopy 
ontinuationmethods [38, 39℄. Ea
h system will give a set of solutions and the solution 
ommonto all of them is 
hosen. This method { presented in [32℄ { has the great advantageof global 
onvergen
e, but is 
omputationally expensive. Moreover, the number ofsystems to be solved rapidly in
reases with the number of displa
ements.� The over-
onstrained system of equation is solved with a non-linear least-squareste
hnique (Levenberg-Marquardt [40℄, or Iterated Extended Kalman Filter [41℄).The problem with non-linear least-squares is that a starting point 
lose to the so-lution is needed. This 
an be obtained by applying globally 
onvergent methodsto subsets of equations (like in the previous 
ase), or by making the additional as-sumption that (u0; v0) is in the 
enter of the image, thereby obtaining (from justone fundamental matrix) two quadrati
 equations in two variables k1; k4, whi
h 
anbe solved analyti
ally [36℄. This te
hnique is used in [37℄.
9



5 Strati�
ationLet us assume that a proje
tive re
onstru
tion is available, that is a sequen
e f~Piprojg of
amera matri
es su
h that:~P0proj = [I j 0℄; ~Piproj = [Qi j qi℄: (22)We are looking for a Eu
lidean re
onstru
tion, that is a 4� 4 nonsingular matrix ~T thatupgrades the proje
tive re
onstru
tion to Eu
lidean. If f ~wjg is the sought Eu
lideanstru
ture, ~T must be su
h that: ~mij = ~Piproj ~T~T�1 ~wj; hen
e~Pieu
l ' ~Piproj ~T ; (23)where the symbol ' means \equal up to a s
ale fa
tor."5.1 Using additional informationProje
tive re
onstru
tion di�ers from Eu
lidean by an unknown proje
tive transformationin the 3-D proje
tive spa
e, whi
h 
an be seen as a suitable 
hange of basis. Thanks tothe fundamental theorem of proje
tive geometry [42℄, a 
ollineation in spa
e is determinedby �ve points, hen
e the knowledge of the true (Eu
lidean) position of �ve points allowsto 
ompute the unknown 4�4 matrix ~T that transform the Eu
lidean frame into the pro-je
tive frame. An appli
ation of this is reported in [43℄. Moreover, if intrinsi
 parametersA are known, then ~T 
an be 
omputed by solving a linear system of equations (see (52)in Se
. 5.2.5).5.2 Eu
lidean re
onstru
tion from 
onstant intrinsi
 parametersThe 
hallenging problem is to re
over ~T without additional information, using only thehypothesis of 
onstant intrinsi
 parameters. The works by Hartley [18℄, Pollefeys and VanGool [44℄, Heyden and �Astr�om [45℄, Triggs [46℄ and Bougnoux [47℄ will be reviewed, but�rst we will make some remarks that are 
ommon to most of the methods.We 
an 
hoose the �rst Eu
lidean-
alibrated 
amera to be ~P0eu
l = A[I j 0℄, thereby �xing
10



arbitrarily the rigid transformation:~P0eu
l = A[I j 0℄ ~Pieu
l = A[Ri j ti℄: (24)With this 
hoi
e, it is easy to see that ~P0eu
l = ~P0proj ~T implies~T = 24A 0r> s35 (25)where r> is an arbitrary ve
tor of three elements [r1 r2 r3℄. Under this parameterization~T is 
learly non singular, and being de�ned up to a s
ale fa
tor, it depends on eightparameters (let s = 1).Substituting (22) in (23) one obtains~Pieu
l ' ~Piproj ~T = [QiA+ qir> j qi℄; (26)and from (24) ~Pieu
l = A[Ri j ti℄ = [ARi j Ati℄; (27)hen
e QiA+ qir> ' ARi: (28)This is the basi
 equation, relating the unknowns A (�ve parameters) and r (three pa-rameters) to the available data Qi and qi. R is unknown, but must be a rotation matrix.AÆne re
onstru
tion. Equation (28) 
an be rewritten asQi + qir>A�1 ' ARiA�1 = Hi1; (29)
11



relating the unknown ve
tor a> = r>A�1 to the homography of the in�nity plane (
ompare(29) with (18)). It 
an be seen that ~T fa
torizes as follows~T = 24 I 0a> 13524A 00> 135 : (30)The right-hand matrix is an aÆne transformation, not moving the in�nity plane, whereasthe left-hand one is a transformation moving the in�nity plane.Substituting the latter into (23) we obtain:~Pieu
l 24A�1 00> 135 = ~PiaÆ ' ~Piproj 24 I 0a> 135 = [Hi1jqi℄ (31)Therefore, the knowledge of the homography of the in�nity plane (given by a) allows to
ompute the Eu
lidean stru
ture up to an aÆne transformation, that is an aÆne re
on-stru
tion.From aÆne to Eu
lidean. Another useful observation is, if H1 is known and the in-trinsi
 parameters are 
onstant, the intrinsi
 parameters matrix A 
an easily be 
omputed[8, 18, 14, 48℄.Let us 
onsider the 
ase of two 
ameras. If A0 = A, then H1 is exa
tly known (with theright s
ale), sin
e det(H1)= det(ARA�1) = 1: (32)From (17) we obtain R = A0�1H1A; and, sin
e RR> = I, it is easy to obtain:H1KH>1 = K (33)where K = AA> is the Kruppa 
oeÆ
ients matrix. As (33) is an equality between 3 � 3symmetri
 matri
es, we obtain a linear system of six equations in the �ve unknown k1; k2;k3; k4; k5 . In fa
t, only four equations are independent [14, 48℄, hen
e at least three views(with 
onstant intrinsi
 parameters) are required to obtain an over-
onstrained linearsystem, whi
h 
an be easily solved with a linear least-squares te
hnique.12



Note that two views would be suÆ
ient under the usual assumption that the image refer-en
e frame is orthogonal (
 = 0), whi
h gives the additional 
onstraint k3k5 = k2.If points at in�nity (in pra
ti
e, suÆ
iently far from the 
amera) are in the s
ene, H1 
anbe 
omputed from point 
orresponden
es, like any ordinary plane homography [48℄. More-over, with additional knowledge, it 
an be estimated from vanishing points or parallelism[33, 49℄, or 
onstrained motion [8℄.In the rest of the se
tion, some of the most promising strati�
ation te
hniques will bereviewed.5.2.1 HartleyHartley [18℄ pioneered this kind of approa
h. Starting from (28), we 
an write(Qi + qia>)A ' ARi: (34)By taking the QR de
omposition of the left-hand side we obtain an upper triangularmatrix Bi su
h that (Qi + qia>)A = BiRi; so (34) rewrites BiRi = �iARi or1�iA�1Bi = I: (35)The s
ale fa
tor 1=�i 
an be 
hosen so that the sum of the squares of the diagonal entriesof (1=�i)A�1Bi equals three. We seek A and a that minimizesXi>0 



 1�iA�1Bi � I



2 : (36)Ea
h 
amera ex
luding the �rst, gives six 
onstraints in eight unknowns, so three 
amerasare suÆ
ient. In pra
ti
e there are more than three 
ameras, and the non-linear leastsquares problem 
an be solved with Levenberg-Marquardt minimization algorithm [40℄.As noti
ed in the 
ase of Kruppa equations, a good initial guess for the unknowns A anda is needed in order for the algorithm to 
onverge to the solution.Given that from Hi1 the 
omputation of A is straightforward, a guess for a (that deter-minesHi1) is suÆ
ient. The 
heirality 
onstraints [50℄ are exploited by Hartley to estimatethe in�nity plane homography, thereby obtaining an approximate aÆne (or quasi-aÆne)13



re
onstru
tion.5.2.2 Pollefeys and Van GoolIn this approa
h [44℄, a proje
tive re
onstru
tion is �rst updated to aÆne re
onstru
tionby the use of the modulus 
onstraint [14, 51℄: sin
e the left-hand part of (29) is 
onjugatedto a (s
aled) rotation matrix, all eigenvalues must have equal moduli. Note that this holdsif and only if intrinsi
 parameters are 
onstant. To make the 
onstraint expli
it we writethe 
hara
teristi
 polynomial:det(Qi + qia> � �I) = l3�3 + l2�2 + l1�+ l0: (37)The equality of the roots of the 
hara
teristi
 polynomial is not easy to impose, but asimple ne
essary 
ondition holds: l3l31 = l32l0: (38)This yields a fourth order polynomial equation in the unknown a for ea
h 
amera ex
eptthe �rst, so a �nite number of solutions 
an be found for four 
ameras. Some solutionswill be dis
arded using the modulus 
onstraint, that is more stringent than (38).As dis
ussed previously, auto
alibration is a
hievable with only three views. It is suÆ
ientto note that, given three 
ameras, for every plane homography, the following holds [14℄:H1;3 = H2;3H1;2: (39)In parti
ular it holds for the in�nity plane homography, soHi;j1 = Hj1Hi1�1 ' (Qj + qja>)(Qi + qia>)�1: (40)In this way we obtain a 
onstraint on the plane at in�nity for ea
h pair of views. Let uswrite the 
hara
teristi
 polynomial:det((Qj + qja>)(Qi + qia>)�1 � �I) = 0 () (41)det((Qj + qja>)� �(Qi + qia>)) = 0 (42)14



Writing the 
onstraint (38) for the three views, a system of three polynomial of degree fourin three unknowns is obtained. Here, like in the solution of Kruppa equations, homotopy
ontinuation methods 
ould be applied to 
ompute all the 43 = 64 solutions.In pra
ti
e more than three views are available, and we must solve a non-linear least-squares problem: Levenberg-Marquardt minimization is used by the author.5.2.3 Heyden and �Astr�omThe method proposed by Heyden and �Astr�om [45℄ is again based on (28), whi
h 
an berewritten as ~Piproj 24 Ar> 35 ' ARi: (43)Sin
e RiRi> = I it follows that:~Piproj 24 Ar> 3524 Ar> 35> ~Pi>proj = ~Piproj 24 AA> Arr>A> r>r 35 ~Pi>proj ' ARiRi>A> = AA>:(44)The 
onstraints expressed by (44) are 
alled the Kruppa 
onstraints [45℄. Note that (44)
ontains �ve equations, be
ause the matri
es of both members are symmetri
, and thehomogeneity redu
es the number of equations with one. Hen
e, ea
h 
amera matrix, apartfrom the �rst one, gives �ve equations in the eight unknowns �u; �v; 
; u0; v0; r1; r2; r3: Aunique solution is obtained when three 
ameras are available. If the unknown s
ale fa
toris introdu
ed expli
itly, (44) rewrites:0 = fi(A; r; �i) = �2iAA> � ~Piproj 24 AA> Arr>A> r>r 35 ~Pi>proj: (45)Therefore, 3 
ameras yield 10 equations in 8 unknowns.5.2.4 TriggsTriggs [46℄ proposed a method based on the absolute quadri
 and, independently fromHeyden and �Astr�om, he derived an equation 
losely related to (44). The absolute quadri
15






 
onsists of planes tangent to the absolute 
oni
 [10℄, and in a Eu
lidean frame, isrepresented by the matrix 


eu
 = 24I 00 035 : (46)If ~T is a proje
tive transformation a
ting as in (23), then it 
an be veri�ed [46℄ that ittransforms 


eu
 into 


 = ~T


eu
 ~T>: Sin
e the proje
tion of the absolute quadri
 yieldsthe dual image of the absolute 
oni
 [46℄, one obtain~Piproj


 ~Pi>proj ' K (47)from whi
h, using (25), (44) follows immediately. Triggs, however, does not assume anyparti
ular form for ~T, hen
e the unknown are K and 


. Note that both these matrix aresymmetri
 and de�ned up to a s
ale fa
tor.Let k be the matrix 
omposed by the the six elements of the lower triangle of K, and !!!be the matrix 
omposed by the six elements of the lower triangle of ~Piproj


 ~Pi>proj, then(47) is tantamount to saying that the two ve
tors are equal up to a s
ale, hen
ek ^!!! = 0 (48)in whi
h the unknown s
ale fa
tor is eliminated. For ea
h 
amera this amounts to 15bilinear equations in 9 + 5 unknowns, sin
e both k and !!! are de�ned up to a s
ale fa
tor.Sin
e only �ve of them are linearly independent, at least three images are required for aunique solution.Triggs uses two methods for solving the non-linear least-squares problem: sequentialquadrati
 programming [40℄ on N � 3 
ameras, and a quasi-linear method with SVDfa
torization on N � 4 
ameras. He re
ommend to use data standardization [52℄ andto enfor
e det(


) = 3. The sought transformation ~T is 
omputed by taking the eigen-de
omposition of 


.
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5.2.5 BougnouxThis methods [47℄ is di�erent from the previous ones, be
ause it does not require 
onstantintrinsi
 parameters and be
ause it a
hieves only an approximate Eu
lidean re
onstru
tion,without obtaining meaningful 
amera parameters as a by-produ
t.Let us write (23) in the following form:~Pieu
l = 26664 qi>1qi>2 qiqi>3 37775 ' ~Piproj ~T (49)where qi>1 ;qi>2 ;qi>3 are the rows of ~Pieu
l: The usual assumptions 
 = 0 and �u = �v, areused to 
onstraint the Eu
lidean 
amera matri
es:
 = 0 () (qi1 ^ qi3)>(qi2 ^ qi3) = 0 (50)�u = �v () jjqi1 ^ qi3jj = jjqi2 ^ qi3jj: (51)Thus ea
h 
amera, ex
luding the �rst, gives two 
onstraints of degree four. Sin
e we havesix unknown, at least four 
ameras are required to 
ompute ~T. If the prin
ipal point(u0; v0) is for
ed to the image 
enter, the unknowns redu
e to four and only three 
amerasare needed.The non-linear minimization required to solve the resulting system is rather unstable andmust be started 
lose to the solution: an estimate of the fo
al length and r is needed.Assuming known prin
ipal point, no skew, and unit aspe
t ratio, the fo
al length �u 
anbe 
omputed from the Kruppa equations in 
losed form [47℄. Then, given the intrinsi
parametersA, an estimate of r 
an be 
omputed by solving a linear least-squares problem.From (44) the following is obtained:QiAA>Qi> +QiArqi> + (QiArqi>)> + jjrjj2qiqi> = �2AA>: (52)Sin
e [AA>℄3;3 = K3;3 = 1; then � is �xed. After some algebrai
 manipulation [47℄, oneends up with four linear equations in Ar. This method works also with varying intrinsi
parameters, although, in pra
ti
e, only the fo
al length is allowed to vary, sin
e prin
ipal17



point is for
ed to the image 
enter and no skew and unit aspe
t ratio are assumed. Theestimation of the 
amera parameters is ina

urate, nevertheless Bougnoux proves that there
onstru
tion is 
orre
t up to an anisotropi
 homotethy, whi
h he 
laims to be enoughfor the re
onstru
ted model to be usable.6 Dis
ussionThe appli
ability of auto
alibration te
hniques in the real world depends on two issues:sensitivity to noise and initialization. The 
hallenge is to devise a method that exhibitsgra
eful degradation as noise in
reases and needs only an approximate initialization. Sev-eral attempt have been made, as reported in this survey, but the problem is is far frombeing solved yet.As for the Kruppa equations, in [32℄ the authors 
ompare three solving methods: the ho-motopy 
ontinuation method, Levenberg-Marquardt and the Iterated Extended KalmanFilter. From the simulations reported, it appears that all the methods give 
omparable re-sults. However, the homotopy 
ontinuation method is suitable for the 
ase of few displa
e-ments, as it would be diÆ
ult to use all the 
onstraints provided by a long sequen
e, andits 
omputational 
ost would be too high. Iterative approa
hes (Levenberg-Marquardt andIterated Extended Kalman Filter) are well suited to the 
ase where more displa
ementsare available. The main limitation of all these methods is the sensitivity to the noise inthe lo
alization of points.Methods based on strati�
ation have appeared only re
ently, and only preliminary andpartial results are available. In many 
ases they show a gra
eful degradation as noisein
reases, but the issue of initialization is not always addressed.Hartley's algorithm leads to a minimization problem that requires a good initial guess;this is 
omputed using a quite 
ompli
ated method, involving the 
heirality 
onstraints.Pollefeys-VanGool's algorithm leads to an easier minimization, and this justify the 
laimthat 
onvergen
e toward a global minimum is relatively easily obtained. It is un
lear,however, how the initial guess has to be 
hosen. The method proposed by Heyden and�Astr�om was evaluated only on one example, and was initialized 
lose to the ground-truth. Experiments on syntheti
 data reported by Triggs, suggest that his non-linearalgorithm is stable and requires only approximate initialization (the author reports that18



initial 
alibration may be wrong up to 50%).Bougnoux's algorithm is quite di�erent form the others, sin
e its goal is not to obtain ana

urate Eu
lidean re
onstru
tion. Assessment of re
onstru
tion quality is only visual.7 Con
lusionsThis paper presented a review of re
ent te
hniques for Eu
lidean re
onstru
tion from asingle moving 
amera, with un
onstrained motion and unknown 
onstant parameters. Su
huni�ed, 
omparative dis
ussion, whi
h has not yet been presented in the literature, shedslight on the relations between di�erent methods. Indeed, even though formulations maybe di�erent, to all the methods reviewed, mu
h of the underlying mathemati
s is 
ommon.However, sin
e problems are inherently non-linear, proper formulation is very importantto avoid diÆ
ulties 
reated by the numeri
al 
omputation of the solutions.Despite this problem is far from being 
ompletely solved, the more general one in whi
hintrinsi
 parameters are varying is gaining the attention of resear
hers. In fa
t, Bougnoux'smethod already 
opes with varying parameters. Heyden and �Astr�om [53℄ proposed amethod that works with varying and unknown fo
al length and prin
ipal point. Later,they proved [54℄ that it is suÆ
ient to know any of the �ve intrinsi
 parameters to makeEu
lidean re
onstru
tion, even if all other parameters are unknown and varying. A similarmethod that 
an work with di�erent types of of 
onstraints has been re
ently presentedin [55℄.A
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Image and Vision Computing - A. Fusiello - Captions to illustrations
Figure 1: The pinhole 
amera model, with the 
amera referen
e frame (X,Y,Z) depi
ted.Z is also 
alled the opti
al axis.Figure 2: Epipolar geometry. The epipole of the �rst 
amera e is the proje
tion of theopti
al 
enter C0 of the se
ond 
amera (and vi
e versa).
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Image and Vision Computing - A. Fusiello - Figure 2
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