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Abstract

In recent years, power line inspections have benefited from the use of the lidar surveying technology, which enables
safe and rapid data acquisition, even in challenging environments. To further optimize monitoring operations and reduce
time and costs, automatic processing of the point clouds obtained is of greatest importance. This work presents a com-
plete pipeline for processing power line data that includes (i) lidar point cloud segmentation using a Fully Convolutional
Network, (ii) individual pylon identification via DBSCAN clustering, and (iii) the automatic extraction and modelling of
any number of cables using a multi-model fitting algorithm based on the J-Linkage method. The proposed procedure is
tested on a 36 km-long power line, resulting in a F1-score of 97.6% for pylons and 98.5% for the vectorized cables.
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Figure 1. Reconstructed pylons and cables in a portion of the 36 km-long power line shown in Fig. 8.

1. Introduction

Monitoring the health of the power system infrastructure is cru-
cial to ensuring a reliable supply of electricity. In the past, mon-
itoring operations relied on field surveys and visual inspections
by technicians, which were laborious, expensive, and time-
consuming. However, in recent years, technological advance-
ments have made line verification and analysis more efficient
and cost-effective (Chaput, 2008). Today, regular power line
inspections and diagnostics are heavily based on remote sens-
ing techniques, including airborne lidar and photogrammetry,
which enable safe and rapid data acquisition even in mountain-
ous areas and harsh environments (Siranec et al., 2021).

Due to the challenges involved in the photogrammetric 3D re-
construction of cables, optical images are primarily used only
for poles and towers detection and for the extraction and inspec-
tion of insulators (Zhang et al., 2022). Moreover, thermal im-
ages can identify temperature anomalies, indicating electrical
faults on the lines and devices (Matikainen et al., 2016). On
the other hand, lidar surveys directly provide detailed 3D point
clouds of the actual scenario, serving as a fundamental start-
ing point for updating inventories and obtaining a digital twin
of power line corridors. The applications are numerous and
range from simulation to maintenance planning and risk man-
agement. In particular, it is worth mentioning that lidar point
clouds can be effectively used to detect encroaching objects on
phase conductors, including vegetation growing in close prox-
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imity to power lines (Chaput, 2008, Siranec et al., 2021). This
enables the timely identification and reduction of potential haz-
ards caused by trees.

To fully exploit point clouds for monitoring power lines in an
automated manner, it is necessary to perform appropriate data
processing, with point cloud segmentation and modeling being
the main phases. In the literature, attention is mainly focused
on the point cloud segmentation task, with recent works pro-
posing machine learning approaches (Toschi et al., 2019, Zhu
et al., 2024) to identify points belonging to cables and pylons.
A further required step is the grouping of individual objects,
with subsequent mathematical modelling and vectorization of
the cable geometry. Despite numerous algorithms being pro-
posed in the literature over the past two decades, starting from
(Melzer and Briese, 2004), this continues to be a prominent area
of research, as evidenced in the upcoming section.

This work proposes a strategy for processing power line data
that includes (i) lidar point cloud segmentation using a Fully
Convolutional Network (FCN), (ii) individual pylon (a.k.a.
transmission towers) identification via DBSCAN clustering and
(iii) the generation of vector drawings of cables from classified
airborne lidar data using a multi-model fitting algorithm based
on the J-Linkage method (Toldo and Fusiello, 2008). The out-
come is the automatic extraction and modelling of any number
of power lines.

The paper is structured as follows. Section 2 provides an over-
view of the state of the art, while Sect. 3 presents the proposed



POINT 
CLOUD

1. Segmentation
via U-net

CLASS
CABLE

CLASS
PYLON

CLASSES 
GROUND,

VEGETATION,
BUILDING

2. Individual pylon
identification via

DBSCAN clustering

PYLON
 CENTROIDS

3. Catenary fitting
via J-Linkage

VECTOR
DRAWINGS OF

CABLES

POINT 
CLOUD

1. Segmentation
via U-net

CLASS
CABLE

CLASS
PYLON

SEGMENTED
POINT CLOUD

2. Individual pylon
identification via

DBSCAN clustering

PYLON
 CENTROID

3. Catenary fitting
via J-Linkage

VECTOR
DRAWINGS OF

CABLES

Figure 2. Flowchart of the proposed method.

method. Experiments and results are described in Sect. 4 and
Sect. 5 draws the conclusions.

2. State of the Art

The current state of the art in data processing emphasises the
critical need for automated methods in the field of power line
corridor extraction and modelling, to allow both time and cost
reduction, as highlighted by (Matikainen et al., 2016).

In this context, point cloud segmentation techniques has attrac-
ted considerable interest from researchers, with the aim of ef-
fectively partitioning point cloud data into meaningful classes
that correspond to power line components (e.g., pylons and con-
ductors) and surrounding objects (e.g., ground, vegetation, and
buildings).

Prior to the emergence of deep learning, various machine
learning-based techniques were applied, using hand-crafted
features as input. For instance, Random Forest with Point-
based features and Object-based features is employed by (Kim
and Sohn, 2012), achieving an overall classification accuracy
of 93.9% over four classes, whereas (Toschi et al., 2019) use
Random Forest to partition image-based 3D point clouds into
six classes for subsequent anomaly detection. Recently, the
spread of Convolutional Neural Networks (CNN) has opened
up new possibilities in the field of data segmentation, includ-
ing the power line detection task on 3D point clouds. The work
by (Chen et al., 2022) transforms the point cloud into voxels
characterized by a deformed geometric shape along the flight
trajectory, that are taken as input by a diffusion coupled CNN
for real-time cable detection, resulting in an average F1-score
of 97.1%. An improved version of the popular PointNet++
architecture is developed in (Wang et al., 2023), which integ-
rates a coordinate attention module that captures location-aware
features. The methods achieves an overall accuracy of 93.7%
across four classes (i.e., ground, towers, transmission lines, and
ground wires). It is also worth mentioning the work by (Zhu et
al., 2024), that leverages on RandLA-Net as backbone network
and proposes two final branches: one performs point cloud seg-
mentation into conductors, tower, and others, while the second
branch extracts distinctive embedding feature for distinguishing

Figure 3. Example of the results obtained from the segmentation
algorithm. Classes: ground (orange), vegetation (green),

building (red), cable (pink), pylon (cyan).

the points belonging to different cables. These features are fi-
nally used to clusterize the points via the Mean-Shift algorithm.
Individual cables are extracted with a precision of 98.6% and a
recall of 97.5%.

In addition to the advances in point cloud segmentation meth-
ods, efforts have been devoted to developing extraction tech-
niques that are specifically tailored to identify and isolate indi-
vidual pylons and power line conductors, allowing for the re-
trieval of the geometric shape of the hanging cables. One of
the first solutions proposed can be found in (Melzer and Briese,
2004), which applies iterative 2D Hough Transform to a pre-
filtered point cloud to locate on the horizontal plane groups of
parallel power lines. A Neural Gas Network is subsequently
used to obtain segmentation hypotheses of points that belong to
the same cable. More recently, the workflow proposed in (Chen
et al., 2018) uses a two-step adaptive terrain filter to identify
ground points, followed by a feature map method that enables
pylon detection and point cloud partitioning into spans. Cable
points are then extracted based on their geometric distribution
within local slices and grouped using Euclidean clustering. Fi-
nally, 3D catenary curve fitting is performed. The authors report
a precision and recall in cable points identification of 96.5% and
94.8%, respectively, along with a root mean square fitting er-
ror of 0.078 m. The approach presented in (Awrangjeb, 2019),
instead, converts the non-ground points into a series of binary
masks generated at different height. The analysis of the corridor
line segments extracted at the different height levels allows the
identification of pylons. Individual cables in a span are then
counted and, starting from a seed region for each cable, the
model is extended between two consecutive pylons to extract
the entire conductor. The method reaches high performance
(pylons are identified with a precision of 100% and a recall of
98.1%, while cables with a precision of 99.6% and a recall of
95%) but requires as input a digital terrain model of the area and
the setting of several parameters. In (Gaha et al., 2021), after
removing ground surface points using the progressive morpho-
logical filter, points are clustered according to a Euclidean dis-
tance rule and a density function, and pylons are detected as 3D
cylinders using RANSAC. Each span is then processed, remov-
ing dark coloured points that usually belong to non-interesting
objects. On the remaining points, RANSAC is applied to detect
individual lines. The algorithm provides a precision of 94.5%
and a recall of 89.7% for pylon detection, while cables are iden-
tified with a precision of 84% and a recall of 98.9%.

The works cited demonstrate considerable algorithmic advance-
ments in recent years. However, it is worth emphasising that



Figure 4. Individual pylons located via DBSCAN (each identified cluster is assigned a different colour). In black the points mistakenly
classified as pylon during the point cloud segmentation step, that are correctly recognized as outliers after the clustering algorithm.

there is still a significant gap in the literature with regard to
comprehensive tests on large datasets and the lack of bench-
mark datasets that can facilitate comparisons between methods.

3. Proposed Method

As previously mentioned, the proposed method consists of three
consecutive steps that combine the accuracy of deep learning
for point cloud segmentation, the efficiency of DBSCAN clus-
tering to locate individual pylons, and the robustness of the J-
Linkage algorithm as a multi-model fitting technique for the
vectorization of individual cables.

The procedure is summarized in Fig. 2 and a detailed descrip-
tion of each stage is provided in the following.

3.1 Point Cloud Segmentation

The purpose of segmenting the point cloud is twofold: first, to
associate each point with its respective class, enabling, for in-
stance, the verification of clearance distance between the power
line and vegetation; second, to simplify the modeling and vec-
torization stages, which are only carried out on points belonging
to the relevant classes (i.e., pylons and cables).

As for the segmentation task, the proposed procedure is inspired
by the approach presented in (Maset et al., 2020), which lever-
ages on a 2D-FCN. To exploit the efficiency of the U-net ar-
chitecture (Ronneberger et al., 2015), originally conceived to
segment RGB images, but at the same time not to lose the 3D
spatial information and the attributes associated with lidar data,
the point cloud is orthographically projected to create a four-
channel image, which is fed into the U-net. The information
stored at each pixel is: (i) altitude of the point falling in the
pixel, (ii) intensity, (iii) return number, and (iv) number of re-
turns. The network architecture allows a per-pixel labeling: the
estimated label is then transferred to the 3D point that projects
in the pixel.

As demonstrated in (Zorzi et al., 2019, Maset et al., 2020), this
approach is particularly suitable for airborne lidar point clouds,
that can be efficiently represented as 2.5D data on a regular
grid, whose pixel size must be chosen according the point cloud
density. Furthermore, to handle potential uneven planimetric
point distribution and reduce collisions (i.e., multiple points

projected onto the same pixel), two distinct orthographic im-
ages are generated, that are then independently used as input
by the U-net. The first image stores the point with the highest
altitude to aid in the correct identification of cable points. In
the second image, the point with the lowest altitude is assigned
to the pixel, increasing the accuracy of the classification for the
ground class. If more than two points fall within the same pixel,
those with intermediate heights are assigned the highest point
label. This two-image strategy ensures high accuracy without
the need for choosing a very small pixel size, which would in-
crease computing time.

The implemented U-net architecture follows the model applied
in (Maset et al., 2020), with a contracting path consisting of typ-
ical convolutional layers, each composed of two 3 × 3 convo-
lutions, followed by batch normalization and ReLU activation
function. The extraction of high-level features including con-
text information is achieved by applying a 2 × 2 max-pooling
operation at each layer. This reduces the size of the repres-
entation from an input of 256 × 256 pixels to 8 × 8 pixels in
the final layer of the contracting path. The expansive path con-
sists instead of layers that perform upsampling to restore the
original image resolution, thus enabling precise localization. In
more detail, each layer upsamples the feature maps from the
previous one, concatenates them with the corresponding fea-
ture maps from the contracting path, and applies three 3 × 3
convolutions. Each convolution is followed by batch normaliz-
ation and a ReLU activation function. The final feature vector
is mapped to the desired classes using a 1 x 1 convolution at the
output layer.

It should be noted that the initial layer of a FCN can only accept
images of a fixed size (e.g., 256 × 256 pixels in our implement-
ation). To handle datasets of varying dimensions, a tiling ap-
proach with overlapping windows is used during the inference
phase. An example of the point cloud segmentation results is
shown in Fig. 3.

3.2 Pylon Identification

Following the segmentation step, each point is associated with
its class of belonging; however, this does not yet allow the iden-
tification and location of individual pylons. To this end, DB-
SCAN (Density-Based Spatial Clustering of Applications with
Noise) algorithm (Ester et al., 1996) is applied to the points
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Figure 5. Lines extracted from J-Linkage in the horizontal plane.

of class pylon (Fig. 4). This density-based clustering method
connects regions of points having “sufficiently high” densit-
ies, while marking as outliers those points that lie alone in
low-density regions (i.e., whose nearest neighbours are too far
away). One advantage of this method is that it does not re-
quire prior knowledge of the number of clusters and can identify
clusters of arbitrary shape. DBSCAN needs just two paramet-
ers: ϵ, that defines the radius of the neighbourhood around a
point, and minPts, that represents the minimum number of
points required to form a dense region. The parameter values
can be easily adjusted based on the size of the pylon and, most
importantly, the density of the point cloud.

In the procedure proposed in this work, the planimetric posi-
tion of the pylon is eventually recovered as the projection of
the centroid of the points that fall in the single cluster. This
information is used to guide the subsequent cable vectorization
step. Namely, it is exploited to divide the entire point cloud into
smaller parts consisting of a few spans, to facilitate and speed
up the modeling procedure described in the following section.
Furthermore, the DBSCAN outlier detection strategy enables
the identification of points that were previously misclassified as
pylon (black points in Fig. 4).

3.3 Cable Vectorization

Finally, a vector drawing of the cables is extracted in a fully
automatic way from the 3D points previously classified as
cables.

First of all, it should be noted that a cable’s span follows the
shape of a catenary, described by a straight line L(θ, ρ) in the
horizontal plane XY and the hyperbolic cosine C(a, b, c) in the
vertical plane X ′Z that contains the line:

L(θ, ρ) : (sin θ)x+ (− cos θ)y + ρ = 0 (1)

C(a, b, c) : z = a+ c · cosh
(
x′ − b

c

)
(2)

with p′ = Rp, p′=[x′, y′], p=[x, y], and R the rotation mat-
rix that aligns the reference system to the line identified by the
catenary.

As the number of cables is not known a priori and the cable
points are not clustered, a multiple-model fitting algorithm is
applied to extract multiple instances of catenaries from point
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Figure 6. Fitting of several catenary models in the vertical plane.

sets that may contain outliers (in fact, points that are mis-
takenly labelled as cable are present). To this end, the J-Linkage
method is chosen to extract both the lines on the XY plane and
the catenary curves on the X ′Z plane. Indeed, as shown in
(Toldo and Fusiello, 2008), this algorithm is able to overcome
some of the limitations of RANSAC and the Hough Transform,
proving its robustness in different application fields, such as the
automatic reconstruction of the walls of a building from point
clouds (Maset et al., 2019).

At high-level, J-Linkage follows a first-represent-then-
clusterize scheme, where points are initially represented by the
preferences they grant to a pool of provisional model hypo-
theses. Given that points belonging to the same model have
similar preference sets, clustering the latter can reveal the struc-
tures hidden in the data. The second step is therefore a greedy
bottom-up agglomerative clustering, where data with similar
preference sets are merged. The Jaccard distance is applied
to measure the degree of overlap of two sets, ranging from 0
(identical sets) to 1 (disjoint sets). The final model for each
cluster of points is estimated by least squares fitting. In this pro-
cedure, outliers emerge as small clusters that can be removed a
posteriori. Please refer to (Toldo and Fusiello, 2008) for an
in-depth description of J-Linkage.

J-Linkage is thus used as the core of the proposed procedure
for cable vectorization, that can be summarized in the following
steps.

At first, lines in the XY plane are identified by J-Linkage on a
random subset of cable points. This step requires the definition
of a inlier threshold thL: a point is considered part of the sup-
porting set of a fitting line if its residual is below this threshold.
Furthermore, lines supported by fewer than minL points are
considered outliers (i.e., points misclassified as cables) and re-
moved. Once the straight lines have been identified (Fig. 5), the
entire set of points is reassigned to the models they belong and
outliers are discarded.

Robust catenary fitting on inlier points is then performed (via
J-Linkage) in the vertical X ′Z plane, allowing to handle the
cases in which (i) there are multiple cables in the same span but
with different elevations (one above the other), as in Fig. 6 (a),
or (ii) consecutive spans are aligned (i.e., belong to the same
X ′Z plane), as in Fig. 6 (b). As with the previous step, it is
necessary to define the inlier threshold thC and the minimum
number of points minC that support a catenary curve.

Considering the typically large size of the point clouds, to op-
timize processing times it is recommended to apply the vector-
ization procedure to few spans at a time. Figure 7 show the
results obtained for three spans.
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Figure 7. Result of the power line vectorization over three spans.
The Z-axis is stretched for visualization purposes.

4. Experiments and Results

The algorithms were implemented in a prototyping language.
Specifically, the point cloud segmentation method was de-
veloped using Python and Keras (Chollet et al., 2015). As for
the DBSCAN algorithm, the Python implementation provided
by the scikit-learn library (Pedregosa et al., 2011) was applied,
while the vectorization procedure was implemented in Matlab.
The experiments were conducted on a PC with an Intel Core i7
processor, 16GB of RAM, and an NVIDIA GeForce 1080 GPU.

4.1 Dataset

The proposed method was developed and tested using a data-
set acquired with a Riegl LMS-Q780 full-waveform airborne
laser scanner, characterized by a mean surface density of 45
points/m2. The dataset consists of five high-voltage power
lines, four of which are used as a training/validation set for the
segmentation step, while the fifth line (36.3 km length, approx.
18% of the total number of points) is reserved for testing the
entire pipeline. The site surveyed is located in an extra-urban
area, with a significant presence of vegetation and buildings in
close proximity to the power lines. Five classes are thus con-
sidered, namely ground, vegetation, building, cable, and pylon.
The point cloud consists of 1,035 million points and has an im-
balanced distribution across the classes, as shown in Table 1.
The ground truth segmentation was carried out in two steps: (i)
the ground surface was automatically identified using the Clas-
sify ground function of TerraScan software1 and all the points
within 20 cm of that surface were then assigned to the ground
class; (ii) the remaining points were manually segmented into
the four other classes.

4.2 Point Cloud Segmentation

The U-net was trained using Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.0002 and categorical cross-
entropy as the loss function. The training was carried out with
a batch size of eight images, due to GPU memory limitations,
and lasted for 30 epochs, taking approximately 40 hours.

The training/validation tiles of size 256 × 256 pixels were ran-
domly extracted from much larger images in which the training
set was mapped. To prevent the network from learning a spe-
cific scan pattern, each tile was rotated four times. Moreover,
1 produced by TerraSolid, https://terrasolid.com/products/

terrascan/

TRAIN/VAL TEST

Label Class # Points % # Points %

1 ground 5.38 · 108 63.5 1.49 · 108 79.9
2 vegetation 2.92 · 108 34.5 3.46 · 107 18.5
3 building 1.36 · 107 1.6 1.97 · 106 1.1
4 cable 2.96 · 106 0.3 7.96 · 105 0.4
5 pylon 9.61 · 105 0.1 1.56 · 105 0.1

Table 1. Distribution of points across the five classes. The split
between training/validation and test sets is reported.

to cope with the unbalanced distribution of points among the
classes, it was required that 30% of the training images con-
tained pixels belonging to the pylon class. The same applies to
the cable class. Finally, three different pixel sizes (4 cm, 8 cm,
and 12 cm) were used to create the training windows, to facilit-
ate the learning of feature independent of the local point dens-
ity. Overall, 25,000 tiles were used for training, while 6,000
tiles served as validation set for hyper-parameter tuning.

In the inference phase, a fixed pixel size of 8 cm was used.
Following the U-net segmentation, a basic height threshold was
applied, assigning the class ground to isolated points that were
within 20 cm of ground points.

The proposed method achieved an overall accuracy of 96.8%
on the test set. The confusion matrix in Tabs. 2 and 3 report
the per-class performance, including precision, recall and F1-
score values for each class. The high accuracy provided by the
method in identifying a challenging class such as cable should
be emphasised, a result achieved also thanks to the data balan-
cing performed during the generation of the training set. Re-
garding the pylon class, precision and recall are slightly lower
(90.2% and 93.6%, respectively). This is mainly due to actual
ground and vegetation points being erroneously assigned to the
pylon class. However, this issue is largely resolved by the sub-
sequent step of individual pylon identification.
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ground 1.000 0 0 0 0
vegetation 0.167 0.833 0 0 0

building 0.04 0.01 0.949 0 0.001
cable 0.002 0.003 0 0.990 0.005
pylon 0.028 0.018 0 0.018 0.936

Table 2. Normalized confusion matrix: each row shows the
instances in an actual class, while each column represents the

instances in a predicted class. The values have been normalized
so that the sum of each row is equal to 1.

Label Class Precision Recall F1-score

1 ground 96.2% 100.0% 98.1%
2 vegetation 99.8% 83.3% 90.8%
3 building 99.1% 94.9% 97.0%
4 cable 99.3% 99.0% 99.2%
5 pylon 90.2% 93.6% 91.8%

Table 3. Segmentation results for the five classes.

4.3 Individual Pylon Identification

The use of DBSCAN for individual pylon identification was
preliminary assessed on 109 pylons belonging to a power line
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Figure 8. Visualization of results on the 36 km-long test line. Pylons correctly detected (green), false positives (red), and false
negatives (blue). Reconstructed cables for the part of the power line in the black box are shown in Fig. 1.

from the training set, thus performing clustering on the ground
truth segmented point cloud. This allowed a first tuning of the
two parameters required by DBSCAN, namely ϵ and minPts
(see Sect. 3.2). The following values were evaluated: ϵ =
[3, 5, 7] and minPts = [100, 200, 300]. All tests resulted
in high performances, with precision values ranging between
99.1% and 100.0 % and recall values between 93.6% and 100%,
confirming the suitability of the DBSCAN algorithm for the
identification of pylons. Overall, the outcomes were primarily
influenced by the minPts parameter, while showing consistent
behavior as ϵ varied for a given value of minPts. As a result,
the central value of ϵ = 5 was selected.

The algorithm was then applied to the test line, which had been
segmented as described in Sect. 4.2. In this case, the class pylon
contains points incorrectly classified as ground, vegetation, and
cable, which are mainly scattered points or form small clusters.
For this reason, higher values of minPts can reduce the iden-
tification of false positives (i.e., objects incorrectly identified
as pylons), as confirmed by the results on the test line, repor-
ted in Table 4. With minPts = 300, the algorithm guarantees
the highest F1-score (97.6%) and precision (97.3%), which fa-
vors the correct subdivision of the point cloud into spans for
the subsequent cable vectorization phase. The result for the en-
tire test line is shown in Fig. 8. Please note also that DBSCAN
accurately identifies previously misclassified points as outliers,
which improves the precision of the pylon class from 90.2% to
93.9%.

minPts TP FP FN Prec. Rec. F1-score

100 145 16 0 90.1% 100.0% 94.8%
200 145 10 0 93.5% 100.0% 96.7%
300 142 4 3 97.3% 97.9% 97.6%

Table 4. Results of the pylon identification step. TP represents
the number of true positives (i.e., pylons that were correctly

identified), FP represents the number of false positives, while
FN represents the false negatives (i.e., pylons that were not

detected by DBSCAN).

4.4 Cable Vectorization

To speed up the vectorization process, the test dataset was pre-
liminary split into multiple files, each comprising two spans,
based on the pylons identified in the previous step. As for the
parameters required by J-Linkage (Sect. 3.3), the values were
rapidly tuned on the basis of few spans belonging to the train-
ing set. In detail, the line detection process was run using the
10% of the cable points, setting the inlier threshold thL = 30
cm and minL = 10 points. The catenary fitting was performed
on all inlier points, using thC = 30 cm and minC = 100 points.

Figure 1 displays some results, and Table 5 summarizes the
overall performance. The method provides a very high recall
value (99.7%), with only 2 out of 710 cables that were not

reconstructed. The number of false positives (19) is slightly
higher, but the precision achieved is still remarkable (97.4%).

TP FP FN Prec. Rec. F1-score

708 19 2 97.4% 99.7% 98.5%

Table 5. Performances of the cable vectorization step.

5. Conclusions

The paper presented a complete pipeline for processing power
line data, enabling the automatic extraction and modelling of
any number of pylons and cables. The achieved performance
is on par with or superior to that reported by state-of-the-art
methods. Furthermore, the proposed approach was tested on a
large dataset, showcasing its applicability in extensive monitor-
ing projects.

Drawbacks of the method include the need for parameter tun-
ing, which may vary depending on the type of power line (high,
medium, low voltage) and the characteristics of the point cloud
data (such as density and noise levels). This adds a layer of
complexity to the implementation process, but can ultimately
lead to optimised results tailored to the specific characterist-
ics of the power line and the point cloud data being analysed.
Despite this challenge, the simplicity of the tuning process en-
sures that it can be efficiently completed with only a few spans,
thereby mitigating potential barriers to widespread adoption
and application of the method. It should also be underlined that,
unlike other methods in the literature, the division into spans in-
duced by pylons is used solely to expedite the process of cable
detection. Nonetheless, the method can process an arbitrary
number of spans simultaneously.

Future research directions involve applying the method to pho-
togrammetry, with a specific focus on addressing the potential
influence of dense cloud noise on the results. However, the
results obtained for the lidar data and the robustness to noise
and outliers shown by DBSCAN and J-Linkage in this work
make the proposed approach promising also for photogrammet-
ric point clouds. If photogrammetry produces a point cloud
of similar quality to lidar, accurately representing power lines,
then adaptation would primarily involve modifying the U-net
architecture to process images in which the information stored
at each pixel includes RGB channels and the altitude of the
point. The subsequent stages of pylon detection and catenary
fitting would remain unchanged. This adaptation would enable
the method to integrate seamlessly with photogrammetric data,
enhancing its versatility and applicability in various data ac-
quisition scenarios.
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