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ABSTRACT:

In a recent paper (Fusiello and Crosilla, 2015) a Procrustean formulation of the bundle block adjustment has been presented, with
a solution based on alternating least squares. This paper improves on it in two respects: it introduces a faster iterative scheme that
minimizes the same cost function, thereby achieving the same accuracy, and makes the method resistant to rogue measures through
iteratively reweighted least-squares. Empirical results confirm the effectiveness of these enhancements.

1. INTRODUCTION

Orthogonal Procrustes Analysis (OPA) is a very useful tool to
perform the direct least squares solution of similarity transfor-
mation problems in any dimensional space. At first, it was used
for the multidimensional rotation and scaling of different matrix
configuration pairs (Schönemann, 1966, Schönemann and Car-
roll, 1970). Successively, the solution was generalized (GPA) for
the simultaneous least squares matching of more than two corre-
sponding matrices (Gower, 1975, Ten Berge, 1977). Anisotropic
OPA is referred instead to the case where the class of transforma-
tions is extended to anisotropic scaling of points or coordinates.
For these problems (Gower and Dijksterhuis, 2004) suggest an
iterative procedure where each variable is alternatively estimated
while keeping the others fixed. This scheme is called block re-
laxation (de Leeuw, 1994) or alternating least squares (Young
et al., 1976). While an iterative solution with guaranteed conver-
gence was described by (Bennani Dosse and Ten Berge, 2010) for
the cases of pre- and post-scaling of the columns, no analogous
property is known in the literature for rows scaling. Different
versions of anisotropic GPA are described in (Lingoes and Borg,
1978), (Gower and Dijksterhuis, 2004), (Commandeur, 1991) and
(Bennani Dosse et al., 2011) (they differ on where the scaling is
applied).

In the field of terrestrial laser scanning GPA has been already
applied to the registration of multiple 3-D models (Beinat and
Crosilla, 2001, Toldo et al., 2010). In the field of photogramme-
try, (Crosilla and Beinat, 2002) applied the GPA to the solution
of block adjustment by independent models, while (Garro et al.,
2012) applied OPA (with anisotropic row-scaling) to solve the ex-
terior orientation problem. In a recent paper (Fusiello and Crosil-
la, 2015) the Procrustean solution of the classical bundle block
adjustment has been described. The method allows to obtain the
same results of the classical least squares solution, without any
linearization of the collinearity equations and without any a pri-
ori information about the exterior orientation parameters. The
proposed method is based on the algorithms of the anisotropic
Procrustean analysis and is implemented as a block relaxation
procedure.

In this paper, an enhanced version of the above mentioned algo-
rithm is presented. At first, a faster iterative solution of the same
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minimization problem is developed, that allows to obtain a reduc-
tion of one order of magnitude w.r.t. the execution time required
by the original algorithm. This new relaxation scheme solves an
anisotropic GPA with row-scaling using the same framework of
the GPA solution (Gower, 1975). Furthermore, a robust objective
function is introduced that makes the method resistant to outliers.
The new scheme, based on Iteratively Reweighted Least Squares
(IRLS), achieves reliable results also in the presence of a percent-
age up to 10% of outliers.

2. PROBLEM FORMULATION

Let us now consider m images depicting the same n 3-D tie-
points s1 . . . sn. In the bundle block adjustment problem it is
required to simultaneously find the image exterior orientation pa-
rameters and the tie-points 3-D coordinates that minimize a ge-
ometric error, without introducing intermediate models, as op-
posed to the block adjustment by independent models (Crosilla
and Beinat, 2002). We review here the Procrustean solution to
the free-network bundle block adjustment problem presented by
(Fusiello and Crosilla, 2015).

We start from the collinearity equations for one camera:

pj = ζ−1
j R(sj − c) (1)

where

sj is the coordinate vector of the j-th tie-point in the external
system;
c is the coordinate vector of the projection centre in the ex-
ternal system;
ζj is a positive scalar proportional to the “depth” of the
point, i.e., its distance to the plane containing the projection
centre and parallel to the image plane;
R is the rotation matrix transforming from the external sys-
tem to the camera system;
pj is the coordinate vector of the projected i-th tie-point in
the camera system, where the third component is equal to
−f , the principal distance or focal length.

Expressing (1) with respect to sj and transposing yields:

sᵀj = ζjp
ᵀ
jR+ cᵀ (2)



and stacking the equations for n points s1 . . . sn, the following
matrix formulation is obtained:s

ᵀ
1

...
sᵀn


︸ ︷︷ ︸

S

=

ζ1 . . . 0
...

. . .
...

0 . . . ζn


︸ ︷︷ ︸

Z

p̃
ᵀ
1

...
p̃ᵀ
n


︸ ︷︷ ︸

P

R+

c
ᵀ

...
cᵀ


︸ ︷︷ ︸
1cᵀ

, (3)

or equivalently:
S = ZPR+ 1cᵀ, (4)

where P is the matrix by rows of image tie-point coordinates de-
fined in the camera system, S is the matrix by rows of tie-point
coordinates defined in the external system, Z is the (positive) di-
agonal matrix containing the depth of each tie-point.

Thus, for each image i = 1 . . .m it is possible to write

S = ZiPiRi + 1cᵀi . (5)

In this formula the image coordinates Pi are known, but all the
other quantities are unknown. They can be recovered by mini-
mizing the following error function:

m∑
i=1

‖S − ZiPiRi − 1cᵀi ‖
2
F (6)

where each term of the sum represents the difference vector be-
tween 3-D tie-points (S) and the corresponding 2D points (Pi)
back-projected according to their estimated depths (Zi) and esti-
mated image orientation (Ri, ci) of image i. Let us call ∆ij each
individual difference vector relative to exposure i = 1 . . .m and
tie-point j = 1 . . . n (see Fig. 1). Overall, what is being min-
imized is the length of the residuals ∆ij for each exposure and
each tie-point, in a least-squares sense.

sj

∆ i j

ci

Image i

leg 

Figure 1: The “legs” are line segments emanating from image
points. The Procrustean bundle adjustment optimizes camera
orientation and the length of each leg so as to bring the legs’
endpoints as close as possible to each other, i.e., minimizing the
length of the ∆ij .

Please note that if Zi were known, the problem would reduce to
a GPA (see Appendix C), where the point sets to be aligned are
the ZiPi i = 1 . . .m. On the other hand, computing Zi given
all the other variables is independent in each camera, and the so-
lution, originally developed by (Garro et al., 2012), is reported in
App. B. This observation underlies both the solutions of (Fusiello
and Crosilla, 2015) and the novel one proposed in this paper.

3. PREVIOUS SOLUTION

In (Fusiello and Crosilla, 2015) a solution to (6) is proposed, it-
erating between the following stages:

• assuming all the Zi known, compute Ri, ci by solving a
GPA problem (see App. C);

• set the putative 3-D points S to the centroids

S =
1

m

m∑
i=1

(ZiPiRi + 1cᵀi ); (7)

• solve for Zi independently in each image (see App. B):

Zi = (PiP
ᵀ
i � I)−1(PiRi(S

ᵀ − ci1
ᵀ)� I). (8)

The same formulation as (6) has been described at pg. 129 of
(Commandeur, 1991), under the name STIMIDIO. The iterative
solution proposed there is different from ours, though.

4. THE NEW SOLUTION: AGPA

The previous solution consists of two nested cycles, with a GPA
as the inner one. This paper proposes a new iterative scheme
without inner cycles, that has the same structure as the GPA, and
therefore will prove to be faster.

Let us introduce the Anisotropic Generalized Procrustes Anal-
ysis (AGPA), which extends GPA (described in App. C) with
anisotropic row-scaling for each individual model, and minimizes
the following least squares objective function:

m∑
i=1

m∑
j=i+1

∥∥(ZiPiRi + 1cᵀi )− (ZjPjRj + 1cᵀj )
∥∥2
F

(9)

whereP1, P2, . . . , Pm aremmodel matrices containing (by rows)
the same set of n points in m different coordinate systems.

Let P ′i = ZiPiRi +1cᵀi , by the same token as in the GPA (Com-
mandeur, 1991), the problem is equivalent to minimize

m∑
i=1

∥∥P ′i − S∥∥2F =

m∑
i=1

tr
((
P ′i − S

)ᵀ(
P ′i − S

))
(10)

where S is the centroid:

S =
1

m

m∑
i=1

P ′i . (11)

This is the same objective function of (6), hence AGPA solves the
bundle adjustment problem as formulated in Sec. 2.

The objective function of AGPA (10) is very similar to the objec-
tive function of GPA (27), modulo the substitution of the scalar
z with the corresponding weight matrix Z. As a consequence,
the solution to AGPA, reported in Algorithm 1, is very simi-
lar to the GPA one, with the difference that the isotropic scale
factor computation (step (b) of Algorithm 3) is substituted with
the anisotropic scale formula (step (c) of Algorithm 1), borrowed
from the AEOPA (App. B).



Algorithm 1 AGPA
Input: a set of 3-D models Pi i = 1 . . .m
Output: translation ci, attitude Ri and scale Zi of each model

1. Initialize Zi = I and P ′i = Pi ∀i

2. Compute centroid S =
1

m

m∑
i=1

P ′i

3. Register each model Pi to S:

(a) Compute Ri = U diag(1,1,det(UV ᵀ))V ᵀ

with UDV ᵀ = P ᵀ
i Zi(I−11ᵀ/n)S

(b) Compute ci = (S − ZiPiRi)
ᵀ1/n

(c) Compute Zi=(PiP
ᵀ
i � I)−1(PiRi(S

ᵀ−ci1ᵀ)� I)

(d) Update P ′i = ZiPiRi + 1cᵀi

4. Iterate from step 2. until convergence of
m∑
i=1

‖P ′i − S‖
2
F .

The solution corresponds to a free adjustment, as it does not in-
volve any object space constraint. In fact, the global scale of the
solution is discretionary, and only the ratios of the Zi are rele-
vant. Therefore, at each iteration the Zi are normalized to unit
average, in order to avoid degeneracy. Moreover, negative values
are clipped to zero in step (c).

Ground control points can be incorporated as in (Crosilla and
Beinat, 2002).

As it will be shown in Sec. 6., this method has the same accuracy
and convergence properties of the one reported by (Fusiello and
Crosilla, 2015), but it is considerably faster.

5. RESISTANT AGPA

In real-world applications two issues must be considered, in order
for any bundle adjustment method to be applicable. First, not all
points are visible in all the images, so the Pi matrices have some
unspecified entries.

Second, when tie-points have been obtained automatically – a
very common trend (e.g. (Hartmann et al., 2015)) borrowed from
the structure-from-motion literature – some of them are rogue
points that would skew the Procrustean least square estimate, if
proper countermeasures are not taken. This is particularly dan-
gerous since the Procrustes procedure is fully automatic and does
not require any a-priori information about the unknowns.

The first issue is handled as proposed in (Crosilla and Beinat,
2002), where for each matrix Pi, a diagonal matrix Mi can be
inserted, containing unit values along the main diagonal in case
the corresponding row of Pi is specified and zero on the contrary.
As a result, the cost function is rewritten as:

m∑
i=1

tr
((
P ′i − S

)ᵀ
Mi

(
P ′i − S

))
, (12)

where the centroid S, is now defined as:

S =

(
m∑
i=1

Mi

)−1 m∑
i=1

MiP
′
i . (13)

Resistance to outliers can be obtained, following (Verboon and
Heiser, 1992), by substituting the least squares cost function of
the classical Procrustes method with specific robust cost func-
tions, and solving the resulting minimization problem with Iter-
atively Reweighted Least Squares (IRLS) (Holland and Welsch,
1977).

This technique iteratively solves weighted least squares problems
where the weights are estimated at each iteration by analysing the
residuals of the current solution. The weights are assigned by a
specific weight function in such a way to penalize outliers and
promote inliers.

In our case, the weighted cost function is:

m∑
i=1

tr
((
P ′i − S

)ᵀ
WMi

(
P ′i − S

))
(14)

where W is a diagonal matrix containing the positive weights
W (j, j) for each point.

The solution to the weighted version of the problem is the same
as in AGPA, with the following substitutions:

Pi ← QiPi S ← QiS 1← Qi1 with Qi = MiW
1/2.

Please note that the matrix W is not defined for each exposure,
meaning that we conservatively attribute outlyingness to tie-points,
as opposed to their image projections.

Several weight functions have been proposed in the literature;
the ones offering greatest resistance to outliers are the so-called
hard redescenders, that assign zero weight to points with resid-
ual higher than a threshold. Among them we picked the popular
bisquare (a.k.a. biweight) function (Mosteller and Tukey, 1977):

W (j, j) =


(

1−
( rj

k

)2)2 if |rj/k| ≤ 1

0 otherwise
(15)

where the tuning constant k is chosen, as customary, so as to yield
a reasonably high efficiency in the normal case, and still offers
protection against outliers. In particular, k = 4.685σ produces
95-percent efficiency when the errors are normal with standard
deviation σ. The latter is estimated robustly from the median ab-
solute deviation (MAD) of the residuals as σ = MAD/0.6845.

In our case the residuals are defined as:

rj =

m∑
i=1

Mi(j, j)
∥∥S(j, :)− P ′i (j, :)

∥∥2
2

j = 1 . . . n (16)

where S(j, :) (resp. P ′i (j, :)) denotes the j−th row of S (resp.P ′i ).
Please note that: i) the term S(j, :)− P ′i (j, :) correspond to ∆ij

as defined in Fig. 1; ii)
n∑

j=1

rj =
m∑
i=1

tr
(
(P ′i − S)

ᵀ
Mi(P

′
i − S)

)
.

The Robust (or Resistant) AGPA is summarized in Algorithm 2.



Algorithm 2 RAGPA
Input: a set of 3-D models Pi,Mi i = 1 . . .m
Output: translation ci, attitude Ri and scale Zi of each model

1. Initialize W = I and Zi = I, P ′i = Pi ∀i
2. Solve AGPA:

(a) Compute centroid S =

(
m∑
i=1

Mi

)−1 m∑
i=1

MiP
′
i

(b) Register each model Pi to S:

i. Let Qi = MiW
1/2 and qi = diag-1(Qi)

ii. Compute Ri = U diag(1,1,det(UV ᵀ))V ᵀ

with UDV ᵀ = P ᵀ
i QiZi(I−(qiq

ᵀ
i )/(qᵀ

i qi))QiS

iii. Compute ci = (QiS − ZiQiPiRi)
ᵀqi/(q

ᵀ
i qi)

iv. Compute Zi=(PiP
ᵀ
i �I)−1(PiRi(S

ᵀ−ci1ᵀ)�I)

v. Update P ′i = ZiPiRi + 1cᵀi

vi. Compute residuals

rj =
m∑
i=1

‖S(j, :)− P ′i (j, :)‖22 j = 1 . . . n

(c) Iterate from step (a) until convergence of residual
n∑

j=1

rj

3. Compute weightsW (j, j) = (|rj/k| ≤ 1)·
(
1− (rj/k)2

)2
4. Iterate from step 2. until convergence of weights

It is worth noting that the computation of the centroid S does
not involve the IRLS weights W but only Mi, and that Zi does
not depend on the weights at all, as all computations, although in
matrix form, are essentially point-wise, so any unspecified value
in the j−th row of Pi only reflects to the j−th diagonal value of
Zi that should be ignored. For the same reason it does not make
sense to down-weight outliers in the computation of Zi.

6. EXPERIMENTS

In this set of experiments, we tested (R)AGPA on repeated trials
with simulated data. The aim was to assess i) its resistance to out-
liers, ii) the increase in speed w.r.t. (Fusiello and Crosilla, 2015)
and iii) the accuracy and failure rate. The comparison with pho-
togrammetric bundle adjustment would have been pointless here
because AGPA minimizes the same cost function as (Fusiello and
Crosilla, 2015), which in turn has been already compared to pho-
togrammetric bundle adjustment for accuracy.

We followed the same validation protocol as in (Fusiello and
Crosilla, 2015). For each trial, n 3-D tie-points have been ran-
domly generated in a sphere of unit radius1 centred on the origin.
Sixteen random cameras (m = 16) looking toward the origin
have been positioned in a 60◦ sector of the sphere, at an average
distance of d units from the origin. The focal length has been
chosen so as to yield a view angle of {60◦, 120◦} with an image
size of 1000× 1000 pixels. Random noise with unit variance has
been added to the image coordinates. Missing points have been
simulated by zeroing random elements in the visibility matrix.
Outliers have been generated with uniform random coordinates
in [−500, 500]. A sample simulated scene is shown in Fig. 2.

The first experiment was designed for characterizing the failure
rate, i.e., counting how many times our algorithm failed to reach
the correct solution in 100 random trials, starting with the usual

1In these experiments on simulated data, measures are in arbitrary
“units”.
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Figure 2: Top: A depiction of a simulated scene (cameras and
points) used in the experiment (m = 16, n = 192, d = 10, p =
36); Bottom: the simulated visibility matrix, showing which
point (x-axis) is visible in which image (y-axis). The outliers
(10) are shown in red.

uninformed initialization (Z = 1). A random noise with 1 pixel
standard deviation has been added to image coordinates. The pa-
rameters considered in this simulation are the distance d of the
camera from the origin and the number p of tie-points visible in
each image.

For each value of d = {2, 10, 20} 3-D tie-points have been stre-
tched in the XY plane so as to fit in the view frustum, while the
Z range is kept constant (to the original two units), so as to give
rise to increasing values for the distance to Z-range ratio, namely
{1, 5, 10} respectively.

The number of visible tie-points per image has been set to p =
{18, 36, 54}. When the number of images and the number of vis-
ible tie-points per image are fixed, total number of points and the
ray multiplicity become dependent. In one case the total num-
ber of points has been kept fixed to n = 96 and the ray multi-
plicity took the values {3, 6, 9}. In another case ray multiplicity
has been fixed to 3 and the total number of points took values
n = {96, 192, 288}.

Figure 3 reports the results, that are aligned with those published
in (Fusiello and Crosilla, 2015). The digest is that when the ray
multiplicity is greater than 3 (top row, p = {36, 54}) the conver-
gence rate is 100%. The case of ray multiplicity= 3 is shown in
the bottom row.

Figure 4 reports the median RMS error on 3-D points position for
this experiment. The RMS error is in percentage with respect to
the radius of the point cloud (i.e., 1% is 0.01 units on 3-D points
in a sphere with radius 1). This error is always below 2% in the
case of 120◦ field of view (right column), and always below 1%
in the 60◦ case (left column). These results are in line with those
reported in (Fusiello and Crosilla, 2015).
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Figure 3: Failure rate of AGPA as a function of camera dis-
tance d and number of tie-points visible in each image. Top
row: Corresponding ray multiplicity values are [3, 6, 9], where
n = 96. Bottom row: Corresponding total number of points are
[96, 192, 288], where the ray multiplicity is fixed to 3. Left/right
column correspond to 60◦/120◦ field of view, respectively.
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Figure 4: Median RMS error of AGPA as a function of cam-
era distance d and number of tie-points visible in each image p.
The error is in percentage with reference to points distributed on
a unit sphere. Top row: Corresponding ray multiplicity values
are [3, 6, 9], where n = 96. Bottom row: Corresponding total
number of points are [96, 192, 288], where the ray multiplicity
is fixed to 3. Left/right column correspond to 60◦/120◦ field of
view, respectively.

In summary, AGPA has the same convergence rate and accu-
racy than (Fusiello and Crosilla, 2015).

In the experiment aimed at assessing the resistance to outliers
of RAGPA the parameters were set to: m = 16, n = 96, d =
10, p = 36. An increasing number of outliers has been added
and 100 trials for each contamination level have been run. The
results, reported in Fig. 5, indicates a breakdown point at 10%.
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Figure 5: Mean and median RMS error vs percentage of outliers
(m = 16, n = 96, d = 10, p = 36). The RMS error is in
percentage with reference to points distributed on a unit sphere.

In the experiment aimed at assessing the speed-up of AGPA (MAT-
LAB implementation) with respect to (Fusiello and Crosilla, 2015)
(original MATLAB implementation by the authors) the parame-
ters were set to: m = 16, d = 10 and the ray multiplicity was
set to 6. The number of points m has been increased from 32 to
144, and the average running time over 20 independent trials has
been recorded. The results are reported in Fig. 6, which shows
that AGPA is at least of one order of magnitude faster than
(Fusiello and Crosilla, 2015).

32 48 64 80 96 112 128 144

 n (tie-points)

0

10

20

30

40

50

60

ru
n
n
in

g
 t
im

e
 [
s
]

FusCro15
AGPA

Figure 6: Running time vs number n of tie-points (m = 16,
d = 10, ray multiplicity = 6) for (Fusiello and Crosilla, 2015)
and AGPA.

The tests on the same real datasets used in (Fusiello and Crosilla,
2015) confirm the outcome of the simulations. On the Herz-Jesu-
P25 image-set (Strecha et al., 2008) the running time goes from
130s to 30s, whereas on the Hessigheim data (Cramer, 2013) it
decreases from 460s to 100s at equal accuracy.

7. CONCLUSIONS

We have presented an improvement over a recent approach to
bundle block adjustment based on anisotropic OPA (Fusiello and



Crosilla, 2015). This new formulation solves the same minimiza-
tion problem of its precursor but it is consistently faster. As
the previous version, the method achieves the same accuracy of
the classical photogrammetric bundle adjustment without any lin-
earization of the collinearity equations and without any a priori
information about the exterior orientation parameters. The robust
cost function allows to tolerate up to 10% of outliers, by reducing
their influence with a suitable weight function.

Future work will aim at characterizing the convergence of the
method and possibly improving the breakdown point value.

REFERENCES

Beinat, A. and Crosilla, F., 2001. Generalized procrustes anal-
ysis for size and shape 3d object reconstruction. In: Gruen and
Kahmen (eds), Optical 3-D Measurement Techniques, Wichmann
Verlag, pp. 345–353.

Bennani Dosse, M. and Ten Berge, J., 2010. Anisotropic orthog-
onal procrustes analysis. Journal of Classification 27(1), pp. 111–
128.

Bennani Dosse, M., Kiers, H. A. L. and Ten Berge, J., 2011.
Anisotropic generalized procrustes analysis. Computational
Statistics & Data Analysis 55(5), pp. 1961–1968.

Commandeur, J. J. F., 1991. Matching configurations. DSWO
Press, Leiden.

Cramer, M., 2013. The UAV@LGL BW project - a NMCA case
study. In: Fritsch (ed.), Photogrammetric Week ’13, Wichmann,
Berlin/Offenbach, pp. 165–179.

Crosilla, F. and Beinat, A., 2002. Use of generalised procrustes
analysis for the photogrammetric block adjustment by indepen-
dent models. ISPRS Journal of Photogrammetry and Remote
Sensing 56(3), pp. 195–209.

de Leeuw, J., 1994. Block-relaxation algorithms in statistics. In:
H. H. Bock, W. Lenski and M. M. Richter (eds), Information Sys-
tems and Data Analysis, Springer-Verlag, pp. 308 – 325.

Fusiello, A. and Crosilla, F., 2015. Solving bundle block ad-
justment by generalized anisotropic procrustes analysis. ISPRS
Journal of Photogrammetry and Remote Sensing 102, pp. 209–
221.

Garro, V., Crosilla, F. and Fusiello, A., 2012. Solving the PnP
problem with anisotropic orthogonal procrustes analysis. In: Sec-
ond Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling,
Processing, Visualization and Transmission, pp. 262–269.

Gower, J., 1975. Generalized procrustes analysis. Psychometrika
40(1), pp. 33–51.

Gower, J. C. and Dijksterhuis, G. B., 2004. Procrustes prob-
lems. Oxford Statistical Science Series, Vol. 30, Oxford Uni-
versity Press, Oxford, UK.

Hartmann, W., Havlena, M. and Schindler, K., 2015. Recent de-
velopments in large-scale tie-point matching. {ISPRS} Journal
of Photogrammetry and Remote Sensing pp. –.

Holland, P. W. and Welsch, R. E., 1977. Robust regression using
iteratively reweighted least-squares. Communications in Statis-
tics - Theory and Methods 6(9), pp. 813–827.

Lingoes, J. and Borg, I., 1978. A direct approach to individual
differences scaling using increasingly complex transformations.
Psychometrika 43(4), pp. 491–519.

Mosteller, F. and Tukey, J. W., 1977. Data analysis and regres-
sion: a second course in statistics. Addison-Wesley Series in
Behavioral Science: Quantitative Methods.

Schönemann, P. and Carroll, R., 1970. Fitting one matrix to an-
other under choice of a central dilation and a rigid motion. Psy-
chometrika 35(2), pp. 245–255.

Schönemann, P., 1966. A generalized solution of the orthogonal
procrustes problem. Psychometrika 31(1), pp. 1–10.

Strecha, C., Von Hansen, W., Van Gool, L., Fua, P. and Thoen-
nessen, U., 2008. On benchmarking camera calibration and
multi-view stereo for high resolution imagery. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1–8.

Ten Berge, J., 1977. Orthogonal procrustes rotation for two or
more matrices. Psychometrika 42(2), pp. 267–276.

Toldo, R., Beinat, A. and Crosilla, F., 2010. Global registration
of multiple point clouds embedding the generalized procrustes
analysis into an ICP framework. In: Proceedings of the 5th Inter-
national Symposium on 3D Data Processing, Visualization and
Transmission.

Verboon, P. and Heiser, W., 1992. Resistant orthogonal procrustes
analysis. Journal of Classification 9(2), pp. 237–256.

Wahba, G., 1965. A Least Squares Estimate of Satellite Attitude.
SIAM Review.

Young, F., Leeuw, J. and Takane, Y., 1976. Regression with qual-
itative and quantitative variables: An alternating least squares
method with optimal scaling features. Psychometrika 41(4),
pp. 505–529.

APPENDICES

A EXTENDED ORTHOGONAL PROCRUSTES
ANALYSIS

The terms Procrustes Analysis is referred to a set of least squares
mathematical methods used to compute transformations among
corresponding points (or models) belonging to a generic k-dimen-
sional space, in order to achieve their maximum agreement (e.g.
(Gower and Dijksterhuis, 2004)). In particular, the Extended Or-
thogonal Procrustes Analysis (EOPA) allows to recover the least
squares similarity transformation between two models.

Let us consider two matrices A and B containing two sets of
numerical data, e.g., the coordinates of n points of Rk by rows.
EOPA allows to directly estimate the unknown rotation matrixR,
a translation vector c and a global scale factor z that solves:

minimize
z,c,R

‖B − zAR− 1cᵀ‖2F

subject to RᵀR = RRᵀ = I, det(R) = 1
(17)

Given the definition of the Frobenius norm, the cost function can
be written equivalently as:

tr((B − zAR− 1cᵀ)ᵀ(B − zAR− 1cᵀ)) (18)

The minimization proceeds by defining a Lagrangian function
and setting the derivatives to zero (details can be found in (Schöne-
mann and Carroll, 1970)). In the following we report only the
results.



The rotation is given by

R = U diag(1,1,det(UV ᵀ))V ᵀ (19)

where U and V are determined from the SVD decomposition:

Aᵀ(I−11ᵀ/n)B = UDV ᵀ. (20)

The det(UV ᵀ) normalization guarantees that R is not only or-
thogonal but has positive determinant (Wahba, 1965).

The diag operator constructs a diagonal matrix from a vector,
whereas diag-1 returns a vector containing the diagonal elements
of its matrix argument.

Then the scale factor can be determined with:

z =
tr(RᵀAᵀ(I−11ᵀ/n)B)

tr(Aᵀ(I−11ᵀ/n)A)
. (21)

And finally the translation writes:

c = (B − zAR)ᵀ1/n. (22)

B ANISOTROPIC EOPA

The AEOPA is an instance of the classical EOPA (Schönemann
and Carroll, 1970), generalized by the fact that the isotropic scale
factor z is substituted by an anisotropic scaling characterized by
a diagonal matrix Z of different scale factors:

minimize
Z,c,R

‖B − ZAR− 1cᵀ‖2F

subject to RᵀR = RRᵀ = I, det(R) = 1

diagonal Z

(23)

According to (Gower and Dijksterhuis, 2004), this can be defined
as anisotropic EOPA with row scaling.

To obtain the least squares solution one has to define a Lagrangian
function and set to zero the partial derivatives with respect to the
unknowns R, c and the diagonal matrix Z, as in the EOPA case
(details in (Garro et al., 2012)). The results are:

R = U diag(1,1,det(UV ᵀ))V ᵀ (24)

with
UDV ᵀ=AᵀZ(I−11ᵀ/n)B

c = (B − ZAR)ᵀ1/n (25)

Z = (AAᵀ � I)−1(PR(Bᵀ − c1ᵀ)� I) (26)

where � is the Hadamard (or element-wise) product.

The reader can notice that whereas in the solution of the EOPA
problem one can recover firstR, that does not depend on the other
unknowns, then the isotropic scale factor z, and finally c, in the
anisotropic case the unknowns are entangled in such a way that
there is no direct solution available. (Gower and Dijksterhuis,
2004) suggest an iterative procedure where each variable is alter-
natively estimated while keeping the others fixed. This scheme
is called block relaxation (de Leeuw, 1994) or alternating least
squares (Young et al., 1976).

C GENERALIZED PROCRUSTES ANALYSIS

Generalized Procrustes Analysis (GPA) is a well-known tech-
nique that generalizes the classical EOPA (Schönemann and Car-
roll, 1970) to the alignment of more than two point sets (or mod-
els), represented as matrices. It minimize the following least

squares objective function:

minimize
zi,ci,Ri

m∑
i=1

m∑
j=i+1

∥∥(ziPiRi + 1cᵀi )− (zjPjRj + 1cᵀj )
∥∥2
F

subject to Rᵀ
iRi=RiR

ᵀ
i =I, det(Ri)=1

(27)
where P1, P2, . . . , Pm are the m matrices that contain (by rows)
the same set of n points in m different coordinate systems. The
degenerate solution zi = 0 ∀imust be avoided by imposing some
constraint on zi.

The GPA objective function has an alternative formulation in terms
of the centroid. Let P ′i = ziPiRi + 1cᵀi , the following equiva-
lence holds (Commandeur, 1991):

m∑
i<j

∥∥P ′i − P ′j∥∥2F = m

m∑
i=1

∥∥P ′i − S∥∥2F , (28)

where S is the centroid,

S =
1

m

m∑
i=1

P ′i . (29)

The left-hand term of Eq. (28) is a rewriting of Eq. 9, hence the
right-hand term of Eq. (28) can be minimized instead.

If S were known a direct solution of the transformation param-
eters of each model Pi with respect to the centroid S could be
found by EOPA with A = Pi and S = B. As suggested in
(Commandeur, 1991), the unknown centroid can be iteratively
estimated, in a block relaxation fashion, giving raise to the GPA
algorithm (Algorithm 3).

Algorithm 3 GPA

Input: a set of 3-D models Pi i = 1 . . .m
Output: translation c and attitude R of each model and z

1. Initialize P ′i = Pi ∀i

2. Compute centroid S =
1

m

m∑
i=1

P ′i

3. Register each model Pi to S:

(a) Compute Ri = U diag(1,1,det(UV ᵀ))V ᵀ

with UDV ᵀ = Pi
ᵀ(I−11ᵀ/n)S

(b) Compute zi =
tr(RᵀP ᵀ

i (I−11ᵀ/n)S)

tr(P ᵀ
i (I−11ᵀ/n)Pi)

(c) Compute ci = (S − ziPiRi)
ᵀ1/n

(d) Update P ′i = ziPiRi + 1cᵀi

4. Iterate from step 2 until convergence of
m∑
i=1

‖P ′i − S‖
2
F .

The GPA algorithm always converges (Commandeur, 1991), though
not necessarily to the global minimum. However empirical evi-
dence reported by several authors “indicates that this is not a point
of concern” (Bennani Dosse et al., 2011).


