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Abstract

This paper presents a study of the use of synchronous event cameras to measure mechanical vibrations. The proposed methodology
is based on two-dimensional point tracking and triangulation and achieves a precision comparable to that obtained with an expensive
laser Doppler vibrometer.

1. Introduction

A considerable body of research has been conducted on the sub-
ject of vibration measurement with optical cameras (Baqersad
et al., 2017). This research has encompassed a variety of pho-
togrammetry approaches, with a primary focus on 2D-Point-
Tracking (2DPT) (Wahbeh et al., 2003, Ryall and Fraser, 2002).
In addition, studies have been conducted on 3D-Point-Tracking
(3DPT) (Park et al., 2015), 3D-Digital-Image-Correlation (3D-
DIC) (Helfrick et al., 2011, Pappa et al., 2003), and target-
less approaches (Bartilson et al., 2015). The initial studies
used single camera arrangements, with the camera oriented at
a grazing angle relative to the surface of the flexural vibra-
tion field. Subsequently, vibration measurements with stereo-
camera setups employing triangulation techniques (stereo-DIC)
were also utilized (Beberniss and Ehrhardt, 2017, Helfrick et
al., 2011, Reu et al., 2017). In more recent times, investigations
have been conducted into the use of stereo acquisitions based on
setups with moving single cameras or multiple mirrors focusing
multi-images on single cameras. These have been explored in
conjunction with the use of various techniques, as evidenced by
(Gorjup et al., 2019, Barone et al., 2019).

In general, structural vibration measurements cover a rather
wide frequency range, which may extend up to a few kHz. To
ensure the accuracy of the proposed approach, it is necessary to
employ cameras with a high frame rate.

Using event cameras (Conradt et al., 2009, iniVation, 2020)
provides a low-cost, full-frame solution for vibration measure-
ment, unlike expensive laser devices (Castellini and Tomasini,
2004, Ismail et al., 2019) that track single point, or even more
expensive high-speed conventional cameras.

Event cameras, also known as neuromorphic or dynamic vision
sensors, operate differently from traditional frame-based cam-
eras. They asynchronously detect changes in the scene with
high temporal resolution, instead of capturing images at fixed
time intervals. An event is generated when there is a significant
change in brightness at a pixel. It typically convey informa-
tion about the pixel location, the sign of the brightness change
(increase or decrease), and the precise timing of the event oc-
currence, with latency in the order of microseconds.

Event cameras are robust in varying lighting conditions and find
applications where high temporal resolution and low latency
are crucial, such as robotics, high-speed motion analysis, and
autonomous vehicles.

Although event cameras theoretically encode the visual sig-

nal within their event streams, it is impossible to apply exist-
ing computer vision techniques to these data directly. Con-
sequently, a variety of algorithms have been developed to effect-
ively utilise event data, either by processing the event stream
directly (Conradt et al., 2009, Cook et al., 2011, Benosman et
al., 2014, Kim et al., 2016, Gallego et al., 2018) or by gen-
erating intermediate intensity representations from event data
(Lagorce et al., 2017, Sironi et al., 2018, Zhu et al., 2018, Zhou
et al., 2018). The former category of approaches presents inher-
ent challenges and is not as extensively researched as its coun-
terpart for intensity images. However, reconstructing an intens-
ity image from event data presents practical challenges because
of its inherently ill-posed nature.

In (Rebecq et al., 2019), the authors introduce a novel recurrent
network architecture specifically designed to reconstruct videos
from event streams. They utilise a perceptual loss function to
encourage reconstructions to conform to the statistical proper-
ties observed in natural images. The authors demonstrate the ef-
ficacy of their approach by showcasing the network’s ability to
synthesise high-framerate videos, surpassing 5,000 frames per
second, capturing high-speed phenomena with remarkable ac-
curacy. Furthermore, they demonstrate that conventional com-
puter vision algorithms can be seamlessly applied to the recon-
struction (Muglikar et al., 2021), consistently outperforming al-
gorithms specifically tailored for event data.

In this paper, we will show how event cameras applied to the
measurement of mechanical vibrations can achieve results com-
parable to those obtained with an expensive laser Doppler vi-
brometer. The study builds on (Del Sal et al., 2021), which
is focused on measuring the flexural vibrations of a cantilever
beam by triangulation of optical measurements taken with con-
ventional cameras.

2. Method

2.1 From events to intensity images

Intensity images are generated from the event stream using
the E2VID (Rebecq et al., 2019) pre-trained neural network.
E2VID is a recurrent, fully convolutional model inspired by
UNet (Ronneberger et al., 2015). It has a head layer, several
encoder and decoder layers, and a final prediction layer, which
performs a depth convolution followed by a sigmoid to gener-
ate an image prediction. Skip links connect the encoder and
decoder layers. The architecture includes downsampling and
ConvLSTM (Shi et al., 2015) in the encoders and bilinear up-



sampling in the decoders, with ReLU activation and batch nor-
malisation throughout, except in the final layer.

E2VID can operate in two distinct modes: constant or variable
frame rate. In the constant frame rate mode, a video is gener-
ated with specific time stamps for each frame (this feature is
available in the E2CALIB (Muglikar et al., 2021) distribution),
ensuring synchronization among the cameras. In contrast, in
the variable frame rate mode, frames are produced based on
the occurrence of a sufficient number of events. This mode
ensures that intensity images maintain their quality regardless
of the amount of motion present. Consequently, this mode is
particularly useful for independently calibrating interior para-
meters. In contrast, the first mode is suitable for multicamera
triangulation scenarios. The selection of the frame rate is cru-
cial in relation to the events generated. A frame rate that is too
low would result in a significant number of events being sent
to E2VID, which could be compensated for by adjusting the
”upsampling” parameter. Conversely, a frame rate that is too
high would result in a deficiency of events being fed to E2VID,
which would result in a loss of detail and a dim image. This
sets a practical limit to the highest achievable frame rate, which
also depends on the magnitude of the image motion.

2.2 Camera calibration

Cameras are characterized by two sets of parameters, usually
called interior and exterior. The former includes the focal length
and other parameters that does not change when the camera
moves. The latter describes the position and angular attitude
of the camera, collectively termed exterior orientation. The in-
terior parameters, including radial distortion, of each camera
have to be calibrated separately in advance. The exterior ori-
entation of the cameras are recovered during the experiment,
as part of the Bundle Adjustment (BA), which optimizes a cost
function with respect to the exterior orientation of the cameras
and the coordinates of 3D points.

2.3 Tracking

The surface of the vibrating object – let us assume it is a beam,
in the following – has been marked with white circles (or ”dots”
as they will henceforth be referred to) arranged on a grid with
dimensions N × M , with the centers of the dots representing
the grid points. As the beam is not a perfectly planar surface,
and the positioning of the dots has been carried out manually,
the nominal coordinates inferred from assuming a planar sur-
face and a regular grid does not correspond to the true ones. It
is therefore understood that the coordinates of the grid points
are only approximately known from their nominal value, even
when the beam is at rest.

The first objective of the proposed methodology is to detect and
track the 2D pixel coordinates (ui

j(t), vij(t)) of the centers of
the NM dots in the sequence of images recorded by the K
cameras, where j = 1 . . . NM indexes the dot and i = 1 . . .K
runs over the cameras. To this end, the following steps were
implemented for the recordings of each camera.

In general, the perspective image of a circle is an ellipse. There-
fore, to simplify the dot detection task, a rectification is per-
formed, which removes the perspective effects on the images
acquired by the cameras. To determine the homography Hi that
rectifies each of the K images, the user must manually identify
four points of known coordinates in the first frame of the video
sequence. In this study, the center positions of the dots at the
four corners of the grid were used.

In the rectified image, the centers of the dots were identified by

template matching, which involved taking the maxima of the
normalized cross correlation of the image with a small patch
that represents a template of the bright dot on a dark back-
ground. The output of this stage were the 2D pixel coordinates
of the dot centers in the image planes of the cameras (please
refer to Fig. 1), denoted by ui

j(t) and vij(t).

Figure 1. The rectified image in which circles are detected. The
green dots depicts the nominal positions (set A), while blue
crosses represent spurious circles that have been detected by

template matching but not matched (set B). The red circles are
the remaining ones after the assignment problem (set ϕ(A)).

We should be aware that some outliers might be caused by clut-
ter in the images which can manifest as bright spots. To address
this issue, an assignment problem was solved, which is form-
ally defined as follows. Given two sets A and B of equal size
and a function C(a, b) that measures the cost of matching a with
b, the goal is to find the bijection ϕ that minimises:∑

a∈A

C(a, ϕ(a)). (1)

The cost is the Euclidean distance. Set A contains the nominal
positions of the dots, whereas set B contains the coordinates of
the dots detected in the images. This is the unbalanced version
of the assignment problem, as the set B can be larger than set A.
The Kuhn–Munkres algorithm (Kuhn, 1955), was used to solve
this problem. Only those points in the set ϕ(A) were retained,
while the remainder were discarded.

In order to enhance precision, a subpixel refinement of the cen-
ter of the dots was conducted by fitting a parabola to the point
of maximum correlation and to its two neighboring points along
the horizontal and vertical axes, and taking its vertex as the new
position, thereby obtaining a fractional part.

Finally, since the coordinates of the detected points are defined
in a transformed image space, the inverse of Hi was applied to
bring them back to the original image space.

In order to update the homography Hi, image space positions
are used in conjunction with the nominal grid-point coordinates.
This process, starting with rectification, is then repeated for the
subsequent frame.

In summary, dots tracking follows the following steps:

1. Compute the perspective rectification homography for the
beam (user input needed only in first frame)

2. Apply the homography to the current frame
3. Extract tentative grid-points coordinates by template

matching
4. Match coordinates of tentative grid-points with nominal

ones by solving an assignment problem (Kuhn, 1955)
5. Sub-pixel refinement of coordinates
6. Map back to original image-space coordinates
7. Update the homography
8. Go to step 2.
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Figure 2. Experimental setup based on triangulation (c). The position od the shaker is shown in (a) and (b)

Figure 3. (a) An intensity image of the cantilever beam (taken with a traditional camera), (b) a frame generated from the DVXplorer
by accumulation of events and (c) the same frame reconstructed by E2VID. Images are rotated by 90 degrees

It is understood that if the homography does not change (e.g.
in the case of a vibrating plate where the frame is fixed), step 2
can be skipped.

The output of this stage are thus the 2D coordinates in pixels
of the centers of the MN dots in the image plane of each cam-
era i at each time instant t, which have been collected in the
following vector mi

j(t) = [uj(t), vj(t)].

2.4 Triangulation

Having identified the 2D pixel coordinates of the center pos-
itions of the dots in the sequence of images for each camera,
the next step was to recover by triangulation the 3D coordin-
ates Mj(t) = [Xj(t), Yj(t), Zj(t)] of the center of the dots.
For a given time instant t, the relationship between the 3D co-
ordinates of the dots centers Mj(t) and the 2D coordinates of
the dots centers in the i-th image plane mi

j(t) is given by the
perspective projection equation:

mi
j(t) = f(Mj(t),gi), (2)

where gi is a vector containing the exterior parameters of i-th
camera. Bundle Adjustment (BA) simultaneously recovers the
exterior orientation of the K cameras and the coordinates of the
centers of the dots (at a given time) by solving a non-linear least
squares problem, which consists in the minimisation of the cost
function ∑

i,j

||mi
j(t)− f(Mj(t),gi)||22 (3)

with respect to Mj(t) and gi. The BA can be also used to
compute only one set of unknowns when the other is given, and
when this is the case, it will be referred to as a partial BA. The
minimisation of Eq. (3) can be done via iterative techniques,
such as the Levenberg-Marquardt algorithm, which should be
initialised close to the optimum.

It is assumed that a frame is identified as the reference frame.
Ideally, this should be the one in which the beam is in the rest
position (Z = 0). To initialize the external orientation of the
cameras, K separate resections with the Direct Linear Trans-
form (DLT) algorithm are carried out using the image coordin-
ates mi

j(t0) of the dots detected in the reference frame and



the nominal rest coordinates of the dots M̂j(t0). The DLT al-
gorithm linearly solves Eq. (2) for gi (i = 1 . . . 6). The ex-
terior orientations found by DLT were then refined by a partial
BA with fixed points M̂j(t0). This means that all the NM
grid points are treated as known ”ground control points”. Since
these ground control points have all Z = 0 this sets the zero for
the vertical oscillation.

The actual computation of the 3D center coordinates Mj(t) of
the dots at each time instant t was carried out in the final BA
that comprises all frames of all cameras, where exterior orienta-
tions were also considered among unknowns. The initialization
consists in the nominal coordinates of the dots centers and the
exterior orientation computed in the previous step.

The unknowns are the six exterior parameters of each of the K
cameras (the interior parameters are fixed) and the 3D coordin-
ates of each grid point (NM ) in each frame. In this phase the
grid points have unknown coordinates, and the nominal values
are used only for initialization.

In summary, these are the steps of the triangulation stage:

1. For each camera separately, compute exterior orientation
with DLT using nominal grid points coordinates and meas-
ured grid points coordinates in the reference frame;

2. partial BA (exterior orientation only) with all cameras and
t = 0 (the reference frame), fixed nominal grid points co-
ordinates in object space;

3. full BA with all cameras and all frames (t > 0). Coordin-
ates of 3D points and orientation parameters are estimated
simultaneously.

Appendix A reports the code for the triangulation, that uses
functions implemented in (Fusiello, 2022, Fusiello, 2024).

3. Experiments

In this section, we report on experiments conducted with two
synchronous Inivation DVXplorer event cameras on a steel can-
tilever beam. The two cameras are arranged on a circular sec-
tor centered on the beam, with a radius of approximately 50
cm, and are positioned at slightly different heights (see Fig 2).
As depicted in Fig. 3a, the beam is equipped with a grid of 10
× 3 silver circular markers, of which only a 9 × 3 subset will
be used, since the row closest to the clamped end was not de-
tectable due to its negligible motion. In fact, the reconstructed
image (Fig. 3c) gets dimmer as it approaches the clamped end.

The beam is excited in bending by a shaker connected to the
beam via a stinger at 45 mm from the clamped end, activating
the first resonance frequency of the structure, which is around
35 Hz. The cantilever beam was recorded under bending excit-
ation to obtain the deflection shape of the first flexural mode.
Following the event recordings, the E2VID neural network was
used for frame reconstruction.

Figure 3 shows a picture of the cantilever beam with the circular
markers and an example of acquisition by the DVXplorer event
camera.

3.1 Assessing camera synchronization

The cameras are synchronized in hardware. The clock syn-
chronization feature ensures precise timing among multiple
cameras connected in a daisy-chain. The first camera is des-
ignated as the master, with subsequent cameras automatic-
ally synchronized. Resetting the master camera’s timestamp
synchronizes all connected devices within a microsecond-
precision.
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Figure 4. (a) Example of ”square wave chirp” used in the
assessment experiments. (b) Signal obtained from an event
sequence with bin width T =0.1 ms. (c) Zoom on the first

impulse of (b). (d) Signal obtained by filtering (b) with a filter
designed to remove the exponential tails

To assess this property, an experiment was conducted in which
both cameras frame the same portion of a diffusive surface il-
luminated with a modulated light source. The modulation sig-
nal is a chirp similar to the one shown in Fig. 4a, which al-
lowed us to align the event histograms of the cameras via cor-
relation. While the timestamps are in microseconds, we were
unable to test this precision with the histogram technique, as
the bins should be large enough to collect a significant number
of events. A suitable compromise was set at a bin width of 100
µs, which would allow temporal alignment verification with a
resolution of 1/10 ms. An issue that reduces the time resolu-
tion even further can be seen in Fig. 4b which represents the
histogram of the events, normalized in order to have the num-
ber of events per microseconds, that it is obtained by using the
chirp, Fig. 4c shows a zoom on the first impulse. One would ex-
pect a very short peak of positive events (a pixel with increased
luminosity) at the time the light is turned on and then nothing;
instead, we observed an ”exponential tail” whose origin is prob-
ably due to the cameras timing precision loss in the presence of
simultaneous events and detection threshold (iniVation, 2020,
Purohit and Manohar, 2022). This tail artificially enlarges the
signal support and makes its correlation less sharp. In order to
improve the resolution, we filtered the signal with the discrete
time filter

y(n) = x(n)− αx(n− 1) (4)

where is determined by using an AR model (α = 0.992 with
bin width T = 0.1 ms in the case of Fig. 4). This kind of filter
removes exponential tails that decay as αn, n > 0. Fig. 4d
shows the result of applying filter (4) to the signal of Fig. 4b.

The maximum correlation occurs at 0.29 ms (with parabolic in-
terpolation), which corresponds to the time shift that best aligns
the events of the two cameras. We were therefore able to verify
that the synchronization of the two cameras is correct up to
tenths of milliseconds.

3.2 Calibration

Cameras have been calibrated as described in Sec. 2.2. In par-
ticular, a checkerboard pattern has been moved in front of each
camera, and twelve intensity images have been extracted from
the video reconstructed by E2VID, paying attention to the di-



Figure 5. Traces of the markers overlaid on the actual image (cropped for better readability). The clamped end is on the right side in
both images
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Figure 6. Horizontal and vertical displacements of markers in the images (average has been subtracted to each signal for better
readability)

versity of the checkerboard orientations. These images have
been fed to the Sturm-Maybank-Zhang algorithm implemented
in (Fusiello, 2022).

αu αv u0 v0 γ κ0

camera 1 954 959 385 229 0 -0.3629
camera 2 1059 1055 367 230 0 -0.4130

Table 1. Interior parameters obtained by calibration.

baseline [mm] α [deg] D1 [mm] D2 [mm]

743 96 435 541

Table 2. Some exterior figures: D is the distance from the
camera to the Z = 0 plane, α is the vergence angle

The image size is 640 × 480. Interior parameters of the Brown
model are reported in Tab. 1: the principal distance measured
in pixels (horizontal αu and vertical αv dimensions), coordin-
ates of the principal point (u0, v0), first coefficient of the radial
distortion polynomial (κ0). Table 2 shows some data computed
from the exterior parameters. From these figures the ground
sampling distance (GSD) of the two cameras with respect to
the Z = 0 plane (that contains the cantilever beam) can be
computed, obtaining 0.46 mm and 0.51 mm respectively.

3.3 Measuring vibrations

This study considers the flexural response of a cantilever beam
model structure subject to a small transverse force excitation.
The beam is thus characterised by small deflections such that
its response can be assumed to be linear.

More specifically, the flexural response shows synchronous vi-
brations such that the transverse oscillations of all points of the
beam are in phase (or in phase opposition) but have different
amplitudes. In general, the flexural response is given by the su-
perposition of second order modal responses, which are charac-
terised by distinct mode shapes and specific resonant responses.
In this study the response to a tonal excitation at the first reson-
ance frequency is considered such that the flexural vibration is
controlled by the first mode shape.

The tracking produced 2D trajectories for each of the 27 dots.
Fig. 5 shows the traces of markers overlayed on one image. It
can be appreciated that the motion is very small, of the order
of a few pixels, mainly in the vertical direction. This is con-
firmed by Fig. 6, where the u and v coordinates of the tracked
points are plotted. The maximum displacement in the v direc-
tion is about 5 pixels, while in the u direction it is less than one
pixel, and although it drowns in noise, a periodic trend is still
observable.

The first external orientation obtained by DLT gives a RMS re-
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projection error of 1.03 pixels. After refining the exterior para-
meters with a partial BA the error decreases to 0.66 pixels. The
final BA that also computes the position of the 3D points yields
an RMS reprojection error of 0.133 pixels.

(a) LDV

(b) our method

Figure 8. Transverse displacement (im mm) measured with with
the LDV (a) and our method (b).

The bundle adjustment produces 3D points trajectories for the
tracked points. The X , Y , and Z displacements of the 3D points

are plotted in Fig. 7. As expected, they follow sinusoids with
the same frequency and phase but different amplitudes. The
Z components provide the transverse displacements, that is the
flexural vibration of the beam. The X and Y components give
the in-plane displacements, which, as one would expect, are
much smaller, but yet with a periodic time-history.

3.4 Comparison with a laser vibrometer

Furthermore, the experimental rig is equipped with a Poly-
tec PSV-500-A laser doppler vibrometer (LDV), which is em-
ployed to obtain reference measurements of the cantilever
beam’s transverse vibration field (the declared precision of the
instrument is on the order of micrometers). The operational
principle involves directing a laser beam onto the surface un-
der investigation. As the surface vibrates, the frequency of the
reflected laser beam undergoes a Doppler shift. This shift is
analysed to determine both the amplitude and frequency of the
vibrations along the axis of the laser beam. Amplitudes are
shown in Fig. 8a.

In our method, the transverse displacements of the 27 grid
points are quantified as the mean of the extreme Z values ob-
served at each period (in the experiments under consideration
we used two periods) (Fig. 8b). The residual RMS error with
respect to the LDV measures was 0.27 mm, which drops to 0.23
mm if the first row of points, the ones closer to the clamped end,
is not considered. In that area, in fact, the transverse displace-
ment is very low, below 0.5 mm, so fewer events are generated,
making the reconstructed intensity image dimmer and causing
a less accurate tracking.
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Figure 9. Comparison of the average transverse displacement
measured with our method and with a laser vibrometer (LDV).

The black line represent the theoretical deflection shape fitted to
the LDV measures

Figure 9 shows the average over the rows of the transverse dis-
placements measured with our method and the LDV. It also
depicts the theoretical deflection shape – fitted onto the LDV
measures – that depends on the boundary conditions and the
physical properties of the beam, such as its material properties,
geometry, and support conditions.

4. Conclusions

This study demonstrated that event cameras can be used to
measure mechanical vibrations with comparable precision to
those obtained with an expensive laser Doppler vibrometer.
With a GSD of approximately 0.5 mm, achieving a RMS er-
ror of 0.27 mm with respect to the LDV, can be considered a
remarkable result.

Although the frequency employed in our experiments is still re-
latively low (36 Hz), the only remaining obstacle to achieving a
frequency of up to 500 Hz is the reconstruction of the intensity
image, which becomes increasingly dim as the number of accu-
mulated events that generate a frame decreases. In addition, the



vibration amplitude, in response to a given excitation, decreases
as the mode frequency increases, making motion tracking more
challenging. Our future research will be dedicated to address-
ing this issue.
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Appendix A: Matlab code for the triangulation function

function M out = recons t ruc t mgr id ( m grid , . . .
frames , M grid ,KK, kappa )

% Reconstruct the 3D g r i d po in t s using BA
% m grid : 2D coord ina tes o f the g r i d po in t s
% i n d i f f e r e n t frames
% m grid{camera}{ frame } ( dim , k ) ;
% frames : i nd i ces o f the frames to be considered
% M grid : nominal 3D coord ina tes o f g r i d po in t s
% KK : c e l l a r ray o f i n t r i n s i s parameters
% kappa : c e l l a r ray o f d i s t o r i o n c o e f f i c i e n t s
% M out : 3D coord ina tes o f the g r i d po in t s
% i n a l l frames
%
% Author : Andrea F u s i e l l o (2024)
% Depends on f u n c t i o n s from the CV T o o l k i t
% ( g i thub . com/ f u s i e l l o / Compute r V is ion Too lk i t )

n cams = length ( m gr id ) ;
n po in t s = size ( M grid , 2 ) ;
res t f rame = 1;

%% Camera o r i e n t a t i o n by resec t i on
f p r i n t f ( ’ O r i en t i ng %d cameras\n ’ , n cams ) ;

% i n i t i a l i z e by resec t i on w i th r e s t frame
m = c e l l ( n cams ) ;
P = c e l l ( n cams ) ;
for i =1:n cams

% po in t s i n the r e s t frame
m{ i } = m grid{ i }{ frames ( res t f rame ) } ;
[R, t ] = e x t e r i o r l i n (m{ i } , M grid ,KK{ i } ) ;
P{ i } = KK{ i } * [R, t ] ;

end

% r e f i n e wi th BA
[P ,M] = bundleadj (P, M grid ,m, . . .

’ Verbose ’ , ’ F i x e d I n t r i n s i c ’ , . . .
’ F ixedPoin ts ’ , n po in t s ) ;

%% Bundle adjustment w i th a l l the frames
f p r i n t f ( ’ Processing a l l frames at once\n ’ ) ;
m a l l = c e l l ( n cams ) ;
for i =1:n cams

m a l l { i } = cat (2 , m gr id{ i }{ frames } ) ;
end

M al l = repmat (M,1 , length ( frames ) ) ;
[P , M a l l ] = bundleadj (P, M al l , m al l , . . .

’ Verbose ’ , ’ F i x e d I n t r i n s i c ’ , . . .
’ D i s t o r t i o n C o e f f i c i e n t s ’ , kappa ) ;

M out = reshape ( M al l , 3 , [ ] , length ( frames ) ) ;
end
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